forked from luck/tmp_suning_uos_patched
418 lines
9.0 KiB
C
418 lines
9.0 KiB
C
|
/*
|
||
|
* PRNG: Pseudo Random Number Generator
|
||
|
* Based on NIST Recommended PRNG From ANSI X9.31 Appendix A.2.4 using
|
||
|
* AES 128 cipher
|
||
|
*
|
||
|
* (C) Neil Horman <nhorman@tuxdriver.com>
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License as published by the
|
||
|
* Free Software Foundation; either version 2 of the License, or (at your
|
||
|
* any later version.
|
||
|
*
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#include <crypto/internal/rng.h>
|
||
|
#include <linux/err.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/moduleparam.h>
|
||
|
#include <linux/string.h>
|
||
|
|
||
|
#include "internal.h"
|
||
|
|
||
|
#define DEFAULT_PRNG_KEY "0123456789abcdef"
|
||
|
#define DEFAULT_PRNG_KSZ 16
|
||
|
#define DEFAULT_BLK_SZ 16
|
||
|
#define DEFAULT_V_SEED "zaybxcwdveuftgsh"
|
||
|
|
||
|
/*
|
||
|
* Flags for the prng_context flags field
|
||
|
*/
|
||
|
|
||
|
#define PRNG_FIXED_SIZE 0x1
|
||
|
#define PRNG_NEED_RESET 0x2
|
||
|
|
||
|
/*
|
||
|
* Note: DT is our counter value
|
||
|
* I is our intermediate value
|
||
|
* V is our seed vector
|
||
|
* See http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf
|
||
|
* for implementation details
|
||
|
*/
|
||
|
|
||
|
|
||
|
struct prng_context {
|
||
|
spinlock_t prng_lock;
|
||
|
unsigned char rand_data[DEFAULT_BLK_SZ];
|
||
|
unsigned char last_rand_data[DEFAULT_BLK_SZ];
|
||
|
unsigned char DT[DEFAULT_BLK_SZ];
|
||
|
unsigned char I[DEFAULT_BLK_SZ];
|
||
|
unsigned char V[DEFAULT_BLK_SZ];
|
||
|
u32 rand_data_valid;
|
||
|
struct crypto_cipher *tfm;
|
||
|
u32 flags;
|
||
|
};
|
||
|
|
||
|
static int dbg;
|
||
|
|
||
|
static void hexdump(char *note, unsigned char *buf, unsigned int len)
|
||
|
{
|
||
|
if (dbg) {
|
||
|
printk(KERN_CRIT "%s", note);
|
||
|
print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
|
||
|
16, 1,
|
||
|
buf, len, false);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define dbgprint(format, args...) do {\
|
||
|
if (dbg)\
|
||
|
printk(format, ##args);\
|
||
|
} while (0)
|
||
|
|
||
|
static void xor_vectors(unsigned char *in1, unsigned char *in2,
|
||
|
unsigned char *out, unsigned int size)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < size; i++)
|
||
|
out[i] = in1[i] ^ in2[i];
|
||
|
|
||
|
}
|
||
|
/*
|
||
|
* Returns DEFAULT_BLK_SZ bytes of random data per call
|
||
|
* returns 0 if generation succeded, <0 if something went wrong
|
||
|
*/
|
||
|
static int _get_more_prng_bytes(struct prng_context *ctx)
|
||
|
{
|
||
|
int i;
|
||
|
unsigned char tmp[DEFAULT_BLK_SZ];
|
||
|
unsigned char *output = NULL;
|
||
|
|
||
|
|
||
|
dbgprint(KERN_CRIT "Calling _get_more_prng_bytes for context %p\n",
|
||
|
ctx);
|
||
|
|
||
|
hexdump("Input DT: ", ctx->DT, DEFAULT_BLK_SZ);
|
||
|
hexdump("Input I: ", ctx->I, DEFAULT_BLK_SZ);
|
||
|
hexdump("Input V: ", ctx->V, DEFAULT_BLK_SZ);
|
||
|
|
||
|
/*
|
||
|
* This algorithm is a 3 stage state machine
|
||
|
*/
|
||
|
for (i = 0; i < 3; i++) {
|
||
|
|
||
|
switch (i) {
|
||
|
case 0:
|
||
|
/*
|
||
|
* Start by encrypting the counter value
|
||
|
* This gives us an intermediate value I
|
||
|
*/
|
||
|
memcpy(tmp, ctx->DT, DEFAULT_BLK_SZ);
|
||
|
output = ctx->I;
|
||
|
hexdump("tmp stage 0: ", tmp, DEFAULT_BLK_SZ);
|
||
|
break;
|
||
|
case 1:
|
||
|
|
||
|
/*
|
||
|
* Next xor I with our secret vector V
|
||
|
* encrypt that result to obtain our
|
||
|
* pseudo random data which we output
|
||
|
*/
|
||
|
xor_vectors(ctx->I, ctx->V, tmp, DEFAULT_BLK_SZ);
|
||
|
hexdump("tmp stage 1: ", tmp, DEFAULT_BLK_SZ);
|
||
|
output = ctx->rand_data;
|
||
|
break;
|
||
|
case 2:
|
||
|
/*
|
||
|
* First check that we didn't produce the same
|
||
|
* random data that we did last time around through this
|
||
|
*/
|
||
|
if (!memcmp(ctx->rand_data, ctx->last_rand_data,
|
||
|
DEFAULT_BLK_SZ)) {
|
||
|
printk(KERN_ERR
|
||
|
"ctx %p Failed repetition check!\n",
|
||
|
ctx);
|
||
|
ctx->flags |= PRNG_NEED_RESET;
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
memcpy(ctx->last_rand_data, ctx->rand_data,
|
||
|
DEFAULT_BLK_SZ);
|
||
|
|
||
|
/*
|
||
|
* Lastly xor the random data with I
|
||
|
* and encrypt that to obtain a new secret vector V
|
||
|
*/
|
||
|
xor_vectors(ctx->rand_data, ctx->I, tmp,
|
||
|
DEFAULT_BLK_SZ);
|
||
|
output = ctx->V;
|
||
|
hexdump("tmp stage 2: ", tmp, DEFAULT_BLK_SZ);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* do the encryption */
|
||
|
crypto_cipher_encrypt_one(ctx->tfm, output, tmp);
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Now update our DT value
|
||
|
*/
|
||
|
for (i = 0; i < DEFAULT_BLK_SZ; i++) {
|
||
|
ctx->DT[i] += 1;
|
||
|
if (ctx->DT[i] != 0)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
dbgprint("Returning new block for context %p\n", ctx);
|
||
|
ctx->rand_data_valid = 0;
|
||
|
|
||
|
hexdump("Output DT: ", ctx->DT, DEFAULT_BLK_SZ);
|
||
|
hexdump("Output I: ", ctx->I, DEFAULT_BLK_SZ);
|
||
|
hexdump("Output V: ", ctx->V, DEFAULT_BLK_SZ);
|
||
|
hexdump("New Random Data: ", ctx->rand_data, DEFAULT_BLK_SZ);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Our exported functions */
|
||
|
static int get_prng_bytes(char *buf, size_t nbytes, struct prng_context *ctx)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
unsigned char *ptr = buf;
|
||
|
unsigned int byte_count = (unsigned int)nbytes;
|
||
|
int err;
|
||
|
|
||
|
|
||
|
if (nbytes < 0)
|
||
|
return -EINVAL;
|
||
|
|
||
|
spin_lock_irqsave(&ctx->prng_lock, flags);
|
||
|
|
||
|
err = -EINVAL;
|
||
|
if (ctx->flags & PRNG_NEED_RESET)
|
||
|
goto done;
|
||
|
|
||
|
/*
|
||
|
* If the FIXED_SIZE flag is on, only return whole blocks of
|
||
|
* pseudo random data
|
||
|
*/
|
||
|
err = -EINVAL;
|
||
|
if (ctx->flags & PRNG_FIXED_SIZE) {
|
||
|
if (nbytes < DEFAULT_BLK_SZ)
|
||
|
goto done;
|
||
|
byte_count = DEFAULT_BLK_SZ;
|
||
|
}
|
||
|
|
||
|
err = byte_count;
|
||
|
|
||
|
dbgprint(KERN_CRIT "getting %d random bytes for context %p\n",
|
||
|
byte_count, ctx);
|
||
|
|
||
|
|
||
|
remainder:
|
||
|
if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
|
||
|
if (_get_more_prng_bytes(ctx) < 0) {
|
||
|
memset(buf, 0, nbytes);
|
||
|
err = -EINVAL;
|
||
|
goto done;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Copy up to the next whole block size
|
||
|
*/
|
||
|
if (byte_count < DEFAULT_BLK_SZ) {
|
||
|
for (; ctx->rand_data_valid < DEFAULT_BLK_SZ;
|
||
|
ctx->rand_data_valid++) {
|
||
|
*ptr = ctx->rand_data[ctx->rand_data_valid];
|
||
|
ptr++;
|
||
|
byte_count--;
|
||
|
if (byte_count == 0)
|
||
|
goto done;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Now copy whole blocks
|
||
|
*/
|
||
|
for (; byte_count >= DEFAULT_BLK_SZ; byte_count -= DEFAULT_BLK_SZ) {
|
||
|
if (_get_more_prng_bytes(ctx) < 0) {
|
||
|
memset(buf, 0, nbytes);
|
||
|
err = -EINVAL;
|
||
|
goto done;
|
||
|
}
|
||
|
memcpy(ptr, ctx->rand_data, DEFAULT_BLK_SZ);
|
||
|
ctx->rand_data_valid += DEFAULT_BLK_SZ;
|
||
|
ptr += DEFAULT_BLK_SZ;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Now copy any extra partial data
|
||
|
*/
|
||
|
if (byte_count)
|
||
|
goto remainder;
|
||
|
|
||
|
done:
|
||
|
spin_unlock_irqrestore(&ctx->prng_lock, flags);
|
||
|
dbgprint(KERN_CRIT "returning %d from get_prng_bytes in context %p\n",
|
||
|
err, ctx);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
static void free_prng_context(struct prng_context *ctx)
|
||
|
{
|
||
|
crypto_free_cipher(ctx->tfm);
|
||
|
}
|
||
|
|
||
|
static int reset_prng_context(struct prng_context *ctx,
|
||
|
unsigned char *key, size_t klen,
|
||
|
unsigned char *V, unsigned char *DT)
|
||
|
{
|
||
|
int ret;
|
||
|
int rc = -EINVAL;
|
||
|
unsigned char *prng_key;
|
||
|
|
||
|
spin_lock(&ctx->prng_lock);
|
||
|
ctx->flags |= PRNG_NEED_RESET;
|
||
|
|
||
|
prng_key = (key != NULL) ? key : (unsigned char *)DEFAULT_PRNG_KEY;
|
||
|
|
||
|
if (!key)
|
||
|
klen = DEFAULT_PRNG_KSZ;
|
||
|
|
||
|
if (V)
|
||
|
memcpy(ctx->V, V, DEFAULT_BLK_SZ);
|
||
|
else
|
||
|
memcpy(ctx->V, DEFAULT_V_SEED, DEFAULT_BLK_SZ);
|
||
|
|
||
|
if (DT)
|
||
|
memcpy(ctx->DT, DT, DEFAULT_BLK_SZ);
|
||
|
else
|
||
|
memset(ctx->DT, 0, DEFAULT_BLK_SZ);
|
||
|
|
||
|
memset(ctx->rand_data, 0, DEFAULT_BLK_SZ);
|
||
|
memset(ctx->last_rand_data, 0, DEFAULT_BLK_SZ);
|
||
|
|
||
|
if (ctx->tfm)
|
||
|
crypto_free_cipher(ctx->tfm);
|
||
|
|
||
|
ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
|
||
|
if (IS_ERR(ctx->tfm)) {
|
||
|
dbgprint(KERN_CRIT "Failed to alloc tfm for context %p\n",
|
||
|
ctx);
|
||
|
ctx->tfm = NULL;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
ctx->rand_data_valid = DEFAULT_BLK_SZ;
|
||
|
|
||
|
ret = crypto_cipher_setkey(ctx->tfm, prng_key, klen);
|
||
|
if (ret) {
|
||
|
dbgprint(KERN_CRIT "PRNG: setkey() failed flags=%x\n",
|
||
|
crypto_cipher_get_flags(ctx->tfm));
|
||
|
crypto_free_cipher(ctx->tfm);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
rc = 0;
|
||
|
ctx->flags &= ~PRNG_NEED_RESET;
|
||
|
out:
|
||
|
spin_unlock(&ctx->prng_lock);
|
||
|
|
||
|
return rc;
|
||
|
|
||
|
}
|
||
|
|
||
|
static int cprng_init(struct crypto_tfm *tfm)
|
||
|
{
|
||
|
struct prng_context *ctx = crypto_tfm_ctx(tfm);
|
||
|
|
||
|
spin_lock_init(&ctx->prng_lock);
|
||
|
|
||
|
return reset_prng_context(ctx, NULL, DEFAULT_PRNG_KSZ, NULL, NULL);
|
||
|
}
|
||
|
|
||
|
static void cprng_exit(struct crypto_tfm *tfm)
|
||
|
{
|
||
|
free_prng_context(crypto_tfm_ctx(tfm));
|
||
|
}
|
||
|
|
||
|
static int cprng_get_random(struct crypto_rng *tfm, u8 *rdata,
|
||
|
unsigned int dlen)
|
||
|
{
|
||
|
struct prng_context *prng = crypto_rng_ctx(tfm);
|
||
|
|
||
|
return get_prng_bytes(rdata, dlen, prng);
|
||
|
}
|
||
|
|
||
|
static int cprng_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen)
|
||
|
{
|
||
|
struct prng_context *prng = crypto_rng_ctx(tfm);
|
||
|
u8 *key = seed + DEFAULT_PRNG_KSZ;
|
||
|
|
||
|
if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ)
|
||
|
return -EINVAL;
|
||
|
|
||
|
reset_prng_context(prng, key, DEFAULT_PRNG_KSZ, seed, NULL);
|
||
|
|
||
|
if (prng->flags & PRNG_NEED_RESET)
|
||
|
return -EINVAL;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct crypto_alg rng_alg = {
|
||
|
.cra_name = "stdrng",
|
||
|
.cra_driver_name = "ansi_cprng",
|
||
|
.cra_priority = 100,
|
||
|
.cra_flags = CRYPTO_ALG_TYPE_RNG,
|
||
|
.cra_ctxsize = sizeof(struct prng_context),
|
||
|
.cra_type = &crypto_rng_type,
|
||
|
.cra_module = THIS_MODULE,
|
||
|
.cra_list = LIST_HEAD_INIT(rng_alg.cra_list),
|
||
|
.cra_init = cprng_init,
|
||
|
.cra_exit = cprng_exit,
|
||
|
.cra_u = {
|
||
|
.rng = {
|
||
|
.rng_make_random = cprng_get_random,
|
||
|
.rng_reset = cprng_reset,
|
||
|
.seedsize = DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ,
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
/* Module initalization */
|
||
|
static int __init prng_mod_init(void)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
|
||
|
if (fips_enabled)
|
||
|
rng_alg.cra_priority += 200;
|
||
|
|
||
|
ret = crypto_register_alg(&rng_alg);
|
||
|
|
||
|
if (ret)
|
||
|
goto out;
|
||
|
out:
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void __exit prng_mod_fini(void)
|
||
|
{
|
||
|
crypto_unregister_alg(&rng_alg);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
MODULE_LICENSE("GPL");
|
||
|
MODULE_DESCRIPTION("Software Pseudo Random Number Generator");
|
||
|
MODULE_AUTHOR("Neil Horman <nhorman@tuxdriver.com>");
|
||
|
module_param(dbg, int, 0);
|
||
|
MODULE_PARM_DESC(dbg, "Boolean to enable debugging (0/1 == off/on)");
|
||
|
module_init(prng_mod_init);
|
||
|
module_exit(prng_mod_fini);
|
||
|
MODULE_ALIAS("stdrng");
|