kernel_optimize_test/arch/x86/kernel/io_delay.c

133 lines
3.0 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
x86: provide a DMI based port 0x80 I/O delay override. x86: provide a DMI based port 0x80 I/O delay override. Certain (HP) laptops experience trouble from our port 0x80 I/O delay writes. This patch provides for a DMI based switch to the "alternate diagnostic port" 0xed (as used by some BIOSes as well) for these. David P. Reed confirmed that port 0xed works for him and provides a proper delay. The symptoms of _not_ working are a hanging machine, with "hwclock" use being a direct trigger. Earlier versions of this attempted to simply use udelay(2), with the 2 being a value tested to be a nicely conservative upper-bound with help from many on the linux-kernel mailinglist but that approach has two problems. First, pre-loops_per_jiffy calibration (which is post PIT init while some implementations of the PIT are actually one of the historically problematic devices that need the delay) udelay() isn't particularly well-defined. We could initialise loops_per_jiffy conservatively (and based on CPU family so as to not unduly delay old machines) which would sort of work, but... Second, delaying isn't the only effect that a write to port 0x80 has. It's also a PCI posting barrier which some devices may be explicitly or implicitly relying on. Alan Cox did a survey and found evidence that additionally some drivers may be racy on SMP without the bus locking outb. Switching to an inb() makes the timing too unpredictable and as such, this DMI based switch should be the safest approach for now. Any more invasive changes should get more rigid testing first. It's moreover only very few machines with the problem and a DMI based hack seems to fit that situation. This also introduces a command-line parameter "io_delay" to override the DMI based choice again: io_delay=<standard|alternate> where "standard" means using the standard port 0x80 and "alternate" port 0xed. This retains the udelay method as a config (CONFIG_UDELAY_IO_DELAY) and command-line ("io_delay=udelay") choice for testing purposes as well. This does not change the io_delay() in the boot code which is using the same port 0x80 I/O delay but those do not appear to be a problem as David P. Reed reported the problem was already gone after using the udelay version. He moreover reported that booting with "acpi=off" also fixed things and seeing as how ACPI isn't touched until after this DMI based I/O port switch I believe it's safe to leave the ones in the boot code be. The DMI strings from David's HP Pavilion dv9000z are in there already and we need to get/verify the DMI info from other machines with the problem, notably the HP Pavilion dv6000z. This patch is partly based on earlier patches from Pavel Machek and David P. Reed. Signed-off-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:30:05 +08:00
/*
* I/O delay strategies for inb_p/outb_p
*
* Allow for a DMI based override of port 0x80, needed for certain HP laptops
* and possibly other systems. Also allow for the gradual elimination of
* outb_p/inb_p API uses.
x86: provide a DMI based port 0x80 I/O delay override. x86: provide a DMI based port 0x80 I/O delay override. Certain (HP) laptops experience trouble from our port 0x80 I/O delay writes. This patch provides for a DMI based switch to the "alternate diagnostic port" 0xed (as used by some BIOSes as well) for these. David P. Reed confirmed that port 0xed works for him and provides a proper delay. The symptoms of _not_ working are a hanging machine, with "hwclock" use being a direct trigger. Earlier versions of this attempted to simply use udelay(2), with the 2 being a value tested to be a nicely conservative upper-bound with help from many on the linux-kernel mailinglist but that approach has two problems. First, pre-loops_per_jiffy calibration (which is post PIT init while some implementations of the PIT are actually one of the historically problematic devices that need the delay) udelay() isn't particularly well-defined. We could initialise loops_per_jiffy conservatively (and based on CPU family so as to not unduly delay old machines) which would sort of work, but... Second, delaying isn't the only effect that a write to port 0x80 has. It's also a PCI posting barrier which some devices may be explicitly or implicitly relying on. Alan Cox did a survey and found evidence that additionally some drivers may be racy on SMP without the bus locking outb. Switching to an inb() makes the timing too unpredictable and as such, this DMI based switch should be the safest approach for now. Any more invasive changes should get more rigid testing first. It's moreover only very few machines with the problem and a DMI based hack seems to fit that situation. This also introduces a command-line parameter "io_delay" to override the DMI based choice again: io_delay=<standard|alternate> where "standard" means using the standard port 0x80 and "alternate" port 0xed. This retains the udelay method as a config (CONFIG_UDELAY_IO_DELAY) and command-line ("io_delay=udelay") choice for testing purposes as well. This does not change the io_delay() in the boot code which is using the same port 0x80 I/O delay but those do not appear to be a problem as David P. Reed reported the problem was already gone after using the udelay version. He moreover reported that booting with "acpi=off" also fixed things and seeing as how ACPI isn't touched until after this DMI based I/O port switch I believe it's safe to leave the ones in the boot code be. The DMI strings from David's HP Pavilion dv9000z are in there already and we need to get/verify the DMI info from other machines with the problem, notably the HP Pavilion dv6000z. This patch is partly based on earlier patches from Pavel Machek and David P. Reed. Signed-off-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:30:05 +08:00
*/
#include <linux/kernel.h>
#include <linux/export.h>
x86: provide a DMI based port 0x80 I/O delay override. x86: provide a DMI based port 0x80 I/O delay override. Certain (HP) laptops experience trouble from our port 0x80 I/O delay writes. This patch provides for a DMI based switch to the "alternate diagnostic port" 0xed (as used by some BIOSes as well) for these. David P. Reed confirmed that port 0xed works for him and provides a proper delay. The symptoms of _not_ working are a hanging machine, with "hwclock" use being a direct trigger. Earlier versions of this attempted to simply use udelay(2), with the 2 being a value tested to be a nicely conservative upper-bound with help from many on the linux-kernel mailinglist but that approach has two problems. First, pre-loops_per_jiffy calibration (which is post PIT init while some implementations of the PIT are actually one of the historically problematic devices that need the delay) udelay() isn't particularly well-defined. We could initialise loops_per_jiffy conservatively (and based on CPU family so as to not unduly delay old machines) which would sort of work, but... Second, delaying isn't the only effect that a write to port 0x80 has. It's also a PCI posting barrier which some devices may be explicitly or implicitly relying on. Alan Cox did a survey and found evidence that additionally some drivers may be racy on SMP without the bus locking outb. Switching to an inb() makes the timing too unpredictable and as such, this DMI based switch should be the safest approach for now. Any more invasive changes should get more rigid testing first. It's moreover only very few machines with the problem and a DMI based hack seems to fit that situation. This also introduces a command-line parameter "io_delay" to override the DMI based choice again: io_delay=<standard|alternate> where "standard" means using the standard port 0x80 and "alternate" port 0xed. This retains the udelay method as a config (CONFIG_UDELAY_IO_DELAY) and command-line ("io_delay=udelay") choice for testing purposes as well. This does not change the io_delay() in the boot code which is using the same port 0x80 I/O delay but those do not appear to be a problem as David P. Reed reported the problem was already gone after using the udelay version. He moreover reported that booting with "acpi=off" also fixed things and seeing as how ACPI isn't touched until after this DMI based I/O port switch I believe it's safe to leave the ones in the boot code be. The DMI strings from David's HP Pavilion dv9000z are in there already and we need to get/verify the DMI info from other machines with the problem, notably the HP Pavilion dv6000z. This patch is partly based on earlier patches from Pavel Machek and David P. Reed. Signed-off-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:30:05 +08:00
#include <linux/delay.h>
#include <linux/init.h>
x86: provide a DMI based port 0x80 I/O delay override. x86: provide a DMI based port 0x80 I/O delay override. Certain (HP) laptops experience trouble from our port 0x80 I/O delay writes. This patch provides for a DMI based switch to the "alternate diagnostic port" 0xed (as used by some BIOSes as well) for these. David P. Reed confirmed that port 0xed works for him and provides a proper delay. The symptoms of _not_ working are a hanging machine, with "hwclock" use being a direct trigger. Earlier versions of this attempted to simply use udelay(2), with the 2 being a value tested to be a nicely conservative upper-bound with help from many on the linux-kernel mailinglist but that approach has two problems. First, pre-loops_per_jiffy calibration (which is post PIT init while some implementations of the PIT are actually one of the historically problematic devices that need the delay) udelay() isn't particularly well-defined. We could initialise loops_per_jiffy conservatively (and based on CPU family so as to not unduly delay old machines) which would sort of work, but... Second, delaying isn't the only effect that a write to port 0x80 has. It's also a PCI posting barrier which some devices may be explicitly or implicitly relying on. Alan Cox did a survey and found evidence that additionally some drivers may be racy on SMP without the bus locking outb. Switching to an inb() makes the timing too unpredictable and as such, this DMI based switch should be the safest approach for now. Any more invasive changes should get more rigid testing first. It's moreover only very few machines with the problem and a DMI based hack seems to fit that situation. This also introduces a command-line parameter "io_delay" to override the DMI based choice again: io_delay=<standard|alternate> where "standard" means using the standard port 0x80 and "alternate" port 0xed. This retains the udelay method as a config (CONFIG_UDELAY_IO_DELAY) and command-line ("io_delay=udelay") choice for testing purposes as well. This does not change the io_delay() in the boot code which is using the same port 0x80 I/O delay but those do not appear to be a problem as David P. Reed reported the problem was already gone after using the udelay version. He moreover reported that booting with "acpi=off" also fixed things and seeing as how ACPI isn't touched until after this DMI based I/O port switch I believe it's safe to leave the ones in the boot code be. The DMI strings from David's HP Pavilion dv9000z are in there already and we need to get/verify the DMI info from other machines with the problem, notably the HP Pavilion dv6000z. This patch is partly based on earlier patches from Pavel Machek and David P. Reed. Signed-off-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:30:05 +08:00
#include <linux/dmi.h>
#include <linux/io.h>
x86: provide a DMI based port 0x80 I/O delay override. x86: provide a DMI based port 0x80 I/O delay override. Certain (HP) laptops experience trouble from our port 0x80 I/O delay writes. This patch provides for a DMI based switch to the "alternate diagnostic port" 0xed (as used by some BIOSes as well) for these. David P. Reed confirmed that port 0xed works for him and provides a proper delay. The symptoms of _not_ working are a hanging machine, with "hwclock" use being a direct trigger. Earlier versions of this attempted to simply use udelay(2), with the 2 being a value tested to be a nicely conservative upper-bound with help from many on the linux-kernel mailinglist but that approach has two problems. First, pre-loops_per_jiffy calibration (which is post PIT init while some implementations of the PIT are actually one of the historically problematic devices that need the delay) udelay() isn't particularly well-defined. We could initialise loops_per_jiffy conservatively (and based on CPU family so as to not unduly delay old machines) which would sort of work, but... Second, delaying isn't the only effect that a write to port 0x80 has. It's also a PCI posting barrier which some devices may be explicitly or implicitly relying on. Alan Cox did a survey and found evidence that additionally some drivers may be racy on SMP without the bus locking outb. Switching to an inb() makes the timing too unpredictable and as such, this DMI based switch should be the safest approach for now. Any more invasive changes should get more rigid testing first. It's moreover only very few machines with the problem and a DMI based hack seems to fit that situation. This also introduces a command-line parameter "io_delay" to override the DMI based choice again: io_delay=<standard|alternate> where "standard" means using the standard port 0x80 and "alternate" port 0xed. This retains the udelay method as a config (CONFIG_UDELAY_IO_DELAY) and command-line ("io_delay=udelay") choice for testing purposes as well. This does not change the io_delay() in the boot code which is using the same port 0x80 I/O delay but those do not appear to be a problem as David P. Reed reported the problem was already gone after using the udelay version. He moreover reported that booting with "acpi=off" also fixed things and seeing as how ACPI isn't touched until after this DMI based I/O port switch I believe it's safe to leave the ones in the boot code be. The DMI strings from David's HP Pavilion dv9000z are in there already and we need to get/verify the DMI info from other machines with the problem, notably the HP Pavilion dv6000z. This patch is partly based on earlier patches from Pavel Machek and David P. Reed. Signed-off-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:30:05 +08:00
int io_delay_type __read_mostly = CONFIG_DEFAULT_IO_DELAY_TYPE;
x86: provide a DMI based port 0x80 I/O delay override. x86: provide a DMI based port 0x80 I/O delay override. Certain (HP) laptops experience trouble from our port 0x80 I/O delay writes. This patch provides for a DMI based switch to the "alternate diagnostic port" 0xed (as used by some BIOSes as well) for these. David P. Reed confirmed that port 0xed works for him and provides a proper delay. The symptoms of _not_ working are a hanging machine, with "hwclock" use being a direct trigger. Earlier versions of this attempted to simply use udelay(2), with the 2 being a value tested to be a nicely conservative upper-bound with help from many on the linux-kernel mailinglist but that approach has two problems. First, pre-loops_per_jiffy calibration (which is post PIT init while some implementations of the PIT are actually one of the historically problematic devices that need the delay) udelay() isn't particularly well-defined. We could initialise loops_per_jiffy conservatively (and based on CPU family so as to not unduly delay old machines) which would sort of work, but... Second, delaying isn't the only effect that a write to port 0x80 has. It's also a PCI posting barrier which some devices may be explicitly or implicitly relying on. Alan Cox did a survey and found evidence that additionally some drivers may be racy on SMP without the bus locking outb. Switching to an inb() makes the timing too unpredictable and as such, this DMI based switch should be the safest approach for now. Any more invasive changes should get more rigid testing first. It's moreover only very few machines with the problem and a DMI based hack seems to fit that situation. This also introduces a command-line parameter "io_delay" to override the DMI based choice again: io_delay=<standard|alternate> where "standard" means using the standard port 0x80 and "alternate" port 0xed. This retains the udelay method as a config (CONFIG_UDELAY_IO_DELAY) and command-line ("io_delay=udelay") choice for testing purposes as well. This does not change the io_delay() in the boot code which is using the same port 0x80 I/O delay but those do not appear to be a problem as David P. Reed reported the problem was already gone after using the udelay version. He moreover reported that booting with "acpi=off" also fixed things and seeing as how ACPI isn't touched until after this DMI based I/O port switch I believe it's safe to leave the ones in the boot code be. The DMI strings from David's HP Pavilion dv9000z are in there already and we need to get/verify the DMI info from other machines with the problem, notably the HP Pavilion dv6000z. This patch is partly based on earlier patches from Pavel Machek and David P. Reed. Signed-off-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:30:05 +08:00
static int __initdata io_delay_override;
x86: provide a DMI based port 0x80 I/O delay override. x86: provide a DMI based port 0x80 I/O delay override. Certain (HP) laptops experience trouble from our port 0x80 I/O delay writes. This patch provides for a DMI based switch to the "alternate diagnostic port" 0xed (as used by some BIOSes as well) for these. David P. Reed confirmed that port 0xed works for him and provides a proper delay. The symptoms of _not_ working are a hanging machine, with "hwclock" use being a direct trigger. Earlier versions of this attempted to simply use udelay(2), with the 2 being a value tested to be a nicely conservative upper-bound with help from many on the linux-kernel mailinglist but that approach has two problems. First, pre-loops_per_jiffy calibration (which is post PIT init while some implementations of the PIT are actually one of the historically problematic devices that need the delay) udelay() isn't particularly well-defined. We could initialise loops_per_jiffy conservatively (and based on CPU family so as to not unduly delay old machines) which would sort of work, but... Second, delaying isn't the only effect that a write to port 0x80 has. It's also a PCI posting barrier which some devices may be explicitly or implicitly relying on. Alan Cox did a survey and found evidence that additionally some drivers may be racy on SMP without the bus locking outb. Switching to an inb() makes the timing too unpredictable and as such, this DMI based switch should be the safest approach for now. Any more invasive changes should get more rigid testing first. It's moreover only very few machines with the problem and a DMI based hack seems to fit that situation. This also introduces a command-line parameter "io_delay" to override the DMI based choice again: io_delay=<standard|alternate> where "standard" means using the standard port 0x80 and "alternate" port 0xed. This retains the udelay method as a config (CONFIG_UDELAY_IO_DELAY) and command-line ("io_delay=udelay") choice for testing purposes as well. This does not change the io_delay() in the boot code which is using the same port 0x80 I/O delay but those do not appear to be a problem as David P. Reed reported the problem was already gone after using the udelay version. He moreover reported that booting with "acpi=off" also fixed things and seeing as how ACPI isn't touched until after this DMI based I/O port switch I believe it's safe to leave the ones in the boot code be. The DMI strings from David's HP Pavilion dv9000z are in there already and we need to get/verify the DMI info from other machines with the problem, notably the HP Pavilion dv6000z. This patch is partly based on earlier patches from Pavel Machek and David P. Reed. Signed-off-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:30:05 +08:00
/*
* Paravirt wants native_io_delay to be a constant.
*/
void native_io_delay(void)
{
switch (io_delay_type) {
default:
case CONFIG_IO_DELAY_TYPE_0X80:
asm volatile ("outb %al, $0x80");
break;
case CONFIG_IO_DELAY_TYPE_0XED:
asm volatile ("outb %al, $0xed");
break;
case CONFIG_IO_DELAY_TYPE_UDELAY:
/*
* 2 usecs is an upper-bound for the outb delay but
* note that udelay doesn't have the bus-level
* side-effects that outb does, nor does udelay() have
* precise timings during very early bootup (the delays
* are shorter until calibrated):
*/
udelay(2);
case CONFIG_IO_DELAY_TYPE_NONE:
break;
}
x86: provide a DMI based port 0x80 I/O delay override. x86: provide a DMI based port 0x80 I/O delay override. Certain (HP) laptops experience trouble from our port 0x80 I/O delay writes. This patch provides for a DMI based switch to the "alternate diagnostic port" 0xed (as used by some BIOSes as well) for these. David P. Reed confirmed that port 0xed works for him and provides a proper delay. The symptoms of _not_ working are a hanging machine, with "hwclock" use being a direct trigger. Earlier versions of this attempted to simply use udelay(2), with the 2 being a value tested to be a nicely conservative upper-bound with help from many on the linux-kernel mailinglist but that approach has two problems. First, pre-loops_per_jiffy calibration (which is post PIT init while some implementations of the PIT are actually one of the historically problematic devices that need the delay) udelay() isn't particularly well-defined. We could initialise loops_per_jiffy conservatively (and based on CPU family so as to not unduly delay old machines) which would sort of work, but... Second, delaying isn't the only effect that a write to port 0x80 has. It's also a PCI posting barrier which some devices may be explicitly or implicitly relying on. Alan Cox did a survey and found evidence that additionally some drivers may be racy on SMP without the bus locking outb. Switching to an inb() makes the timing too unpredictable and as such, this DMI based switch should be the safest approach for now. Any more invasive changes should get more rigid testing first. It's moreover only very few machines with the problem and a DMI based hack seems to fit that situation. This also introduces a command-line parameter "io_delay" to override the DMI based choice again: io_delay=<standard|alternate> where "standard" means using the standard port 0x80 and "alternate" port 0xed. This retains the udelay method as a config (CONFIG_UDELAY_IO_DELAY) and command-line ("io_delay=udelay") choice for testing purposes as well. This does not change the io_delay() in the boot code which is using the same port 0x80 I/O delay but those do not appear to be a problem as David P. Reed reported the problem was already gone after using the udelay version. He moreover reported that booting with "acpi=off" also fixed things and seeing as how ACPI isn't touched until after this DMI based I/O port switch I believe it's safe to leave the ones in the boot code be. The DMI strings from David's HP Pavilion dv9000z are in there already and we need to get/verify the DMI info from other machines with the problem, notably the HP Pavilion dv6000z. This patch is partly based on earlier patches from Pavel Machek and David P. Reed. Signed-off-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:30:05 +08:00
}
EXPORT_SYMBOL(native_io_delay);
static int __init dmi_io_delay_0xed_port(const struct dmi_system_id *id)
x86: provide a DMI based port 0x80 I/O delay override. x86: provide a DMI based port 0x80 I/O delay override. Certain (HP) laptops experience trouble from our port 0x80 I/O delay writes. This patch provides for a DMI based switch to the "alternate diagnostic port" 0xed (as used by some BIOSes as well) for these. David P. Reed confirmed that port 0xed works for him and provides a proper delay. The symptoms of _not_ working are a hanging machine, with "hwclock" use being a direct trigger. Earlier versions of this attempted to simply use udelay(2), with the 2 being a value tested to be a nicely conservative upper-bound with help from many on the linux-kernel mailinglist but that approach has two problems. First, pre-loops_per_jiffy calibration (which is post PIT init while some implementations of the PIT are actually one of the historically problematic devices that need the delay) udelay() isn't particularly well-defined. We could initialise loops_per_jiffy conservatively (and based on CPU family so as to not unduly delay old machines) which would sort of work, but... Second, delaying isn't the only effect that a write to port 0x80 has. It's also a PCI posting barrier which some devices may be explicitly or implicitly relying on. Alan Cox did a survey and found evidence that additionally some drivers may be racy on SMP without the bus locking outb. Switching to an inb() makes the timing too unpredictable and as such, this DMI based switch should be the safest approach for now. Any more invasive changes should get more rigid testing first. It's moreover only very few machines with the problem and a DMI based hack seems to fit that situation. This also introduces a command-line parameter "io_delay" to override the DMI based choice again: io_delay=<standard|alternate> where "standard" means using the standard port 0x80 and "alternate" port 0xed. This retains the udelay method as a config (CONFIG_UDELAY_IO_DELAY) and command-line ("io_delay=udelay") choice for testing purposes as well. This does not change the io_delay() in the boot code which is using the same port 0x80 I/O delay but those do not appear to be a problem as David P. Reed reported the problem was already gone after using the udelay version. He moreover reported that booting with "acpi=off" also fixed things and seeing as how ACPI isn't touched until after this DMI based I/O port switch I believe it's safe to leave the ones in the boot code be. The DMI strings from David's HP Pavilion dv9000z are in there already and we need to get/verify the DMI info from other machines with the problem, notably the HP Pavilion dv6000z. This patch is partly based on earlier patches from Pavel Machek and David P. Reed. Signed-off-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:30:05 +08:00
{
if (io_delay_type == CONFIG_IO_DELAY_TYPE_0X80) {
pr_notice("%s: using 0xed I/O delay port\n", id->ident);
io_delay_type = CONFIG_IO_DELAY_TYPE_0XED;
}
x86: provide a DMI based port 0x80 I/O delay override. x86: provide a DMI based port 0x80 I/O delay override. Certain (HP) laptops experience trouble from our port 0x80 I/O delay writes. This patch provides for a DMI based switch to the "alternate diagnostic port" 0xed (as used by some BIOSes as well) for these. David P. Reed confirmed that port 0xed works for him and provides a proper delay. The symptoms of _not_ working are a hanging machine, with "hwclock" use being a direct trigger. Earlier versions of this attempted to simply use udelay(2), with the 2 being a value tested to be a nicely conservative upper-bound with help from many on the linux-kernel mailinglist but that approach has two problems. First, pre-loops_per_jiffy calibration (which is post PIT init while some implementations of the PIT are actually one of the historically problematic devices that need the delay) udelay() isn't particularly well-defined. We could initialise loops_per_jiffy conservatively (and based on CPU family so as to not unduly delay old machines) which would sort of work, but... Second, delaying isn't the only effect that a write to port 0x80 has. It's also a PCI posting barrier which some devices may be explicitly or implicitly relying on. Alan Cox did a survey and found evidence that additionally some drivers may be racy on SMP without the bus locking outb. Switching to an inb() makes the timing too unpredictable and as such, this DMI based switch should be the safest approach for now. Any more invasive changes should get more rigid testing first. It's moreover only very few machines with the problem and a DMI based hack seems to fit that situation. This also introduces a command-line parameter "io_delay" to override the DMI based choice again: io_delay=<standard|alternate> where "standard" means using the standard port 0x80 and "alternate" port 0xed. This retains the udelay method as a config (CONFIG_UDELAY_IO_DELAY) and command-line ("io_delay=udelay") choice for testing purposes as well. This does not change the io_delay() in the boot code which is using the same port 0x80 I/O delay but those do not appear to be a problem as David P. Reed reported the problem was already gone after using the udelay version. He moreover reported that booting with "acpi=off" also fixed things and seeing as how ACPI isn't touched until after this DMI based I/O port switch I believe it's safe to leave the ones in the boot code be. The DMI strings from David's HP Pavilion dv9000z are in there already and we need to get/verify the DMI info from other machines with the problem, notably the HP Pavilion dv6000z. This patch is partly based on earlier patches from Pavel Machek and David P. Reed. Signed-off-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:30:05 +08:00
return 0;
}
/*
* Quirk table for systems that misbehave (lock up, etc.) if port
* 0x80 is used:
*/
static const struct dmi_system_id io_delay_0xed_port_dmi_table[] __initconst = {
{
.callback = dmi_io_delay_0xed_port,
.ident = "Compaq Presario V6000",
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "Quanta"),
DMI_MATCH(DMI_BOARD_NAME, "30B7")
}
},
x86: provide a DMI based port 0x80 I/O delay override. x86: provide a DMI based port 0x80 I/O delay override. Certain (HP) laptops experience trouble from our port 0x80 I/O delay writes. This patch provides for a DMI based switch to the "alternate diagnostic port" 0xed (as used by some BIOSes as well) for these. David P. Reed confirmed that port 0xed works for him and provides a proper delay. The symptoms of _not_ working are a hanging machine, with "hwclock" use being a direct trigger. Earlier versions of this attempted to simply use udelay(2), with the 2 being a value tested to be a nicely conservative upper-bound with help from many on the linux-kernel mailinglist but that approach has two problems. First, pre-loops_per_jiffy calibration (which is post PIT init while some implementations of the PIT are actually one of the historically problematic devices that need the delay) udelay() isn't particularly well-defined. We could initialise loops_per_jiffy conservatively (and based on CPU family so as to not unduly delay old machines) which would sort of work, but... Second, delaying isn't the only effect that a write to port 0x80 has. It's also a PCI posting barrier which some devices may be explicitly or implicitly relying on. Alan Cox did a survey and found evidence that additionally some drivers may be racy on SMP without the bus locking outb. Switching to an inb() makes the timing too unpredictable and as such, this DMI based switch should be the safest approach for now. Any more invasive changes should get more rigid testing first. It's moreover only very few machines with the problem and a DMI based hack seems to fit that situation. This also introduces a command-line parameter "io_delay" to override the DMI based choice again: io_delay=<standard|alternate> where "standard" means using the standard port 0x80 and "alternate" port 0xed. This retains the udelay method as a config (CONFIG_UDELAY_IO_DELAY) and command-line ("io_delay=udelay") choice for testing purposes as well. This does not change the io_delay() in the boot code which is using the same port 0x80 I/O delay but those do not appear to be a problem as David P. Reed reported the problem was already gone after using the udelay version. He moreover reported that booting with "acpi=off" also fixed things and seeing as how ACPI isn't touched until after this DMI based I/O port switch I believe it's safe to leave the ones in the boot code be. The DMI strings from David's HP Pavilion dv9000z are in there already and we need to get/verify the DMI info from other machines with the problem, notably the HP Pavilion dv6000z. This patch is partly based on earlier patches from Pavel Machek and David P. Reed. Signed-off-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:30:05 +08:00
{
.callback = dmi_io_delay_0xed_port,
x86: provide a DMI based port 0x80 I/O delay override. x86: provide a DMI based port 0x80 I/O delay override. Certain (HP) laptops experience trouble from our port 0x80 I/O delay writes. This patch provides for a DMI based switch to the "alternate diagnostic port" 0xed (as used by some BIOSes as well) for these. David P. Reed confirmed that port 0xed works for him and provides a proper delay. The symptoms of _not_ working are a hanging machine, with "hwclock" use being a direct trigger. Earlier versions of this attempted to simply use udelay(2), with the 2 being a value tested to be a nicely conservative upper-bound with help from many on the linux-kernel mailinglist but that approach has two problems. First, pre-loops_per_jiffy calibration (which is post PIT init while some implementations of the PIT are actually one of the historically problematic devices that need the delay) udelay() isn't particularly well-defined. We could initialise loops_per_jiffy conservatively (and based on CPU family so as to not unduly delay old machines) which would sort of work, but... Second, delaying isn't the only effect that a write to port 0x80 has. It's also a PCI posting barrier which some devices may be explicitly or implicitly relying on. Alan Cox did a survey and found evidence that additionally some drivers may be racy on SMP without the bus locking outb. Switching to an inb() makes the timing too unpredictable and as such, this DMI based switch should be the safest approach for now. Any more invasive changes should get more rigid testing first. It's moreover only very few machines with the problem and a DMI based hack seems to fit that situation. This also introduces a command-line parameter "io_delay" to override the DMI based choice again: io_delay=<standard|alternate> where "standard" means using the standard port 0x80 and "alternate" port 0xed. This retains the udelay method as a config (CONFIG_UDELAY_IO_DELAY) and command-line ("io_delay=udelay") choice for testing purposes as well. This does not change the io_delay() in the boot code which is using the same port 0x80 I/O delay but those do not appear to be a problem as David P. Reed reported the problem was already gone after using the udelay version. He moreover reported that booting with "acpi=off" also fixed things and seeing as how ACPI isn't touched until after this DMI based I/O port switch I believe it's safe to leave the ones in the boot code be. The DMI strings from David's HP Pavilion dv9000z are in there already and we need to get/verify the DMI info from other machines with the problem, notably the HP Pavilion dv6000z. This patch is partly based on earlier patches from Pavel Machek and David P. Reed. Signed-off-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:30:05 +08:00
.ident = "HP Pavilion dv9000z",
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "Quanta"),
DMI_MATCH(DMI_BOARD_NAME, "30B9")
x86: provide a DMI based port 0x80 I/O delay override. x86: provide a DMI based port 0x80 I/O delay override. Certain (HP) laptops experience trouble from our port 0x80 I/O delay writes. This patch provides for a DMI based switch to the "alternate diagnostic port" 0xed (as used by some BIOSes as well) for these. David P. Reed confirmed that port 0xed works for him and provides a proper delay. The symptoms of _not_ working are a hanging machine, with "hwclock" use being a direct trigger. Earlier versions of this attempted to simply use udelay(2), with the 2 being a value tested to be a nicely conservative upper-bound with help from many on the linux-kernel mailinglist but that approach has two problems. First, pre-loops_per_jiffy calibration (which is post PIT init while some implementations of the PIT are actually one of the historically problematic devices that need the delay) udelay() isn't particularly well-defined. We could initialise loops_per_jiffy conservatively (and based on CPU family so as to not unduly delay old machines) which would sort of work, but... Second, delaying isn't the only effect that a write to port 0x80 has. It's also a PCI posting barrier which some devices may be explicitly or implicitly relying on. Alan Cox did a survey and found evidence that additionally some drivers may be racy on SMP without the bus locking outb. Switching to an inb() makes the timing too unpredictable and as such, this DMI based switch should be the safest approach for now. Any more invasive changes should get more rigid testing first. It's moreover only very few machines with the problem and a DMI based hack seems to fit that situation. This also introduces a command-line parameter "io_delay" to override the DMI based choice again: io_delay=<standard|alternate> where "standard" means using the standard port 0x80 and "alternate" port 0xed. This retains the udelay method as a config (CONFIG_UDELAY_IO_DELAY) and command-line ("io_delay=udelay") choice for testing purposes as well. This does not change the io_delay() in the boot code which is using the same port 0x80 I/O delay but those do not appear to be a problem as David P. Reed reported the problem was already gone after using the udelay version. He moreover reported that booting with "acpi=off" also fixed things and seeing as how ACPI isn't touched until after this DMI based I/O port switch I believe it's safe to leave the ones in the boot code be. The DMI strings from David's HP Pavilion dv9000z are in there already and we need to get/verify the DMI info from other machines with the problem, notably the HP Pavilion dv6000z. This patch is partly based on earlier patches from Pavel Machek and David P. Reed. Signed-off-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:30:05 +08:00
}
},
{
.callback = dmi_io_delay_0xed_port,
.ident = "HP Pavilion dv6000",
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "Quanta"),
DMI_MATCH(DMI_BOARD_NAME, "30B8")
}
},
{
.callback = dmi_io_delay_0xed_port,
.ident = "HP Pavilion tx1000",
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "Quanta"),
DMI_MATCH(DMI_BOARD_NAME, "30BF")
}
},
{
.callback = dmi_io_delay_0xed_port,
.ident = "Presario F700",
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "Quanta"),
DMI_MATCH(DMI_BOARD_NAME, "30D3")
}
},
{ }
x86: provide a DMI based port 0x80 I/O delay override. x86: provide a DMI based port 0x80 I/O delay override. Certain (HP) laptops experience trouble from our port 0x80 I/O delay writes. This patch provides for a DMI based switch to the "alternate diagnostic port" 0xed (as used by some BIOSes as well) for these. David P. Reed confirmed that port 0xed works for him and provides a proper delay. The symptoms of _not_ working are a hanging machine, with "hwclock" use being a direct trigger. Earlier versions of this attempted to simply use udelay(2), with the 2 being a value tested to be a nicely conservative upper-bound with help from many on the linux-kernel mailinglist but that approach has two problems. First, pre-loops_per_jiffy calibration (which is post PIT init while some implementations of the PIT are actually one of the historically problematic devices that need the delay) udelay() isn't particularly well-defined. We could initialise loops_per_jiffy conservatively (and based on CPU family so as to not unduly delay old machines) which would sort of work, but... Second, delaying isn't the only effect that a write to port 0x80 has. It's also a PCI posting barrier which some devices may be explicitly or implicitly relying on. Alan Cox did a survey and found evidence that additionally some drivers may be racy on SMP without the bus locking outb. Switching to an inb() makes the timing too unpredictable and as such, this DMI based switch should be the safest approach for now. Any more invasive changes should get more rigid testing first. It's moreover only very few machines with the problem and a DMI based hack seems to fit that situation. This also introduces a command-line parameter "io_delay" to override the DMI based choice again: io_delay=<standard|alternate> where "standard" means using the standard port 0x80 and "alternate" port 0xed. This retains the udelay method as a config (CONFIG_UDELAY_IO_DELAY) and command-line ("io_delay=udelay") choice for testing purposes as well. This does not change the io_delay() in the boot code which is using the same port 0x80 I/O delay but those do not appear to be a problem as David P. Reed reported the problem was already gone after using the udelay version. He moreover reported that booting with "acpi=off" also fixed things and seeing as how ACPI isn't touched until after this DMI based I/O port switch I believe it's safe to leave the ones in the boot code be. The DMI strings from David's HP Pavilion dv9000z are in there already and we need to get/verify the DMI info from other machines with the problem, notably the HP Pavilion dv6000z. This patch is partly based on earlier patches from Pavel Machek and David P. Reed. Signed-off-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:30:05 +08:00
};
void __init io_delay_init(void)
{
if (!io_delay_override)
dmi_check_system(io_delay_0xed_port_dmi_table);
x86: provide a DMI based port 0x80 I/O delay override. x86: provide a DMI based port 0x80 I/O delay override. Certain (HP) laptops experience trouble from our port 0x80 I/O delay writes. This patch provides for a DMI based switch to the "alternate diagnostic port" 0xed (as used by some BIOSes as well) for these. David P. Reed confirmed that port 0xed works for him and provides a proper delay. The symptoms of _not_ working are a hanging machine, with "hwclock" use being a direct trigger. Earlier versions of this attempted to simply use udelay(2), with the 2 being a value tested to be a nicely conservative upper-bound with help from many on the linux-kernel mailinglist but that approach has two problems. First, pre-loops_per_jiffy calibration (which is post PIT init while some implementations of the PIT are actually one of the historically problematic devices that need the delay) udelay() isn't particularly well-defined. We could initialise loops_per_jiffy conservatively (and based on CPU family so as to not unduly delay old machines) which would sort of work, but... Second, delaying isn't the only effect that a write to port 0x80 has. It's also a PCI posting barrier which some devices may be explicitly or implicitly relying on. Alan Cox did a survey and found evidence that additionally some drivers may be racy on SMP without the bus locking outb. Switching to an inb() makes the timing too unpredictable and as such, this DMI based switch should be the safest approach for now. Any more invasive changes should get more rigid testing first. It's moreover only very few machines with the problem and a DMI based hack seems to fit that situation. This also introduces a command-line parameter "io_delay" to override the DMI based choice again: io_delay=<standard|alternate> where "standard" means using the standard port 0x80 and "alternate" port 0xed. This retains the udelay method as a config (CONFIG_UDELAY_IO_DELAY) and command-line ("io_delay=udelay") choice for testing purposes as well. This does not change the io_delay() in the boot code which is using the same port 0x80 I/O delay but those do not appear to be a problem as David P. Reed reported the problem was already gone after using the udelay version. He moreover reported that booting with "acpi=off" also fixed things and seeing as how ACPI isn't touched until after this DMI based I/O port switch I believe it's safe to leave the ones in the boot code be. The DMI strings from David's HP Pavilion dv9000z are in there already and we need to get/verify the DMI info from other machines with the problem, notably the HP Pavilion dv6000z. This patch is partly based on earlier patches from Pavel Machek and David P. Reed. Signed-off-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:30:05 +08:00
}
static int __init io_delay_param(char *s)
{
if (!s)
return -EINVAL;
if (!strcmp(s, "0x80"))
io_delay_type = CONFIG_IO_DELAY_TYPE_0X80;
else if (!strcmp(s, "0xed"))
io_delay_type = CONFIG_IO_DELAY_TYPE_0XED;
x86: provide a DMI based port 0x80 I/O delay override. x86: provide a DMI based port 0x80 I/O delay override. Certain (HP) laptops experience trouble from our port 0x80 I/O delay writes. This patch provides for a DMI based switch to the "alternate diagnostic port" 0xed (as used by some BIOSes as well) for these. David P. Reed confirmed that port 0xed works for him and provides a proper delay. The symptoms of _not_ working are a hanging machine, with "hwclock" use being a direct trigger. Earlier versions of this attempted to simply use udelay(2), with the 2 being a value tested to be a nicely conservative upper-bound with help from many on the linux-kernel mailinglist but that approach has two problems. First, pre-loops_per_jiffy calibration (which is post PIT init while some implementations of the PIT are actually one of the historically problematic devices that need the delay) udelay() isn't particularly well-defined. We could initialise loops_per_jiffy conservatively (and based on CPU family so as to not unduly delay old machines) which would sort of work, but... Second, delaying isn't the only effect that a write to port 0x80 has. It's also a PCI posting barrier which some devices may be explicitly or implicitly relying on. Alan Cox did a survey and found evidence that additionally some drivers may be racy on SMP without the bus locking outb. Switching to an inb() makes the timing too unpredictable and as such, this DMI based switch should be the safest approach for now. Any more invasive changes should get more rigid testing first. It's moreover only very few machines with the problem and a DMI based hack seems to fit that situation. This also introduces a command-line parameter "io_delay" to override the DMI based choice again: io_delay=<standard|alternate> where "standard" means using the standard port 0x80 and "alternate" port 0xed. This retains the udelay method as a config (CONFIG_UDELAY_IO_DELAY) and command-line ("io_delay=udelay") choice for testing purposes as well. This does not change the io_delay() in the boot code which is using the same port 0x80 I/O delay but those do not appear to be a problem as David P. Reed reported the problem was already gone after using the udelay version. He moreover reported that booting with "acpi=off" also fixed things and seeing as how ACPI isn't touched until after this DMI based I/O port switch I believe it's safe to leave the ones in the boot code be. The DMI strings from David's HP Pavilion dv9000z are in there already and we need to get/verify the DMI info from other machines with the problem, notably the HP Pavilion dv6000z. This patch is partly based on earlier patches from Pavel Machek and David P. Reed. Signed-off-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:30:05 +08:00
else if (!strcmp(s, "udelay"))
io_delay_type = CONFIG_IO_DELAY_TYPE_UDELAY;
else if (!strcmp(s, "none"))
io_delay_type = CONFIG_IO_DELAY_TYPE_NONE;
x86: provide a DMI based port 0x80 I/O delay override. x86: provide a DMI based port 0x80 I/O delay override. Certain (HP) laptops experience trouble from our port 0x80 I/O delay writes. This patch provides for a DMI based switch to the "alternate diagnostic port" 0xed (as used by some BIOSes as well) for these. David P. Reed confirmed that port 0xed works for him and provides a proper delay. The symptoms of _not_ working are a hanging machine, with "hwclock" use being a direct trigger. Earlier versions of this attempted to simply use udelay(2), with the 2 being a value tested to be a nicely conservative upper-bound with help from many on the linux-kernel mailinglist but that approach has two problems. First, pre-loops_per_jiffy calibration (which is post PIT init while some implementations of the PIT are actually one of the historically problematic devices that need the delay) udelay() isn't particularly well-defined. We could initialise loops_per_jiffy conservatively (and based on CPU family so as to not unduly delay old machines) which would sort of work, but... Second, delaying isn't the only effect that a write to port 0x80 has. It's also a PCI posting barrier which some devices may be explicitly or implicitly relying on. Alan Cox did a survey and found evidence that additionally some drivers may be racy on SMP without the bus locking outb. Switching to an inb() makes the timing too unpredictable and as such, this DMI based switch should be the safest approach for now. Any more invasive changes should get more rigid testing first. It's moreover only very few machines with the problem and a DMI based hack seems to fit that situation. This also introduces a command-line parameter "io_delay" to override the DMI based choice again: io_delay=<standard|alternate> where "standard" means using the standard port 0x80 and "alternate" port 0xed. This retains the udelay method as a config (CONFIG_UDELAY_IO_DELAY) and command-line ("io_delay=udelay") choice for testing purposes as well. This does not change the io_delay() in the boot code which is using the same port 0x80 I/O delay but those do not appear to be a problem as David P. Reed reported the problem was already gone after using the udelay version. He moreover reported that booting with "acpi=off" also fixed things and seeing as how ACPI isn't touched until after this DMI based I/O port switch I believe it's safe to leave the ones in the boot code be. The DMI strings from David's HP Pavilion dv9000z are in there already and we need to get/verify the DMI info from other machines with the problem, notably the HP Pavilion dv6000z. This patch is partly based on earlier patches from Pavel Machek and David P. Reed. Signed-off-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:30:05 +08:00
else
return -EINVAL;
io_delay_override = 1;
return 0;
}
early_param("io_delay", io_delay_param);