kernel_optimize_test/certs/system_keyring.c

178 lines
4.7 KiB
C
Raw Normal View History

/* System trusted keyring for trusted public keys
*
* Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public Licence
* as published by the Free Software Foundation; either version
* 2 of the Licence, or (at your option) any later version.
*/
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/cred.h>
#include <linux/err.h>
#include <keys/asymmetric-type.h>
#include <keys/system_keyring.h>
#include <crypto/pkcs7.h>
struct key *system_trusted_keyring;
EXPORT_SYMBOL_GPL(system_trusted_keyring);
extern __initconst const u8 system_certificate_list[];
extern __initconst const unsigned long system_certificate_list_size;
/*
* Load the compiled-in keys
*/
static __init int system_trusted_keyring_init(void)
{
pr_notice("Initialise system trusted keyring\n");
system_trusted_keyring =
keyring_alloc(".system_keyring",
KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
((KEY_POS_ALL & ~KEY_POS_SETATTR) |
KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
KEYS: Add a facility to restrict new links into a keyring Add a facility whereby proposed new links to be added to a keyring can be vetted, permitting them to be rejected if necessary. This can be used to block public keys from which the signature cannot be verified or for which the signature verification fails. It could also be used to provide blacklisting. This affects operations like add_key(), KEYCTL_LINK and KEYCTL_INSTANTIATE. To this end: (1) A function pointer is added to the key struct that, if set, points to the vetting function. This is called as: int (*restrict_link)(struct key *keyring, const struct key_type *key_type, unsigned long key_flags, const union key_payload *key_payload), where 'keyring' will be the keyring being added to, key_type and key_payload will describe the key being added and key_flags[*] can be AND'ed with KEY_FLAG_TRUSTED. [*] This parameter will be removed in a later patch when KEY_FLAG_TRUSTED is removed. The function should return 0 to allow the link to take place or an error (typically -ENOKEY, -ENOPKG or -EKEYREJECTED) to reject the link. The pointer should not be set directly, but rather should be set through keyring_alloc(). Note that if called during add_key(), preparse is called before this method, but a key isn't actually allocated until after this function is called. (2) KEY_ALLOC_BYPASS_RESTRICTION is added. This can be passed to key_create_or_update() or key_instantiate_and_link() to bypass the restriction check. (3) KEY_FLAG_TRUSTED_ONLY is removed. The entire contents of a keyring with this restriction emplaced can be considered 'trustworthy' by virtue of being in the keyring when that keyring is consulted. (4) key_alloc() and keyring_alloc() take an extra argument that will be used to set restrict_link in the new key. This ensures that the pointer is set before the key is published, thus preventing a window of unrestrictedness. Normally this argument will be NULL. (5) As a temporary affair, keyring_restrict_trusted_only() is added. It should be passed to keyring_alloc() as the extra argument instead of setting KEY_FLAG_TRUSTED_ONLY on a keyring. This will be replaced in a later patch with functions that look in the appropriate places for authoritative keys. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
2016-04-06 23:14:24 +08:00
KEY_ALLOC_NOT_IN_QUOTA,
keyring_restrict_trusted_only, NULL);
if (IS_ERR(system_trusted_keyring))
panic("Can't allocate system trusted keyring\n");
return 0;
}
/*
* Must be initialised before we try and load the keys into the keyring.
*/
device_initcall(system_trusted_keyring_init);
/*
* Load the compiled-in list of X.509 certificates.
*/
static __init int load_system_certificate_list(void)
{
key_ref_t key;
const u8 *p, *end;
size_t plen;
pr_notice("Loading compiled-in X.509 certificates\n");
p = system_certificate_list;
end = p + system_certificate_list_size;
while (p < end) {
/* Each cert begins with an ASN.1 SEQUENCE tag and must be more
* than 256 bytes in size.
*/
if (end - p < 4)
goto dodgy_cert;
if (p[0] != 0x30 &&
p[1] != 0x82)
goto dodgy_cert;
plen = (p[2] << 8) | p[3];
plen += 4;
if (plen > end - p)
goto dodgy_cert;
key = key_create_or_update(make_key_ref(system_trusted_keyring, 1),
"asymmetric",
NULL,
p,
plen,
((KEY_POS_ALL & ~KEY_POS_SETATTR) |
KEY_USR_VIEW | KEY_USR_READ),
KEY_ALLOC_NOT_IN_QUOTA |
KEY_ALLOC_TRUSTED |
KEYS: Add a facility to restrict new links into a keyring Add a facility whereby proposed new links to be added to a keyring can be vetted, permitting them to be rejected if necessary. This can be used to block public keys from which the signature cannot be verified or for which the signature verification fails. It could also be used to provide blacklisting. This affects operations like add_key(), KEYCTL_LINK and KEYCTL_INSTANTIATE. To this end: (1) A function pointer is added to the key struct that, if set, points to the vetting function. This is called as: int (*restrict_link)(struct key *keyring, const struct key_type *key_type, unsigned long key_flags, const union key_payload *key_payload), where 'keyring' will be the keyring being added to, key_type and key_payload will describe the key being added and key_flags[*] can be AND'ed with KEY_FLAG_TRUSTED. [*] This parameter will be removed in a later patch when KEY_FLAG_TRUSTED is removed. The function should return 0 to allow the link to take place or an error (typically -ENOKEY, -ENOPKG or -EKEYREJECTED) to reject the link. The pointer should not be set directly, but rather should be set through keyring_alloc(). Note that if called during add_key(), preparse is called before this method, but a key isn't actually allocated until after this function is called. (2) KEY_ALLOC_BYPASS_RESTRICTION is added. This can be passed to key_create_or_update() or key_instantiate_and_link() to bypass the restriction check. (3) KEY_FLAG_TRUSTED_ONLY is removed. The entire contents of a keyring with this restriction emplaced can be considered 'trustworthy' by virtue of being in the keyring when that keyring is consulted. (4) key_alloc() and keyring_alloc() take an extra argument that will be used to set restrict_link in the new key. This ensures that the pointer is set before the key is published, thus preventing a window of unrestrictedness. Normally this argument will be NULL. (5) As a temporary affair, keyring_restrict_trusted_only() is added. It should be passed to keyring_alloc() as the extra argument instead of setting KEY_FLAG_TRUSTED_ONLY on a keyring. This will be replaced in a later patch with functions that look in the appropriate places for authoritative keys. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
2016-04-06 23:14:24 +08:00
KEY_ALLOC_BUILT_IN |
KEY_ALLOC_BYPASS_RESTRICTION);
if (IS_ERR(key)) {
pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
PTR_ERR(key));
} else {
pr_notice("Loaded X.509 cert '%s'\n",
key_ref_to_ptr(key)->description);
key_ref_put(key);
}
p += plen;
}
return 0;
dodgy_cert:
pr_err("Problem parsing in-kernel X.509 certificate list\n");
return 0;
}
late_initcall(load_system_certificate_list);
#ifdef CONFIG_SYSTEM_DATA_VERIFICATION
/**
* verify_pkcs7_signature - Verify a PKCS#7-based signature on system data.
* @data: The data to be verified (NULL if expecting internal data).
* @len: Size of @data.
* @raw_pkcs7: The PKCS#7 message that is the signature.
* @pkcs7_len: The size of @raw_pkcs7.
* @trusted_keys: Trusted keys to use (NULL for system_trusted_keyring).
PKCS#7: Appropriately restrict authenticated attributes and content type A PKCS#7 or CMS message can have per-signature authenticated attributes that are digested as a lump and signed by the authorising key for that signature. If such attributes exist, the content digest isn't itself signed, but rather it is included in a special authattr which then contributes to the signature. Further, we already require the master message content type to be pkcs7_signedData - but there's also a separate content type for the data itself within the SignedData object and this must be repeated inside the authattrs for each signer [RFC2315 9.2, RFC5652 11.1]. We should really validate the authattrs if they exist or forbid them entirely as appropriate. To this end: (1) Alter the PKCS#7 parser to reject any message that has more than one signature where at least one signature has authattrs and at least one that does not. (2) Validate authattrs if they are present and strongly restrict them. Only the following authattrs are permitted and all others are rejected: (a) contentType. This is checked to be an OID that matches the content type in the SignedData object. (b) messageDigest. This must match the crypto digest of the data. (c) signingTime. If present, we check that this is a valid, parseable UTCTime or GeneralTime and that the date it encodes fits within the validity window of the matching X.509 cert. (d) S/MIME capabilities. We don't check the contents. (e) Authenticode SP Opus Info. We don't check the contents. (f) Authenticode Statement Type. We don't check the contents. The message is rejected if (a) or (b) are missing. If the message is an Authenticode type, the message is rejected if (e) is missing; if not Authenticode, the message is rejected if (d) - (f) are present. The S/MIME capabilities authattr (d) unfortunately has to be allowed to support kernels already signed by the pesign program. This only affects kexec. sign-file suppresses them (CMS_NOSMIMECAP). The message is also rejected if an authattr is given more than once or if it contains more than one element in its set of values. (3) Add a parameter to pkcs7_verify() to select one of the following restrictions and pass in the appropriate option from the callers: (*) VERIFYING_MODULE_SIGNATURE This requires that the SignedData content type be pkcs7-data and forbids authattrs. sign-file sets CMS_NOATTR. We could be more flexible and permit authattrs optionally, but only permit minimal content. (*) VERIFYING_FIRMWARE_SIGNATURE This requires that the SignedData content type be pkcs7-data and requires authattrs. In future, this will require an attribute holding the target firmware name in addition to the minimal set. (*) VERIFYING_UNSPECIFIED_SIGNATURE This requires that the SignedData content type be pkcs7-data but allows either no authattrs or only permits the minimal set. (*) VERIFYING_KEXEC_PE_SIGNATURE This only supports the Authenticode SPC_INDIRECT_DATA content type and requires at least an SpcSpOpusInfo authattr in addition to the minimal set. It also permits an SPC_STATEMENT_TYPE authattr (and an S/MIME capabilities authattr because the pesign program doesn't remove these). (*) VERIFYING_KEY_SIGNATURE (*) VERIFYING_KEY_SELF_SIGNATURE These are invalid in this context but are included for later use when limiting the use of X.509 certs. (4) The pkcs7_test key type is given a module parameter to select between the above options for testing purposes. For example: echo 1 >/sys/module/pkcs7_test_key/parameters/usage keyctl padd pkcs7_test foo @s </tmp/stuff.pkcs7 will attempt to check the signature on stuff.pkcs7 as if it contains a firmware blob (1 being VERIFYING_FIRMWARE_SIGNATURE). Suggested-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Marcel Holtmann <marcel@holtmann.org> Reviewed-by: David Woodhouse <David.Woodhouse@intel.com>
2015-08-05 22:22:27 +08:00
* @usage: The use to which the key is being put.
* @view_content: Callback to gain access to content.
* @ctx: Context for callback.
*/
int verify_pkcs7_signature(const void *data, size_t len,
const void *raw_pkcs7, size_t pkcs7_len,
struct key *trusted_keys,
enum key_being_used_for usage,
int (*view_content)(void *ctx,
const void *data, size_t len,
size_t asn1hdrlen),
void *ctx)
{
struct pkcs7_message *pkcs7;
int ret;
pkcs7 = pkcs7_parse_message(raw_pkcs7, pkcs7_len);
if (IS_ERR(pkcs7))
return PTR_ERR(pkcs7);
/* The data should be detached - so we need to supply it. */
if (data && pkcs7_supply_detached_data(pkcs7, data, len) < 0) {
pr_err("PKCS#7 signature with non-detached data\n");
ret = -EBADMSG;
goto error;
}
PKCS#7: Appropriately restrict authenticated attributes and content type A PKCS#7 or CMS message can have per-signature authenticated attributes that are digested as a lump and signed by the authorising key for that signature. If such attributes exist, the content digest isn't itself signed, but rather it is included in a special authattr which then contributes to the signature. Further, we already require the master message content type to be pkcs7_signedData - but there's also a separate content type for the data itself within the SignedData object and this must be repeated inside the authattrs for each signer [RFC2315 9.2, RFC5652 11.1]. We should really validate the authattrs if they exist or forbid them entirely as appropriate. To this end: (1) Alter the PKCS#7 parser to reject any message that has more than one signature where at least one signature has authattrs and at least one that does not. (2) Validate authattrs if they are present and strongly restrict them. Only the following authattrs are permitted and all others are rejected: (a) contentType. This is checked to be an OID that matches the content type in the SignedData object. (b) messageDigest. This must match the crypto digest of the data. (c) signingTime. If present, we check that this is a valid, parseable UTCTime or GeneralTime and that the date it encodes fits within the validity window of the matching X.509 cert. (d) S/MIME capabilities. We don't check the contents. (e) Authenticode SP Opus Info. We don't check the contents. (f) Authenticode Statement Type. We don't check the contents. The message is rejected if (a) or (b) are missing. If the message is an Authenticode type, the message is rejected if (e) is missing; if not Authenticode, the message is rejected if (d) - (f) are present. The S/MIME capabilities authattr (d) unfortunately has to be allowed to support kernels already signed by the pesign program. This only affects kexec. sign-file suppresses them (CMS_NOSMIMECAP). The message is also rejected if an authattr is given more than once or if it contains more than one element in its set of values. (3) Add a parameter to pkcs7_verify() to select one of the following restrictions and pass in the appropriate option from the callers: (*) VERIFYING_MODULE_SIGNATURE This requires that the SignedData content type be pkcs7-data and forbids authattrs. sign-file sets CMS_NOATTR. We could be more flexible and permit authattrs optionally, but only permit minimal content. (*) VERIFYING_FIRMWARE_SIGNATURE This requires that the SignedData content type be pkcs7-data and requires authattrs. In future, this will require an attribute holding the target firmware name in addition to the minimal set. (*) VERIFYING_UNSPECIFIED_SIGNATURE This requires that the SignedData content type be pkcs7-data but allows either no authattrs or only permits the minimal set. (*) VERIFYING_KEXEC_PE_SIGNATURE This only supports the Authenticode SPC_INDIRECT_DATA content type and requires at least an SpcSpOpusInfo authattr in addition to the minimal set. It also permits an SPC_STATEMENT_TYPE authattr (and an S/MIME capabilities authattr because the pesign program doesn't remove these). (*) VERIFYING_KEY_SIGNATURE (*) VERIFYING_KEY_SELF_SIGNATURE These are invalid in this context but are included for later use when limiting the use of X.509 certs. (4) The pkcs7_test key type is given a module parameter to select between the above options for testing purposes. For example: echo 1 >/sys/module/pkcs7_test_key/parameters/usage keyctl padd pkcs7_test foo @s </tmp/stuff.pkcs7 will attempt to check the signature on stuff.pkcs7 as if it contains a firmware blob (1 being VERIFYING_FIRMWARE_SIGNATURE). Suggested-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Marcel Holtmann <marcel@holtmann.org> Reviewed-by: David Woodhouse <David.Woodhouse@intel.com>
2015-08-05 22:22:27 +08:00
ret = pkcs7_verify(pkcs7, usage);
if (ret < 0)
goto error;
if (!trusted_keys)
trusted_keys = system_trusted_keyring;
ret = pkcs7_validate_trust(pkcs7, trusted_keys);
if (ret < 0) {
if (ret == -ENOKEY)
pr_err("PKCS#7 signature not signed with a trusted key\n");
goto error;
}
if (view_content) {
size_t asn1hdrlen;
ret = pkcs7_get_content_data(pkcs7, &data, &len, &asn1hdrlen);
if (ret < 0) {
if (ret == -ENODATA)
pr_devel("PKCS#7 message does not contain data\n");
goto error;
}
ret = view_content(ctx, data, len, asn1hdrlen);
}
error:
pkcs7_free_message(pkcs7);
pr_devel("<==%s() = %d\n", __func__, ret);
return ret;
}
EXPORT_SYMBOL_GPL(verify_pkcs7_signature);
#endif /* CONFIG_SYSTEM_DATA_VERIFICATION */