kernel_optimize_test/arch/um/include/sysdep-x86_64/ptrace.h

274 lines
10 KiB
C
Raw Normal View History

/*
* Copyright 2003 PathScale, Inc.
*
* Licensed under the GPL
*/
#ifndef __SYSDEP_X86_64_PTRACE_H
#define __SYSDEP_X86_64_PTRACE_H
#include "uml-config.h"
#include "user_constants.h"
[PATCH] uml: S390 preparation, abstract host page fault data This patch removes the arch-specific fault/trap-infos from thread and skas-regs. It adds a new struct faultinfo, that is arch-specific defined in sysdep/faultinfo.h. The structure is inserted in thread.arch and thread.regs.skas and thread.regs.tt Now, segv and other trap-handlers can copy the contents from regs.X.faultinfo to thread.arch.faultinfo with one simple assignment. Also, the number of macros necessary is reduced to FAULT_ADDRESS(struct faultinfo) extracts the faulting address from faultinfo FAULT_WRITE(struct faultinfo) extracts the "is_write" flag SEGV_IS_FIXABLE(struct faultinfo) is true for the fixable segvs, i.e. (TRAP == 14) on i386 UPT_FAULTINFO(regs) result is (struct faultinfo *) to the faultinfo in regs->skas.faultinfo GET_FAULTINFO_FROM_SC(struct faultinfo, struct sigcontext *) copies the relevant parts of the sigcontext to struct faultinfo. On SIGSEGV, call user_signal() instead of handle_segv(), if the architecture provides the information needed in PTRACE_FAULTINFO, or if PTRACE_FAULTINFO is missing, because segv-stub will provide the info. The benefit of the change is, that in case of a non-fixable SIGSEGV, we can give user processes a SIGSEGV, instead of possibly looping on pagefault handling. Since handle_segv() sikked arch_fixup() implicitly by passing ip==0 to segv(), I changed segv() to call arch_fixup() only, if !is_user. Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-06 07:15:31 +08:00
#include "sysdep/faultinfo.h"
#define MAX_REG_OFFSET (UM_FRAME_SIZE)
#define MAX_REG_NR ((MAX_REG_OFFSET) / sizeof(unsigned long))
#ifdef UML_CONFIG_MODE_TT
#include "sysdep/sc.h"
#endif
#ifdef UML_CONFIG_MODE_SKAS
#include "skas_ptregs.h"
#define REGS_IP(r) ((r)[HOST_IP])
#define REGS_SP(r) ((r)[HOST_SP])
#define REGS_RBX(r) ((r)[HOST_RBX])
#define REGS_RCX(r) ((r)[HOST_RCX])
#define REGS_RDX(r) ((r)[HOST_RDX])
#define REGS_RSI(r) ((r)[HOST_RSI])
#define REGS_RDI(r) ((r)[HOST_RDI])
#define REGS_RBP(r) ((r)[HOST_RBP])
#define REGS_RAX(r) ((r)[HOST_RAX])
#define REGS_R8(r) ((r)[HOST_R8])
#define REGS_R9(r) ((r)[HOST_R9])
#define REGS_R10(r) ((r)[HOST_R10])
#define REGS_R11(r) ((r)[HOST_R11])
#define REGS_R12(r) ((r)[HOST_R12])
#define REGS_R13(r) ((r)[HOST_R13])
#define REGS_R14(r) ((r)[HOST_R14])
#define REGS_R15(r) ((r)[HOST_R15])
#define REGS_CS(r) ((r)[HOST_CS])
#define REGS_EFLAGS(r) ((r)[HOST_EFLAGS])
#define REGS_SS(r) ((r)[HOST_SS])
#define HOST_FS_BASE 21
#define HOST_GS_BASE 22
#define HOST_DS 23
#define HOST_ES 24
#define HOST_FS 25
#define HOST_GS 26
/* Also defined in asm/ptrace-x86_64.h, but not in libc headers. So, these
* are already defined for kernel code, but not for userspace code.
*/
#ifndef FS_BASE
/* These aren't defined in ptrace.h, but exist in struct user_regs_struct,
* which is what x86_64 ptrace actually uses.
*/
#define FS_BASE (HOST_FS_BASE * sizeof(long))
#define GS_BASE (HOST_GS_BASE * sizeof(long))
#define DS (HOST_DS * sizeof(long))
#define ES (HOST_ES * sizeof(long))
#define FS (HOST_FS * sizeof(long))
#define GS (HOST_GS * sizeof(long))
#endif
#define REGS_FS_BASE(r) ((r)[HOST_FS_BASE])
#define REGS_GS_BASE(r) ((r)[HOST_GS_BASE])
#define REGS_DS(r) ((r)[HOST_DS])
#define REGS_ES(r) ((r)[HOST_ES])
#define REGS_FS(r) ((r)[HOST_FS])
#define REGS_GS(r) ((r)[HOST_GS])
#define REGS_ORIG_RAX(r) ((r)[HOST_ORIG_RAX])
#define REGS_SET_SYSCALL_RETURN(r, res) REGS_RAX(r) = (res)
#define REGS_RESTART_SYSCALL(r) IP_RESTART_SYSCALL(REGS_IP(r))
#define REGS_SEGV_IS_FIXABLE(r) SEGV_IS_FIXABLE((r)->trap_type)
#define REGS_FAULT_ADDR(r) ((r)->fault_addr)
#define REGS_FAULT_WRITE(r) FAULT_WRITE((r)->fault_type)
#define REGS_TRAP(r) ((r)->trap_type)
#define REGS_ERR(r) ((r)->fault_type)
#endif
#include "choose-mode.h"
/* XXX */
union uml_pt_regs {
#ifdef UML_CONFIG_MODE_TT
struct tt_regs {
long syscall;
unsigned long orig_rax;
void *sc;
[PATCH] uml: S390 preparation, abstract host page fault data This patch removes the arch-specific fault/trap-infos from thread and skas-regs. It adds a new struct faultinfo, that is arch-specific defined in sysdep/faultinfo.h. The structure is inserted in thread.arch and thread.regs.skas and thread.regs.tt Now, segv and other trap-handlers can copy the contents from regs.X.faultinfo to thread.arch.faultinfo with one simple assignment. Also, the number of macros necessary is reduced to FAULT_ADDRESS(struct faultinfo) extracts the faulting address from faultinfo FAULT_WRITE(struct faultinfo) extracts the "is_write" flag SEGV_IS_FIXABLE(struct faultinfo) is true for the fixable segvs, i.e. (TRAP == 14) on i386 UPT_FAULTINFO(regs) result is (struct faultinfo *) to the faultinfo in regs->skas.faultinfo GET_FAULTINFO_FROM_SC(struct faultinfo, struct sigcontext *) copies the relevant parts of the sigcontext to struct faultinfo. On SIGSEGV, call user_signal() instead of handle_segv(), if the architecture provides the information needed in PTRACE_FAULTINFO, or if PTRACE_FAULTINFO is missing, because segv-stub will provide the info. The benefit of the change is, that in case of a non-fixable SIGSEGV, we can give user processes a SIGSEGV, instead of possibly looping on pagefault handling. Since handle_segv() sikked arch_fixup() implicitly by passing ip==0 to segv(), I changed segv() to call arch_fixup() only, if !is_user. Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-06 07:15:31 +08:00
struct faultinfo faultinfo;
} tt;
#endif
#ifdef UML_CONFIG_MODE_SKAS
struct skas_regs {
unsigned long regs[MAX_REG_NR];
unsigned long fp[HOST_FP_SIZE];
[PATCH] uml: S390 preparation, abstract host page fault data This patch removes the arch-specific fault/trap-infos from thread and skas-regs. It adds a new struct faultinfo, that is arch-specific defined in sysdep/faultinfo.h. The structure is inserted in thread.arch and thread.regs.skas and thread.regs.tt Now, segv and other trap-handlers can copy the contents from regs.X.faultinfo to thread.arch.faultinfo with one simple assignment. Also, the number of macros necessary is reduced to FAULT_ADDRESS(struct faultinfo) extracts the faulting address from faultinfo FAULT_WRITE(struct faultinfo) extracts the "is_write" flag SEGV_IS_FIXABLE(struct faultinfo) is true for the fixable segvs, i.e. (TRAP == 14) on i386 UPT_FAULTINFO(regs) result is (struct faultinfo *) to the faultinfo in regs->skas.faultinfo GET_FAULTINFO_FROM_SC(struct faultinfo, struct sigcontext *) copies the relevant parts of the sigcontext to struct faultinfo. On SIGSEGV, call user_signal() instead of handle_segv(), if the architecture provides the information needed in PTRACE_FAULTINFO, or if PTRACE_FAULTINFO is missing, because segv-stub will provide the info. The benefit of the change is, that in case of a non-fixable SIGSEGV, we can give user processes a SIGSEGV, instead of possibly looping on pagefault handling. Since handle_segv() sikked arch_fixup() implicitly by passing ip==0 to segv(), I changed segv() to call arch_fixup() only, if !is_user. Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-06 07:15:31 +08:00
struct faultinfo faultinfo;
long syscall;
int is_user;
} skas;
#endif
};
#define EMPTY_UML_PT_REGS { }
/* XXX */
extern int mode_tt;
#define UPT_RBX(r) __CHOOSE_MODE(SC_RBX(UPT_SC(r)), REGS_RBX((r)->skas.regs))
#define UPT_RCX(r) __CHOOSE_MODE(SC_RCX(UPT_SC(r)), REGS_RCX((r)->skas.regs))
#define UPT_RDX(r) __CHOOSE_MODE(SC_RDX(UPT_SC(r)), REGS_RDX((r)->skas.regs))
#define UPT_RSI(r) __CHOOSE_MODE(SC_RSI(UPT_SC(r)), REGS_RSI((r)->skas.regs))
#define UPT_RDI(r) __CHOOSE_MODE(SC_RDI(UPT_SC(r)), REGS_RDI((r)->skas.regs))
#define UPT_RBP(r) __CHOOSE_MODE(SC_RBP(UPT_SC(r)), REGS_RBP((r)->skas.regs))
#define UPT_RAX(r) __CHOOSE_MODE(SC_RAX(UPT_SC(r)), REGS_RAX((r)->skas.regs))
#define UPT_R8(r) __CHOOSE_MODE(SC_R8(UPT_SC(r)), REGS_R8((r)->skas.regs))
#define UPT_R9(r) __CHOOSE_MODE(SC_R9(UPT_SC(r)), REGS_R9((r)->skas.regs))
#define UPT_R10(r) __CHOOSE_MODE(SC_R10(UPT_SC(r)), REGS_R10((r)->skas.regs))
#define UPT_R11(r) __CHOOSE_MODE(SC_R11(UPT_SC(r)), REGS_R11((r)->skas.regs))
#define UPT_R12(r) __CHOOSE_MODE(SC_R12(UPT_SC(r)), REGS_R12((r)->skas.regs))
#define UPT_R13(r) __CHOOSE_MODE(SC_R13(UPT_SC(r)), REGS_R13((r)->skas.regs))
#define UPT_R14(r) __CHOOSE_MODE(SC_R14(UPT_SC(r)), REGS_R14((r)->skas.regs))
#define UPT_R15(r) __CHOOSE_MODE(SC_R15(UPT_SC(r)), REGS_R15((r)->skas.regs))
#define UPT_CS(r) __CHOOSE_MODE(SC_CS(UPT_SC(r)), REGS_CS((r)->skas.regs))
#define UPT_FS_BASE(r) \
__CHOOSE_MODE(SC_FS_BASE(UPT_SC(r)), REGS_FS_BASE((r)->skas.regs))
#define UPT_FS(r) __CHOOSE_MODE(SC_FS(UPT_SC(r)), REGS_FS((r)->skas.regs))
#define UPT_GS_BASE(r) \
__CHOOSE_MODE(SC_GS_BASE(UPT_SC(r)), REGS_GS_BASE((r)->skas.regs))
#define UPT_GS(r) __CHOOSE_MODE(SC_GS(UPT_SC(r)), REGS_GS((r)->skas.regs))
#define UPT_DS(r) __CHOOSE_MODE(SC_DS(UPT_SC(r)), REGS_DS((r)->skas.regs))
#define UPT_ES(r) __CHOOSE_MODE(SC_ES(UPT_SC(r)), REGS_ES((r)->skas.regs))
#define UPT_CS(r) __CHOOSE_MODE(SC_CS(UPT_SC(r)), REGS_CS((r)->skas.regs))
#define UPT_SS(r) __CHOOSE_MODE(SC_SS(UPT_SC(r)), REGS_SS((r)->skas.regs))
#define UPT_ORIG_RAX(r) \
__CHOOSE_MODE((r)->tt.orig_rax, REGS_ORIG_RAX((r)->skas.regs))
#define UPT_IP(r) __CHOOSE_MODE(SC_IP(UPT_SC(r)), REGS_IP((r)->skas.regs))
#define UPT_SP(r) __CHOOSE_MODE(SC_SP(UPT_SC(r)), REGS_SP((r)->skas.regs))
#define UPT_EFLAGS(r) \
__CHOOSE_MODE(SC_EFLAGS(UPT_SC(r)), REGS_EFLAGS((r)->skas.regs))
#define UPT_SC(r) ((r)->tt.sc)
#define UPT_SYSCALL_NR(r) __CHOOSE_MODE((r)->tt.syscall, (r)->skas.syscall)
#define UPT_SYSCALL_RET(r) UPT_RAX(r)
extern int user_context(unsigned long sp);
#define UPT_IS_USER(r) \
CHOOSE_MODE(user_context(UPT_SP(r)), (r)->skas.is_user)
#define UPT_SYSCALL_ARG1(r) UPT_RDI(r)
#define UPT_SYSCALL_ARG2(r) UPT_RSI(r)
#define UPT_SYSCALL_ARG3(r) UPT_RDX(r)
#define UPT_SYSCALL_ARG4(r) UPT_R10(r)
#define UPT_SYSCALL_ARG5(r) UPT_R8(r)
#define UPT_SYSCALL_ARG6(r) UPT_R9(r)
struct syscall_args {
unsigned long args[6];
};
#define SYSCALL_ARGS(r) ((struct syscall_args) \
{ .args = { UPT_SYSCALL_ARG1(r), \
UPT_SYSCALL_ARG2(r), \
UPT_SYSCALL_ARG3(r), \
UPT_SYSCALL_ARG4(r), \
UPT_SYSCALL_ARG5(r), \
UPT_SYSCALL_ARG6(r) } } )
#define UPT_REG(regs, reg) \
({ unsigned long val; \
switch(reg){ \
case R8: val = UPT_R8(regs); break; \
case R9: val = UPT_R9(regs); break; \
case R10: val = UPT_R10(regs); break; \
case R11: val = UPT_R11(regs); break; \
case R12: val = UPT_R12(regs); break; \
case R13: val = UPT_R13(regs); break; \
case R14: val = UPT_R14(regs); break; \
case R15: val = UPT_R15(regs); break; \
case RIP: val = UPT_IP(regs); break; \
case RSP: val = UPT_SP(regs); break; \
case RAX: val = UPT_RAX(regs); break; \
case RBX: val = UPT_RBX(regs); break; \
case RCX: val = UPT_RCX(regs); break; \
case RDX: val = UPT_RDX(regs); break; \
case RSI: val = UPT_RSI(regs); break; \
case RDI: val = UPT_RDI(regs); break; \
case RBP: val = UPT_RBP(regs); break; \
case ORIG_RAX: val = UPT_ORIG_RAX(regs); break; \
case CS: val = UPT_CS(regs); break; \
case SS: val = UPT_SS(regs); break; \
case FS_BASE: val = UPT_FS_BASE(regs); break; \
case GS_BASE: val = UPT_GS_BASE(regs); break; \
case DS: val = UPT_DS(regs); break; \
case ES: val = UPT_ES(regs); break; \
case FS : val = UPT_FS (regs); break; \
case GS: val = UPT_GS(regs); break; \
case EFLAGS: val = UPT_EFLAGS(regs); break; \
default : \
panic("Bad register in UPT_REG : %d\n", reg); \
val = -1; \
} \
val; \
})
#define UPT_SET(regs, reg, val) \
({ unsigned long __upt_val = val; \
switch(reg){ \
case R8: UPT_R8(regs) = __upt_val; break; \
case R9: UPT_R9(regs) = __upt_val; break; \
case R10: UPT_R10(regs) = __upt_val; break; \
case R11: UPT_R11(regs) = __upt_val; break; \
case R12: UPT_R12(regs) = __upt_val; break; \
case R13: UPT_R13(regs) = __upt_val; break; \
case R14: UPT_R14(regs) = __upt_val; break; \
case R15: UPT_R15(regs) = __upt_val; break; \
case RIP: UPT_IP(regs) = __upt_val; break; \
case RSP: UPT_SP(regs) = __upt_val; break; \
case RAX: UPT_RAX(regs) = __upt_val; break; \
case RBX: UPT_RBX(regs) = __upt_val; break; \
case RCX: UPT_RCX(regs) = __upt_val; break; \
case RDX: UPT_RDX(regs) = __upt_val; break; \
case RSI: UPT_RSI(regs) = __upt_val; break; \
case RDI: UPT_RDI(regs) = __upt_val; break; \
case RBP: UPT_RBP(regs) = __upt_val; break; \
case ORIG_RAX: UPT_ORIG_RAX(regs) = __upt_val; break; \
case CS: UPT_CS(regs) = __upt_val; break; \
case SS: UPT_SS(regs) = __upt_val; break; \
case FS_BASE: UPT_FS_BASE(regs) = __upt_val; break; \
case GS_BASE: UPT_GS_BASE(regs) = __upt_val; break; \
case DS: UPT_DS(regs) = __upt_val; break; \
case ES: UPT_ES(regs) = __upt_val; break; \
case FS: UPT_FS(regs) = __upt_val; break; \
case GS: UPT_GS(regs) = __upt_val; break; \
case EFLAGS: UPT_EFLAGS(regs) = __upt_val; break; \
default : \
panic("Bad register in UPT_SET : %d\n", reg); \
break; \
} \
__upt_val; \
})
#define UPT_SET_SYSCALL_RETURN(r, res) \
CHOOSE_MODE(SC_SET_SYSCALL_RETURN(UPT_SC(r), (res)), \
REGS_SET_SYSCALL_RETURN((r)->skas.regs, (res)))
#define UPT_RESTART_SYSCALL(r) \
CHOOSE_MODE(SC_RESTART_SYSCALL(UPT_SC(r)), \
REGS_RESTART_SYSCALL((r)->skas.regs))
#define UPT_SEGV_IS_FIXABLE(r) \
CHOOSE_MODE(SC_SEGV_IS_FIXABLE(UPT_SC(r)), \
REGS_SEGV_IS_FIXABLE(&r->skas))
[PATCH] uml: S390 preparation, abstract host page fault data This patch removes the arch-specific fault/trap-infos from thread and skas-regs. It adds a new struct faultinfo, that is arch-specific defined in sysdep/faultinfo.h. The structure is inserted in thread.arch and thread.regs.skas and thread.regs.tt Now, segv and other trap-handlers can copy the contents from regs.X.faultinfo to thread.arch.faultinfo with one simple assignment. Also, the number of macros necessary is reduced to FAULT_ADDRESS(struct faultinfo) extracts the faulting address from faultinfo FAULT_WRITE(struct faultinfo) extracts the "is_write" flag SEGV_IS_FIXABLE(struct faultinfo) is true for the fixable segvs, i.e. (TRAP == 14) on i386 UPT_FAULTINFO(regs) result is (struct faultinfo *) to the faultinfo in regs->skas.faultinfo GET_FAULTINFO_FROM_SC(struct faultinfo, struct sigcontext *) copies the relevant parts of the sigcontext to struct faultinfo. On SIGSEGV, call user_signal() instead of handle_segv(), if the architecture provides the information needed in PTRACE_FAULTINFO, or if PTRACE_FAULTINFO is missing, because segv-stub will provide the info. The benefit of the change is, that in case of a non-fixable SIGSEGV, we can give user processes a SIGSEGV, instead of possibly looping on pagefault handling. Since handle_segv() sikked arch_fixup() implicitly by passing ip==0 to segv(), I changed segv() to call arch_fixup() only, if !is_user. Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-06 07:15:31 +08:00
#define UPT_FAULTINFO(r) \
CHOOSE_MODE((&(r)->tt.faultinfo), (&(r)->skas.faultinfo))
#endif