kernel_optimize_test/drivers/hwmon/w83l786ng.c

814 lines
22 KiB
C
Raw Normal View History

/*
w83l786ng.c - Linux kernel driver for hardware monitoring
Copyright (c) 2007 Kevin Lo <kevlo@kevlo.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation - version 2.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.
*/
/*
Supports following chips:
Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA
w83l786ng 3 2 2 2 0x7b 0x5ca3 yes no
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-vid.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
/* Addresses to scan */
static const unsigned short normal_i2c[] = { 0x2e, 0x2f, I2C_CLIENT_END };
/* Insmod parameters */
I2C_CLIENT_INSMOD_1(w83l786ng);
static int reset;
module_param(reset, bool, 0);
MODULE_PARM_DESC(reset, "Set to 1 to reset chip, not recommended");
#define W83L786NG_REG_IN_MIN(nr) (0x2C + (nr) * 2)
#define W83L786NG_REG_IN_MAX(nr) (0x2B + (nr) * 2)
#define W83L786NG_REG_IN(nr) ((nr) + 0x20)
#define W83L786NG_REG_FAN(nr) ((nr) + 0x28)
#define W83L786NG_REG_FAN_MIN(nr) ((nr) + 0x3B)
#define W83L786NG_REG_CONFIG 0x40
#define W83L786NG_REG_ALARM1 0x41
#define W83L786NG_REG_ALARM2 0x42
#define W83L786NG_REG_GPIO_EN 0x47
#define W83L786NG_REG_MAN_ID2 0x4C
#define W83L786NG_REG_MAN_ID1 0x4D
#define W83L786NG_REG_CHIP_ID 0x4E
#define W83L786NG_REG_DIODE 0x53
#define W83L786NG_REG_FAN_DIV 0x54
#define W83L786NG_REG_FAN_CFG 0x80
#define W83L786NG_REG_TOLERANCE 0x8D
static const u8 W83L786NG_REG_TEMP[2][3] = {
{ 0x25, /* TEMP 0 in DataSheet */
0x35, /* TEMP 0 Over in DataSheet */
0x36 }, /* TEMP 0 Hyst in DataSheet */
{ 0x26, /* TEMP 1 in DataSheet */
0x37, /* TEMP 1 Over in DataSheet */
0x38 } /* TEMP 1 Hyst in DataSheet */
};
static const u8 W83L786NG_PWM_MODE_SHIFT[] = {6, 7};
static const u8 W83L786NG_PWM_ENABLE_SHIFT[] = {2, 4};
/* FAN Duty Cycle, be used to control */
static const u8 W83L786NG_REG_PWM[] = {0x81, 0x87};
static inline u8
FAN_TO_REG(long rpm, int div)
{
if (rpm == 0)
return 255;
rpm = SENSORS_LIMIT(rpm, 1, 1000000);
return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
}
#define FAN_FROM_REG(val,div) ((val) == 0 ? -1 : \
((val) == 255 ? 0 : \
1350000 / ((val) * (div))))
/* for temp */
#define TEMP_TO_REG(val) (SENSORS_LIMIT(((val) < 0 ? (val)+0x100*1000 \
: (val)) / 1000, 0, 0xff))
#define TEMP_FROM_REG(val) (((val) & 0x80 ? (val)-0x100 : (val)) * 1000)
/* The analog voltage inputs have 8mV LSB. Since the sysfs output is
in mV as would be measured on the chip input pin, need to just
multiply/divide by 8 to translate from/to register values. */
#define IN_TO_REG(val) (SENSORS_LIMIT((((val) + 4) / 8), 0, 255))
#define IN_FROM_REG(val) ((val) * 8)
#define DIV_FROM_REG(val) (1 << (val))
static inline u8
DIV_TO_REG(long val)
{
int i;
val = SENSORS_LIMIT(val, 1, 128) >> 1;
for (i = 0; i < 7; i++) {
if (val == 0)
break;
val >>= 1;
}
return ((u8) i);
}
struct w83l786ng_data {
struct device *hwmon_dev;
struct mutex update_lock;
char valid; /* !=0 if following fields are valid */
unsigned long last_updated; /* In jiffies */
unsigned long last_nonvolatile; /* In jiffies, last time we update the
nonvolatile registers */
u8 in[3];
u8 in_max[3];
u8 in_min[3];
u8 fan[2];
u8 fan_div[2];
u8 fan_min[2];
u8 temp_type[2];
u8 temp[2][3];
u8 pwm[2];
u8 pwm_mode[2]; /* 0->DC variable voltage
1->PWM variable duty cycle */
u8 pwm_enable[2]; /* 1->manual
2->thermal cruise (also called SmartFan I) */
u8 tolerance[2];
};
static int w83l786ng_probe(struct i2c_client *client,
const struct i2c_device_id *id);
static int w83l786ng_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
static int w83l786ng_remove(struct i2c_client *client);
static void w83l786ng_init_client(struct i2c_client *client);
static struct w83l786ng_data *w83l786ng_update_device(struct device *dev);
static const struct i2c_device_id w83l786ng_id[] = {
{ "w83l786ng", w83l786ng },
{ }
};
MODULE_DEVICE_TABLE(i2c, w83l786ng_id);
static struct i2c_driver w83l786ng_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "w83l786ng",
},
.probe = w83l786ng_probe,
.remove = w83l786ng_remove,
.id_table = w83l786ng_id,
.detect = w83l786ng_detect,
.address_data = &addr_data,
};
static u8
w83l786ng_read_value(struct i2c_client *client, u8 reg)
{
return i2c_smbus_read_byte_data(client, reg);
}
static int
w83l786ng_write_value(struct i2c_client *client, u8 reg, u8 value)
{
return i2c_smbus_write_byte_data(client, reg, value);
}
/* following are the sysfs callback functions */
#define show_in_reg(reg) \
static ssize_t \
show_##reg(struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
int nr = to_sensor_dev_attr(attr)->index; \
struct w83l786ng_data *data = w83l786ng_update_device(dev); \
return sprintf(buf,"%d\n", IN_FROM_REG(data->reg[nr])); \
}
show_in_reg(in)
show_in_reg(in_min)
show_in_reg(in_max)
#define store_in_reg(REG, reg) \
static ssize_t \
store_in_##reg (struct device *dev, struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
int nr = to_sensor_dev_attr(attr)->index; \
struct i2c_client *client = to_i2c_client(dev); \
struct w83l786ng_data *data = i2c_get_clientdata(client); \
unsigned long val = simple_strtoul(buf, NULL, 10); \
mutex_lock(&data->update_lock); \
data->in_##reg[nr] = IN_TO_REG(val); \
w83l786ng_write_value(client, W83L786NG_REG_IN_##REG(nr), \
data->in_##reg[nr]); \
mutex_unlock(&data->update_lock); \
return count; \
}
store_in_reg(MIN, min)
store_in_reg(MAX, max)
static struct sensor_device_attribute sda_in_input[] = {
SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0),
SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1),
SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2),
};
static struct sensor_device_attribute sda_in_min[] = {
SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0),
SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1),
SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2),
};
static struct sensor_device_attribute sda_in_max[] = {
SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0),
SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1),
SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2),
};
#define show_fan_reg(reg) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
int nr = to_sensor_dev_attr(attr)->index; \
struct w83l786ng_data *data = w83l786ng_update_device(dev); \
return sprintf(buf,"%d\n", \
FAN_FROM_REG(data->fan[nr], DIV_FROM_REG(data->fan_div[nr]))); \
}
show_fan_reg(fan);
show_fan_reg(fan_min);
static ssize_t
store_fan_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct i2c_client *client = to_i2c_client(dev);
struct w83l786ng_data *data = i2c_get_clientdata(client);
u32 val;
val = simple_strtoul(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
w83l786ng_write_value(client, W83L786NG_REG_FAN_MIN(nr),
data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t
show_fan_div(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct w83l786ng_data *data = w83l786ng_update_device(dev);
return sprintf(buf, "%u\n", DIV_FROM_REG(data->fan_div[nr]));
}
/* Note: we save and restore the fan minimum here, because its value is
determined in part by the fan divisor. This follows the principle of
least surprise; the user doesn't expect the fan minimum to change just
because the divisor changed. */
static ssize_t
store_fan_div(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct i2c_client *client = to_i2c_client(dev);
struct w83l786ng_data *data = i2c_get_clientdata(client);
unsigned long min;
u8 tmp_fan_div;
u8 fan_div_reg;
u8 keep_mask = 0;
u8 new_shift = 0;
/* Save fan_min */
mutex_lock(&data->update_lock);
min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr]));
data->fan_div[nr] = DIV_TO_REG(simple_strtoul(buf, NULL, 10));
switch (nr) {
case 0:
keep_mask = 0xf8;
new_shift = 0;
break;
case 1:
keep_mask = 0x8f;
new_shift = 4;
break;
}
fan_div_reg = w83l786ng_read_value(client, W83L786NG_REG_FAN_DIV)
& keep_mask;
tmp_fan_div = (data->fan_div[nr] << new_shift) & ~keep_mask;
w83l786ng_write_value(client, W83L786NG_REG_FAN_DIV,
fan_div_reg | tmp_fan_div);
/* Restore fan_min */
data->fan_min[nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
w83l786ng_write_value(client, W83L786NG_REG_FAN_MIN(nr),
data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute sda_fan_input[] = {
SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0),
SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1),
};
static struct sensor_device_attribute sda_fan_min[] = {
SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO, show_fan_min,
store_fan_min, 0),
SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO, show_fan_min,
store_fan_min, 1),
};
static struct sensor_device_attribute sda_fan_div[] = {
SENSOR_ATTR(fan1_div, S_IWUSR | S_IRUGO, show_fan_div,
store_fan_div, 0),
SENSOR_ATTR(fan2_div, S_IWUSR | S_IRUGO, show_fan_div,
store_fan_div, 1),
};
/* read/write the temperature, includes measured value and limits */
static ssize_t
show_temp(struct device *dev, struct device_attribute *attr, char *buf)
{
struct sensor_device_attribute_2 *sensor_attr =
to_sensor_dev_attr_2(attr);
int nr = sensor_attr->nr;
int index = sensor_attr->index;
struct w83l786ng_data *data = w83l786ng_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[nr][index]));
}
static ssize_t
store_temp(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute_2 *sensor_attr =
to_sensor_dev_attr_2(attr);
int nr = sensor_attr->nr;
int index = sensor_attr->index;
struct i2c_client *client = to_i2c_client(dev);
struct w83l786ng_data *data = i2c_get_clientdata(client);
s32 val;
val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->temp[nr][index] = TEMP_TO_REG(val);
w83l786ng_write_value(client, W83L786NG_REG_TEMP[nr][index],
data->temp[nr][index]);
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute_2 sda_temp_input[] = {
SENSOR_ATTR_2(temp1_input, S_IRUGO, show_temp, NULL, 0, 0),
SENSOR_ATTR_2(temp2_input, S_IRUGO, show_temp, NULL, 1, 0),
};
static struct sensor_device_attribute_2 sda_temp_max[] = {
SENSOR_ATTR_2(temp1_max, S_IRUGO | S_IWUSR,
show_temp, store_temp, 0, 1),
SENSOR_ATTR_2(temp2_max, S_IRUGO | S_IWUSR,
show_temp, store_temp, 1, 1),
};
static struct sensor_device_attribute_2 sda_temp_max_hyst[] = {
SENSOR_ATTR_2(temp1_max_hyst, S_IRUGO | S_IWUSR,
show_temp, store_temp, 0, 2),
SENSOR_ATTR_2(temp2_max_hyst, S_IRUGO | S_IWUSR,
show_temp, store_temp, 1, 2),
};
#define show_pwm_reg(reg) \
static ssize_t show_##reg (struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
struct w83l786ng_data *data = w83l786ng_update_device(dev); \
int nr = to_sensor_dev_attr(attr)->index; \
return sprintf(buf, "%d\n", data->reg[nr]); \
}
show_pwm_reg(pwm_mode)
show_pwm_reg(pwm_enable)
show_pwm_reg(pwm)
static ssize_t
store_pwm_mode(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct i2c_client *client = to_i2c_client(dev);
struct w83l786ng_data *data = i2c_get_clientdata(client);
u32 val = simple_strtoul(buf, NULL, 10);
u8 reg;
if (val > 1)
return -EINVAL;
mutex_lock(&data->update_lock);
data->pwm_mode[nr] = val;
reg = w83l786ng_read_value(client, W83L786NG_REG_FAN_CFG);
reg &= ~(1 << W83L786NG_PWM_MODE_SHIFT[nr]);
if (!val)
reg |= 1 << W83L786NG_PWM_MODE_SHIFT[nr];
w83l786ng_write_value(client, W83L786NG_REG_FAN_CFG, reg);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t
store_pwm(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct i2c_client *client = to_i2c_client(dev);
struct w83l786ng_data *data = i2c_get_clientdata(client);
u32 val = SENSORS_LIMIT(simple_strtoul(buf, NULL, 10), 0, 255);
mutex_lock(&data->update_lock);
data->pwm[nr] = val;
w83l786ng_write_value(client, W83L786NG_REG_PWM[nr], val);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t
store_pwm_enable(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct i2c_client *client = to_i2c_client(dev);
struct w83l786ng_data *data = i2c_get_clientdata(client);
u32 val = simple_strtoul(buf, NULL, 10);
u8 reg;
if (!val || (val > 2)) /* only modes 1 and 2 are supported */
return -EINVAL;
mutex_lock(&data->update_lock);
reg = w83l786ng_read_value(client, W83L786NG_REG_FAN_CFG);
data->pwm_enable[nr] = val;
reg &= ~(0x02 << W83L786NG_PWM_ENABLE_SHIFT[nr]);
reg |= (val - 1) << W83L786NG_PWM_ENABLE_SHIFT[nr];
w83l786ng_write_value(client, W83L786NG_REG_FAN_CFG, reg);
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute sda_pwm[] = {
SENSOR_ATTR(pwm1, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 0),
SENSOR_ATTR(pwm2, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 1),
};
static struct sensor_device_attribute sda_pwm_mode[] = {
SENSOR_ATTR(pwm1_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
store_pwm_mode, 0),
SENSOR_ATTR(pwm2_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
store_pwm_mode, 1),
};
static struct sensor_device_attribute sda_pwm_enable[] = {
SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
store_pwm_enable, 0),
SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
store_pwm_enable, 1),
};
/* For Smart Fan I/Thermal Cruise and Smart Fan II */
static ssize_t
show_tolerance(struct device *dev, struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct w83l786ng_data *data = w83l786ng_update_device(dev);
return sprintf(buf, "%ld\n", (long)data->tolerance[nr]);
}
static ssize_t
store_tolerance(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct i2c_client *client = to_i2c_client(dev);
struct w83l786ng_data *data = i2c_get_clientdata(client);
u32 val;
u8 tol_tmp, tol_mask;
val = simple_strtoul(buf, NULL, 10);
mutex_lock(&data->update_lock);
tol_mask = w83l786ng_read_value(client,
W83L786NG_REG_TOLERANCE) & ((nr == 1) ? 0x0f : 0xf0);
tol_tmp = SENSORS_LIMIT(val, 0, 15);
tol_tmp &= 0x0f;
data->tolerance[nr] = tol_tmp;
if (nr == 1) {
tol_tmp <<= 4;
}
w83l786ng_write_value(client, W83L786NG_REG_TOLERANCE,
tol_mask | tol_tmp);
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute sda_tolerance[] = {
SENSOR_ATTR(pwm1_tolerance, S_IWUSR | S_IRUGO,
show_tolerance, store_tolerance, 0),
SENSOR_ATTR(pwm2_tolerance, S_IWUSR | S_IRUGO,
show_tolerance, store_tolerance, 1),
};
#define IN_UNIT_ATTRS(X) \
&sda_in_input[X].dev_attr.attr, \
&sda_in_min[X].dev_attr.attr, \
&sda_in_max[X].dev_attr.attr
#define FAN_UNIT_ATTRS(X) \
&sda_fan_input[X].dev_attr.attr, \
&sda_fan_min[X].dev_attr.attr, \
&sda_fan_div[X].dev_attr.attr
#define TEMP_UNIT_ATTRS(X) \
&sda_temp_input[X].dev_attr.attr, \
&sda_temp_max[X].dev_attr.attr, \
&sda_temp_max_hyst[X].dev_attr.attr
#define PWM_UNIT_ATTRS(X) \
&sda_pwm[X].dev_attr.attr, \
&sda_pwm_mode[X].dev_attr.attr, \
&sda_pwm_enable[X].dev_attr.attr
#define TOLERANCE_UNIT_ATTRS(X) \
&sda_tolerance[X].dev_attr.attr
static struct attribute *w83l786ng_attributes[] = {
IN_UNIT_ATTRS(0),
IN_UNIT_ATTRS(1),
IN_UNIT_ATTRS(2),
FAN_UNIT_ATTRS(0),
FAN_UNIT_ATTRS(1),
TEMP_UNIT_ATTRS(0),
TEMP_UNIT_ATTRS(1),
PWM_UNIT_ATTRS(0),
PWM_UNIT_ATTRS(1),
TOLERANCE_UNIT_ATTRS(0),
TOLERANCE_UNIT_ATTRS(1),
NULL
};
static const struct attribute_group w83l786ng_group = {
.attrs = w83l786ng_attributes,
};
static int
w83l786ng_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
return -ENODEV;
}
/*
* Now we do the remaining detection. A negative kind means that
* the driver was loaded with no force parameter (default), so we
* must both detect and identify the chip (actually there is only
* one possible kind of chip for now, W83L786NG). A zero kind means
* that the driver was loaded with the force parameter, the detection
* step shall be skipped. A positive kind means that the driver
* was loaded with the force parameter and a given kind of chip is
* requested, so both the detection and the identification steps
* are skipped.
*/
if (kind < 0) { /* detection */
if (((w83l786ng_read_value(client,
W83L786NG_REG_CONFIG) & 0x80) != 0x00)) {
dev_dbg(&adapter->dev,
"W83L786NG detection failed at 0x%02x.\n",
client->addr);
return -ENODEV;
}
}
if (kind <= 0) { /* identification */
u16 man_id;
u8 chip_id;
man_id = (w83l786ng_read_value(client,
W83L786NG_REG_MAN_ID1) << 8) +
w83l786ng_read_value(client, W83L786NG_REG_MAN_ID2);
chip_id = w83l786ng_read_value(client, W83L786NG_REG_CHIP_ID);
if (man_id == 0x5CA3) { /* Winbond */
if (chip_id == 0x80) { /* W83L786NG */
kind = w83l786ng;
}
}
if (kind <= 0) { /* identification failed */
dev_info(&adapter->dev,
"Unsupported chip (man_id=0x%04X, "
"chip_id=0x%02X).\n", man_id, chip_id);
return -ENODEV;
}
}
strlcpy(info->type, "w83l786ng", I2C_NAME_SIZE);
return 0;
}
static int
w83l786ng_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
struct device *dev = &client->dev;
struct w83l786ng_data *data;
int i, err = 0;
u8 reg_tmp;
data = kzalloc(sizeof(struct w83l786ng_data), GFP_KERNEL);
if (!data) {
err = -ENOMEM;
goto exit;
}
i2c_set_clientdata(client, data);
mutex_init(&data->update_lock);
/* Initialize the chip */
w83l786ng_init_client(client);
/* A few vars need to be filled upon startup */
for (i = 0; i < 2; i++) {
data->fan_min[i] = w83l786ng_read_value(client,
W83L786NG_REG_FAN_MIN(i));
}
/* Update the fan divisor */
reg_tmp = w83l786ng_read_value(client, W83L786NG_REG_FAN_DIV);
data->fan_div[0] = reg_tmp & 0x07;
data->fan_div[1] = (reg_tmp >> 4) & 0x07;
/* Register sysfs hooks */
if ((err = sysfs_create_group(&client->dev.kobj, &w83l786ng_group)))
goto exit_remove;
data->hwmon_dev = hwmon_device_register(dev);
if (IS_ERR(data->hwmon_dev)) {
err = PTR_ERR(data->hwmon_dev);
goto exit_remove;
}
return 0;
/* Unregister sysfs hooks */
exit_remove:
sysfs_remove_group(&client->dev.kobj, &w83l786ng_group);
kfree(data);
exit:
return err;
}
static int
w83l786ng_remove(struct i2c_client *client)
{
struct w83l786ng_data *data = i2c_get_clientdata(client);
hwmon_device_unregister(data->hwmon_dev);
sysfs_remove_group(&client->dev.kobj, &w83l786ng_group);
kfree(data);
return 0;
}
static void
w83l786ng_init_client(struct i2c_client *client)
{
u8 tmp;
if (reset)
w83l786ng_write_value(client, W83L786NG_REG_CONFIG, 0x80);
/* Start monitoring */
tmp = w83l786ng_read_value(client, W83L786NG_REG_CONFIG);
if (!(tmp & 0x01))
w83l786ng_write_value(client, W83L786NG_REG_CONFIG, tmp | 0x01);
}
static struct w83l786ng_data *w83l786ng_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct w83l786ng_data *data = i2c_get_clientdata(client);
int i, j;
u8 reg_tmp, pwmcfg;
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
|| !data->valid) {
dev_dbg(&client->dev, "Updating w83l786ng data.\n");
/* Update the voltages measured value and limits */
for (i = 0; i < 3; i++) {
data->in[i] = w83l786ng_read_value(client,
W83L786NG_REG_IN(i));
data->in_min[i] = w83l786ng_read_value(client,
W83L786NG_REG_IN_MIN(i));
data->in_max[i] = w83l786ng_read_value(client,
W83L786NG_REG_IN_MAX(i));
}
/* Update the fan counts and limits */
for (i = 0; i < 2; i++) {
data->fan[i] = w83l786ng_read_value(client,
W83L786NG_REG_FAN(i));
data->fan_min[i] = w83l786ng_read_value(client,
W83L786NG_REG_FAN_MIN(i));
}
/* Update the fan divisor */
reg_tmp = w83l786ng_read_value(client, W83L786NG_REG_FAN_DIV);
data->fan_div[0] = reg_tmp & 0x07;
data->fan_div[1] = (reg_tmp >> 4) & 0x07;
pwmcfg = w83l786ng_read_value(client, W83L786NG_REG_FAN_CFG);
for (i = 0; i < 2; i++) {
data->pwm_mode[i] =
((pwmcfg >> W83L786NG_PWM_MODE_SHIFT[i]) & 1)
? 0 : 1;
data->pwm_enable[i] =
((pwmcfg >> W83L786NG_PWM_ENABLE_SHIFT[i]) & 2) + 1;
data->pwm[i] = w83l786ng_read_value(client,
W83L786NG_REG_PWM[i]);
}
/* Update the temperature sensors */
for (i = 0; i < 2; i++) {
for (j = 0; j < 3; j++) {
data->temp[i][j] = w83l786ng_read_value(client,
W83L786NG_REG_TEMP[i][j]);
}
}
/* Update Smart Fan I/II tolerance */
reg_tmp = w83l786ng_read_value(client, W83L786NG_REG_TOLERANCE);
data->tolerance[0] = reg_tmp & 0x0f;
data->tolerance[1] = (reg_tmp >> 4) & 0x0f;
data->last_updated = jiffies;
data->valid = 1;
}
mutex_unlock(&data->update_lock);
return data;
}
static int __init
sensors_w83l786ng_init(void)
{
return i2c_add_driver(&w83l786ng_driver);
}
static void __exit
sensors_w83l786ng_exit(void)
{
i2c_del_driver(&w83l786ng_driver);
}
MODULE_AUTHOR("Kevin Lo");
MODULE_DESCRIPTION("w83l786ng driver");
MODULE_LICENSE("GPL");
module_init(sensors_w83l786ng_init);
module_exit(sensors_w83l786ng_exit);