2005-04-17 06:20:36 +08:00
|
|
|
/*
|
2007-11-20 17:08:06 +08:00
|
|
|
* arch/sh/kernel/process_64.c
|
2005-04-17 06:20:36 +08:00
|
|
|
*
|
2007-11-20 17:08:06 +08:00
|
|
|
* This file handles the architecture-dependent parts of process handling..
|
2005-04-17 06:20:36 +08:00
|
|
|
*
|
|
|
|
* Copyright (C) 2000, 2001 Paolo Alberelli
|
2007-11-20 17:08:06 +08:00
|
|
|
* Copyright (C) 2003 - 2007 Paul Mundt
|
2005-04-17 06:20:36 +08:00
|
|
|
* Copyright (C) 2003, 2004 Richard Curnow
|
|
|
|
*
|
|
|
|
* Started from SH3/4 version:
|
|
|
|
* Copyright (C) 1999, 2000 Niibe Yutaka & Kaz Kojima
|
|
|
|
*
|
|
|
|
* In turn started from i386 version:
|
|
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
|
|
*
|
2007-11-20 17:08:06 +08:00
|
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
|
|
* for more details.
|
2005-04-17 06:20:36 +08:00
|
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
2007-07-31 12:03:02 +08:00
|
|
|
#include <linux/fs.h>
|
2005-04-17 06:20:36 +08:00
|
|
|
#include <linux/ptrace.h>
|
|
|
|
#include <linux/reboot.h>
|
|
|
|
#include <linux/init.h>
|
2006-10-02 17:18:41 +08:00
|
|
|
#include <linux/module.h>
|
2007-11-05 11:18:17 +08:00
|
|
|
#include <linux/proc_fs.h>
|
2007-11-20 14:38:50 +08:00
|
|
|
#include <linux/io.h>
|
2005-04-17 06:20:36 +08:00
|
|
|
#include <asm/uaccess.h>
|
|
|
|
#include <asm/pgtable.h>
|
2007-11-21 16:07:46 +08:00
|
|
|
#include <asm/mmu_context.h>
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
struct task_struct *last_task_used_math = NULL;
|
|
|
|
|
|
|
|
static int hlt_counter = 1;
|
|
|
|
|
|
|
|
#define HARD_IDLE_TIMEOUT (HZ / 3)
|
|
|
|
|
|
|
|
void disable_hlt(void)
|
|
|
|
{
|
|
|
|
hlt_counter++;
|
|
|
|
}
|
|
|
|
|
|
|
|
void enable_hlt(void)
|
|
|
|
{
|
|
|
|
hlt_counter--;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int __init nohlt_setup(char *__unused)
|
|
|
|
{
|
|
|
|
hlt_counter = 1;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int __init hlt_setup(char *__unused)
|
|
|
|
{
|
|
|
|
hlt_counter = 0;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
__setup("nohlt", nohlt_setup);
|
|
|
|
__setup("hlt", hlt_setup);
|
|
|
|
|
|
|
|
static inline void hlt(void)
|
|
|
|
{
|
|
|
|
__asm__ __volatile__ ("sleep" : : : "memory");
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The idle loop on a uniprocessor SH..
|
|
|
|
*/
|
[PATCH] sched: resched and cpu_idle rework
Make some changes to the NEED_RESCHED and POLLING_NRFLAG to reduce
confusion, and make their semantics rigid. Improves efficiency of
resched_task and some cpu_idle routines.
* In resched_task:
- TIF_NEED_RESCHED is only cleared with the task's runqueue lock held,
and as we hold it during resched_task, then there is no need for an
atomic test and set there. The only other time this should be set is
when the task's quantum expires, in the timer interrupt - this is
protected against because the rq lock is irq-safe.
- If TIF_NEED_RESCHED is set, then we don't need to do anything. It
won't get unset until the task get's schedule()d off.
- If we are running on the same CPU as the task we resched, then set
TIF_NEED_RESCHED and no further action is required.
- If we are running on another CPU, and TIF_POLLING_NRFLAG is *not* set
after TIF_NEED_RESCHED has been set, then we need to send an IPI.
Using these rules, we are able to remove the test and set operation in
resched_task, and make clear the previously vague semantics of
POLLING_NRFLAG.
* In idle routines:
- Enter cpu_idle with preempt disabled. When the need_resched() condition
becomes true, explicitly call schedule(). This makes things a bit clearer
(IMO), but haven't updated all architectures yet.
- Many do a test and clear of TIF_NEED_RESCHED for some reason. According
to the resched_task rules, this isn't needed (and actually breaks the
assumption that TIF_NEED_RESCHED is only cleared with the runqueue lock
held). So remove that. Generally one less locked memory op when switching
to the idle thread.
- Many idle routines clear TIF_POLLING_NRFLAG, and only set it in the inner
most polling idle loops. The above resched_task semantics allow it to be
set until before the last time need_resched() is checked before going into
a halt requiring interrupt wakeup.
Many idle routines simply never enter such a halt, and so POLLING_NRFLAG
can be always left set, completely eliminating resched IPIs when rescheduling
the idle task.
POLLING_NRFLAG width can be increased, to reduce the chance of resched IPIs.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Con Kolivas <kernel@kolivas.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-09 13:39:04 +08:00
|
|
|
void cpu_idle(void)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
|
|
|
/* endless idle loop with no priority at all */
|
|
|
|
while (1) {
|
|
|
|
if (hlt_counter) {
|
[PATCH] sched: resched and cpu_idle rework
Make some changes to the NEED_RESCHED and POLLING_NRFLAG to reduce
confusion, and make their semantics rigid. Improves efficiency of
resched_task and some cpu_idle routines.
* In resched_task:
- TIF_NEED_RESCHED is only cleared with the task's runqueue lock held,
and as we hold it during resched_task, then there is no need for an
atomic test and set there. The only other time this should be set is
when the task's quantum expires, in the timer interrupt - this is
protected against because the rq lock is irq-safe.
- If TIF_NEED_RESCHED is set, then we don't need to do anything. It
won't get unset until the task get's schedule()d off.
- If we are running on the same CPU as the task we resched, then set
TIF_NEED_RESCHED and no further action is required.
- If we are running on another CPU, and TIF_POLLING_NRFLAG is *not* set
after TIF_NEED_RESCHED has been set, then we need to send an IPI.
Using these rules, we are able to remove the test and set operation in
resched_task, and make clear the previously vague semantics of
POLLING_NRFLAG.
* In idle routines:
- Enter cpu_idle with preempt disabled. When the need_resched() condition
becomes true, explicitly call schedule(). This makes things a bit clearer
(IMO), but haven't updated all architectures yet.
- Many do a test and clear of TIF_NEED_RESCHED for some reason. According
to the resched_task rules, this isn't needed (and actually breaks the
assumption that TIF_NEED_RESCHED is only cleared with the runqueue lock
held). So remove that. Generally one less locked memory op when switching
to the idle thread.
- Many idle routines clear TIF_POLLING_NRFLAG, and only set it in the inner
most polling idle loops. The above resched_task semantics allow it to be
set until before the last time need_resched() is checked before going into
a halt requiring interrupt wakeup.
Many idle routines simply never enter such a halt, and so POLLING_NRFLAG
can be always left set, completely eliminating resched IPIs when rescheduling
the idle task.
POLLING_NRFLAG width can be increased, to reduce the chance of resched IPIs.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Con Kolivas <kernel@kolivas.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-09 13:39:04 +08:00
|
|
|
while (!need_resched())
|
|
|
|
cpu_relax();
|
2005-04-17 06:20:36 +08:00
|
|
|
} else {
|
|
|
|
local_irq_disable();
|
|
|
|
while (!need_resched()) {
|
|
|
|
local_irq_enable();
|
|
|
|
hlt();
|
|
|
|
local_irq_disable();
|
|
|
|
}
|
|
|
|
local_irq_enable();
|
|
|
|
}
|
2005-11-09 13:39:01 +08:00
|
|
|
preempt_enable_no_resched();
|
2005-04-17 06:20:36 +08:00
|
|
|
schedule();
|
2005-11-09 13:39:01 +08:00
|
|
|
preempt_disable();
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
void machine_restart(char * __unused)
|
|
|
|
{
|
|
|
|
extern void phys_stext(void);
|
|
|
|
|
|
|
|
phys_stext();
|
|
|
|
}
|
|
|
|
|
|
|
|
void machine_halt(void)
|
|
|
|
{
|
|
|
|
for (;;);
|
|
|
|
}
|
|
|
|
|
|
|
|
void machine_power_off(void)
|
|
|
|
{
|
2007-11-20 14:38:50 +08:00
|
|
|
#if 0
|
|
|
|
/* Disable watchdog timer */
|
|
|
|
ctrl_outl(0xa5000000, WTCSR);
|
|
|
|
/* Configure deep standby on sleep */
|
|
|
|
ctrl_outl(0x03, STBCR);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
__asm__ __volatile__ (
|
|
|
|
"sleep\n\t"
|
|
|
|
"synci\n\t"
|
|
|
|
"nop;nop;nop;nop\n\t"
|
|
|
|
);
|
|
|
|
|
|
|
|
panic("Unexpected wakeup!\n");
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2006-09-12 13:40:09 +08:00
|
|
|
void (*pm_power_off)(void) = machine_power_off;
|
|
|
|
EXPORT_SYMBOL(pm_power_off);
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
void show_regs(struct pt_regs * regs)
|
|
|
|
{
|
|
|
|
unsigned long long ah, al, bh, bl, ch, cl;
|
|
|
|
|
|
|
|
printk("\n");
|
|
|
|
|
|
|
|
ah = (regs->pc) >> 32;
|
|
|
|
al = (regs->pc) & 0xffffffff;
|
|
|
|
bh = (regs->regs[18]) >> 32;
|
|
|
|
bl = (regs->regs[18]) & 0xffffffff;
|
|
|
|
ch = (regs->regs[15]) >> 32;
|
|
|
|
cl = (regs->regs[15]) & 0xffffffff;
|
|
|
|
printk("PC : %08Lx%08Lx LINK: %08Lx%08Lx SP : %08Lx%08Lx\n",
|
|
|
|
ah, al, bh, bl, ch, cl);
|
|
|
|
|
|
|
|
ah = (regs->sr) >> 32;
|
|
|
|
al = (regs->sr) & 0xffffffff;
|
|
|
|
asm volatile ("getcon " __TEA ", %0" : "=r" (bh));
|
|
|
|
asm volatile ("getcon " __TEA ", %0" : "=r" (bl));
|
|
|
|
bh = (bh) >> 32;
|
|
|
|
bl = (bl) & 0xffffffff;
|
|
|
|
asm volatile ("getcon " __KCR0 ", %0" : "=r" (ch));
|
|
|
|
asm volatile ("getcon " __KCR0 ", %0" : "=r" (cl));
|
|
|
|
ch = (ch) >> 32;
|
|
|
|
cl = (cl) & 0xffffffff;
|
|
|
|
printk("SR : %08Lx%08Lx TEA : %08Lx%08Lx KCR0: %08Lx%08Lx\n",
|
|
|
|
ah, al, bh, bl, ch, cl);
|
|
|
|
|
|
|
|
ah = (regs->regs[0]) >> 32;
|
|
|
|
al = (regs->regs[0]) & 0xffffffff;
|
|
|
|
bh = (regs->regs[1]) >> 32;
|
|
|
|
bl = (regs->regs[1]) & 0xffffffff;
|
|
|
|
ch = (regs->regs[2]) >> 32;
|
|
|
|
cl = (regs->regs[2]) & 0xffffffff;
|
|
|
|
printk("R0 : %08Lx%08Lx R1 : %08Lx%08Lx R2 : %08Lx%08Lx\n",
|
|
|
|
ah, al, bh, bl, ch, cl);
|
|
|
|
|
|
|
|
ah = (regs->regs[3]) >> 32;
|
|
|
|
al = (regs->regs[3]) & 0xffffffff;
|
|
|
|
bh = (regs->regs[4]) >> 32;
|
|
|
|
bl = (regs->regs[4]) & 0xffffffff;
|
|
|
|
ch = (regs->regs[5]) >> 32;
|
|
|
|
cl = (regs->regs[5]) & 0xffffffff;
|
|
|
|
printk("R3 : %08Lx%08Lx R4 : %08Lx%08Lx R5 : %08Lx%08Lx\n",
|
|
|
|
ah, al, bh, bl, ch, cl);
|
|
|
|
|
|
|
|
ah = (regs->regs[6]) >> 32;
|
|
|
|
al = (regs->regs[6]) & 0xffffffff;
|
|
|
|
bh = (regs->regs[7]) >> 32;
|
|
|
|
bl = (regs->regs[7]) & 0xffffffff;
|
|
|
|
ch = (regs->regs[8]) >> 32;
|
|
|
|
cl = (regs->regs[8]) & 0xffffffff;
|
|
|
|
printk("R6 : %08Lx%08Lx R7 : %08Lx%08Lx R8 : %08Lx%08Lx\n",
|
|
|
|
ah, al, bh, bl, ch, cl);
|
|
|
|
|
|
|
|
ah = (regs->regs[9]) >> 32;
|
|
|
|
al = (regs->regs[9]) & 0xffffffff;
|
|
|
|
bh = (regs->regs[10]) >> 32;
|
|
|
|
bl = (regs->regs[10]) & 0xffffffff;
|
|
|
|
ch = (regs->regs[11]) >> 32;
|
|
|
|
cl = (regs->regs[11]) & 0xffffffff;
|
|
|
|
printk("R9 : %08Lx%08Lx R10 : %08Lx%08Lx R11 : %08Lx%08Lx\n",
|
|
|
|
ah, al, bh, bl, ch, cl);
|
|
|
|
|
|
|
|
ah = (regs->regs[12]) >> 32;
|
|
|
|
al = (regs->regs[12]) & 0xffffffff;
|
|
|
|
bh = (regs->regs[13]) >> 32;
|
|
|
|
bl = (regs->regs[13]) & 0xffffffff;
|
|
|
|
ch = (regs->regs[14]) >> 32;
|
|
|
|
cl = (regs->regs[14]) & 0xffffffff;
|
|
|
|
printk("R12 : %08Lx%08Lx R13 : %08Lx%08Lx R14 : %08Lx%08Lx\n",
|
|
|
|
ah, al, bh, bl, ch, cl);
|
|
|
|
|
|
|
|
ah = (regs->regs[16]) >> 32;
|
|
|
|
al = (regs->regs[16]) & 0xffffffff;
|
|
|
|
bh = (regs->regs[17]) >> 32;
|
|
|
|
bl = (regs->regs[17]) & 0xffffffff;
|
|
|
|
ch = (regs->regs[19]) >> 32;
|
|
|
|
cl = (regs->regs[19]) & 0xffffffff;
|
|
|
|
printk("R16 : %08Lx%08Lx R17 : %08Lx%08Lx R19 : %08Lx%08Lx\n",
|
|
|
|
ah, al, bh, bl, ch, cl);
|
|
|
|
|
|
|
|
ah = (regs->regs[20]) >> 32;
|
|
|
|
al = (regs->regs[20]) & 0xffffffff;
|
|
|
|
bh = (regs->regs[21]) >> 32;
|
|
|
|
bl = (regs->regs[21]) & 0xffffffff;
|
|
|
|
ch = (regs->regs[22]) >> 32;
|
|
|
|
cl = (regs->regs[22]) & 0xffffffff;
|
|
|
|
printk("R20 : %08Lx%08Lx R21 : %08Lx%08Lx R22 : %08Lx%08Lx\n",
|
|
|
|
ah, al, bh, bl, ch, cl);
|
|
|
|
|
|
|
|
ah = (regs->regs[23]) >> 32;
|
|
|
|
al = (regs->regs[23]) & 0xffffffff;
|
|
|
|
bh = (regs->regs[24]) >> 32;
|
|
|
|
bl = (regs->regs[24]) & 0xffffffff;
|
|
|
|
ch = (regs->regs[25]) >> 32;
|
|
|
|
cl = (regs->regs[25]) & 0xffffffff;
|
|
|
|
printk("R23 : %08Lx%08Lx R24 : %08Lx%08Lx R25 : %08Lx%08Lx\n",
|
|
|
|
ah, al, bh, bl, ch, cl);
|
|
|
|
|
|
|
|
ah = (regs->regs[26]) >> 32;
|
|
|
|
al = (regs->regs[26]) & 0xffffffff;
|
|
|
|
bh = (regs->regs[27]) >> 32;
|
|
|
|
bl = (regs->regs[27]) & 0xffffffff;
|
|
|
|
ch = (regs->regs[28]) >> 32;
|
|
|
|
cl = (regs->regs[28]) & 0xffffffff;
|
|
|
|
printk("R26 : %08Lx%08Lx R27 : %08Lx%08Lx R28 : %08Lx%08Lx\n",
|
|
|
|
ah, al, bh, bl, ch, cl);
|
|
|
|
|
|
|
|
ah = (regs->regs[29]) >> 32;
|
|
|
|
al = (regs->regs[29]) & 0xffffffff;
|
|
|
|
bh = (regs->regs[30]) >> 32;
|
|
|
|
bl = (regs->regs[30]) & 0xffffffff;
|
|
|
|
ch = (regs->regs[31]) >> 32;
|
|
|
|
cl = (regs->regs[31]) & 0xffffffff;
|
|
|
|
printk("R29 : %08Lx%08Lx R30 : %08Lx%08Lx R31 : %08Lx%08Lx\n",
|
|
|
|
ah, al, bh, bl, ch, cl);
|
|
|
|
|
|
|
|
ah = (regs->regs[32]) >> 32;
|
|
|
|
al = (regs->regs[32]) & 0xffffffff;
|
|
|
|
bh = (regs->regs[33]) >> 32;
|
|
|
|
bl = (regs->regs[33]) & 0xffffffff;
|
|
|
|
ch = (regs->regs[34]) >> 32;
|
|
|
|
cl = (regs->regs[34]) & 0xffffffff;
|
|
|
|
printk("R32 : %08Lx%08Lx R33 : %08Lx%08Lx R34 : %08Lx%08Lx\n",
|
|
|
|
ah, al, bh, bl, ch, cl);
|
|
|
|
|
|
|
|
ah = (regs->regs[35]) >> 32;
|
|
|
|
al = (regs->regs[35]) & 0xffffffff;
|
|
|
|
bh = (regs->regs[36]) >> 32;
|
|
|
|
bl = (regs->regs[36]) & 0xffffffff;
|
|
|
|
ch = (regs->regs[37]) >> 32;
|
|
|
|
cl = (regs->regs[37]) & 0xffffffff;
|
|
|
|
printk("R35 : %08Lx%08Lx R36 : %08Lx%08Lx R37 : %08Lx%08Lx\n",
|
|
|
|
ah, al, bh, bl, ch, cl);
|
|
|
|
|
|
|
|
ah = (regs->regs[38]) >> 32;
|
|
|
|
al = (regs->regs[38]) & 0xffffffff;
|
|
|
|
bh = (regs->regs[39]) >> 32;
|
|
|
|
bl = (regs->regs[39]) & 0xffffffff;
|
|
|
|
ch = (regs->regs[40]) >> 32;
|
|
|
|
cl = (regs->regs[40]) & 0xffffffff;
|
|
|
|
printk("R38 : %08Lx%08Lx R39 : %08Lx%08Lx R40 : %08Lx%08Lx\n",
|
|
|
|
ah, al, bh, bl, ch, cl);
|
|
|
|
|
|
|
|
ah = (regs->regs[41]) >> 32;
|
|
|
|
al = (regs->regs[41]) & 0xffffffff;
|
|
|
|
bh = (regs->regs[42]) >> 32;
|
|
|
|
bl = (regs->regs[42]) & 0xffffffff;
|
|
|
|
ch = (regs->regs[43]) >> 32;
|
|
|
|
cl = (regs->regs[43]) & 0xffffffff;
|
|
|
|
printk("R41 : %08Lx%08Lx R42 : %08Lx%08Lx R43 : %08Lx%08Lx\n",
|
|
|
|
ah, al, bh, bl, ch, cl);
|
|
|
|
|
|
|
|
ah = (regs->regs[44]) >> 32;
|
|
|
|
al = (regs->regs[44]) & 0xffffffff;
|
|
|
|
bh = (regs->regs[45]) >> 32;
|
|
|
|
bl = (regs->regs[45]) & 0xffffffff;
|
|
|
|
ch = (regs->regs[46]) >> 32;
|
|
|
|
cl = (regs->regs[46]) & 0xffffffff;
|
|
|
|
printk("R44 : %08Lx%08Lx R45 : %08Lx%08Lx R46 : %08Lx%08Lx\n",
|
|
|
|
ah, al, bh, bl, ch, cl);
|
|
|
|
|
|
|
|
ah = (regs->regs[47]) >> 32;
|
|
|
|
al = (regs->regs[47]) & 0xffffffff;
|
|
|
|
bh = (regs->regs[48]) >> 32;
|
|
|
|
bl = (regs->regs[48]) & 0xffffffff;
|
|
|
|
ch = (regs->regs[49]) >> 32;
|
|
|
|
cl = (regs->regs[49]) & 0xffffffff;
|
|
|
|
printk("R47 : %08Lx%08Lx R48 : %08Lx%08Lx R49 : %08Lx%08Lx\n",
|
|
|
|
ah, al, bh, bl, ch, cl);
|
|
|
|
|
|
|
|
ah = (regs->regs[50]) >> 32;
|
|
|
|
al = (regs->regs[50]) & 0xffffffff;
|
|
|
|
bh = (regs->regs[51]) >> 32;
|
|
|
|
bl = (regs->regs[51]) & 0xffffffff;
|
|
|
|
ch = (regs->regs[52]) >> 32;
|
|
|
|
cl = (regs->regs[52]) & 0xffffffff;
|
|
|
|
printk("R50 : %08Lx%08Lx R51 : %08Lx%08Lx R52 : %08Lx%08Lx\n",
|
|
|
|
ah, al, bh, bl, ch, cl);
|
|
|
|
|
|
|
|
ah = (regs->regs[53]) >> 32;
|
|
|
|
al = (regs->regs[53]) & 0xffffffff;
|
|
|
|
bh = (regs->regs[54]) >> 32;
|
|
|
|
bl = (regs->regs[54]) & 0xffffffff;
|
|
|
|
ch = (regs->regs[55]) >> 32;
|
|
|
|
cl = (regs->regs[55]) & 0xffffffff;
|
|
|
|
printk("R53 : %08Lx%08Lx R54 : %08Lx%08Lx R55 : %08Lx%08Lx\n",
|
|
|
|
ah, al, bh, bl, ch, cl);
|
|
|
|
|
|
|
|
ah = (regs->regs[56]) >> 32;
|
|
|
|
al = (regs->regs[56]) & 0xffffffff;
|
|
|
|
bh = (regs->regs[57]) >> 32;
|
|
|
|
bl = (regs->regs[57]) & 0xffffffff;
|
|
|
|
ch = (regs->regs[58]) >> 32;
|
|
|
|
cl = (regs->regs[58]) & 0xffffffff;
|
|
|
|
printk("R56 : %08Lx%08Lx R57 : %08Lx%08Lx R58 : %08Lx%08Lx\n",
|
|
|
|
ah, al, bh, bl, ch, cl);
|
|
|
|
|
|
|
|
ah = (regs->regs[59]) >> 32;
|
|
|
|
al = (regs->regs[59]) & 0xffffffff;
|
|
|
|
bh = (regs->regs[60]) >> 32;
|
|
|
|
bl = (regs->regs[60]) & 0xffffffff;
|
|
|
|
ch = (regs->regs[61]) >> 32;
|
|
|
|
cl = (regs->regs[61]) & 0xffffffff;
|
|
|
|
printk("R59 : %08Lx%08Lx R60 : %08Lx%08Lx R61 : %08Lx%08Lx\n",
|
|
|
|
ah, al, bh, bl, ch, cl);
|
|
|
|
|
|
|
|
ah = (regs->regs[62]) >> 32;
|
|
|
|
al = (regs->regs[62]) & 0xffffffff;
|
|
|
|
bh = (regs->tregs[0]) >> 32;
|
|
|
|
bl = (regs->tregs[0]) & 0xffffffff;
|
|
|
|
ch = (regs->tregs[1]) >> 32;
|
|
|
|
cl = (regs->tregs[1]) & 0xffffffff;
|
|
|
|
printk("R62 : %08Lx%08Lx T0 : %08Lx%08Lx T1 : %08Lx%08Lx\n",
|
|
|
|
ah, al, bh, bl, ch, cl);
|
|
|
|
|
|
|
|
ah = (regs->tregs[2]) >> 32;
|
|
|
|
al = (regs->tregs[2]) & 0xffffffff;
|
|
|
|
bh = (regs->tregs[3]) >> 32;
|
|
|
|
bl = (regs->tregs[3]) & 0xffffffff;
|
|
|
|
ch = (regs->tregs[4]) >> 32;
|
|
|
|
cl = (regs->tregs[4]) & 0xffffffff;
|
|
|
|
printk("T2 : %08Lx%08Lx T3 : %08Lx%08Lx T4 : %08Lx%08Lx\n",
|
|
|
|
ah, al, bh, bl, ch, cl);
|
|
|
|
|
|
|
|
ah = (regs->tregs[5]) >> 32;
|
|
|
|
al = (regs->tregs[5]) & 0xffffffff;
|
|
|
|
bh = (regs->tregs[6]) >> 32;
|
|
|
|
bl = (regs->tregs[6]) & 0xffffffff;
|
|
|
|
ch = (regs->tregs[7]) >> 32;
|
|
|
|
cl = (regs->tregs[7]) & 0xffffffff;
|
|
|
|
printk("T5 : %08Lx%08Lx T6 : %08Lx%08Lx T7 : %08Lx%08Lx\n",
|
|
|
|
ah, al, bh, bl, ch, cl);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we're in kernel mode, dump the stack too..
|
|
|
|
*/
|
|
|
|
if (!user_mode(regs)) {
|
|
|
|
void show_stack(struct task_struct *tsk, unsigned long *sp);
|
|
|
|
unsigned long sp = regs->regs[15] & 0xffffffff;
|
|
|
|
struct task_struct *tsk = get_current();
|
|
|
|
|
|
|
|
tsk->thread.kregs = regs;
|
|
|
|
|
|
|
|
show_stack(tsk, (unsigned long *)sp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
struct task_struct * alloc_task_struct(void)
|
|
|
|
{
|
|
|
|
/* Get task descriptor pages */
|
|
|
|
return (struct task_struct *)
|
|
|
|
__get_free_pages(GFP_KERNEL, get_order(THREAD_SIZE));
|
|
|
|
}
|
|
|
|
|
|
|
|
void free_task_struct(struct task_struct *p)
|
|
|
|
{
|
|
|
|
free_pages((unsigned long) p, get_order(THREAD_SIZE));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Create a kernel thread
|
|
|
|
*/
|
2006-10-02 17:18:41 +08:00
|
|
|
ATTRIB_NORET void kernel_thread_helper(void *arg, int (*fn)(void *))
|
|
|
|
{
|
|
|
|
do_exit(fn(arg));
|
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* This is the mechanism for creating a new kernel thread.
|
|
|
|
*
|
|
|
|
* NOTE! Only a kernel-only process(ie the swapper or direct descendants
|
|
|
|
* who haven't done an "execve()") should use this: it will work within
|
|
|
|
* a system call from a "real" process, but the process memory space will
|
2007-05-14 07:25:48 +08:00
|
|
|
* not be freed until both the parent and the child have exited.
|
2005-04-17 06:20:36 +08:00
|
|
|
*/
|
|
|
|
int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
|
|
|
|
{
|
2006-10-02 17:18:41 +08:00
|
|
|
struct pt_regs regs;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2006-10-02 17:18:41 +08:00
|
|
|
memset(®s, 0, sizeof(regs));
|
|
|
|
regs.regs[2] = (unsigned long)arg;
|
|
|
|
regs.regs[3] = (unsigned long)fn;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2006-10-02 17:18:41 +08:00
|
|
|
regs.pc = (unsigned long)kernel_thread_helper;
|
|
|
|
regs.sr = (1 << 30);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2006-10-02 17:18:41 +08:00
|
|
|
return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0,
|
|
|
|
®s, 0, NULL, NULL);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Free current thread data structures etc..
|
|
|
|
*/
|
|
|
|
void exit_thread(void)
|
|
|
|
{
|
2007-11-28 19:19:38 +08:00
|
|
|
/*
|
|
|
|
* See arch/sparc/kernel/process.c for the precedent for doing
|
|
|
|
* this -- RPC.
|
|
|
|
*
|
|
|
|
* The SH-5 FPU save/restore approach relies on
|
|
|
|
* last_task_used_math pointing to a live task_struct. When
|
|
|
|
* another task tries to use the FPU for the 1st time, the FPUDIS
|
|
|
|
* trap handling (see arch/sh/kernel/cpu/sh5/fpu.c) will save the
|
|
|
|
* existing FPU state to the FP regs field within
|
|
|
|
* last_task_used_math before re-loading the new task's FPU state
|
|
|
|
* (or initialising it if the FPU has been used before). So if
|
|
|
|
* last_task_used_math is stale, and its page has already been
|
|
|
|
* re-allocated for another use, the consequences are rather
|
|
|
|
* grim. Unless we null it here, there is no other path through
|
|
|
|
* which it would get safely nulled.
|
|
|
|
*/
|
2005-04-17 06:20:36 +08:00
|
|
|
#ifdef CONFIG_SH_FPU
|
|
|
|
if (last_task_used_math == current) {
|
|
|
|
last_task_used_math = NULL;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void flush_thread(void)
|
|
|
|
{
|
|
|
|
|
|
|
|
/* Called by fs/exec.c (flush_old_exec) to remove traces of a
|
|
|
|
* previously running executable. */
|
|
|
|
#ifdef CONFIG_SH_FPU
|
|
|
|
if (last_task_used_math == current) {
|
|
|
|
last_task_used_math = NULL;
|
|
|
|
}
|
|
|
|
/* Force FPU state to be reinitialised after exec */
|
|
|
|
clear_used_math();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* if we are a kernel thread, about to change to user thread,
|
|
|
|
* update kreg
|
|
|
|
*/
|
|
|
|
if(current->thread.kregs==&fake_swapper_regs) {
|
|
|
|
current->thread.kregs =
|
|
|
|
((struct pt_regs *)(THREAD_SIZE + (unsigned long) current) - 1);
|
|
|
|
current->thread.uregs = current->thread.kregs;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void release_thread(struct task_struct *dead_task)
|
|
|
|
{
|
|
|
|
/* do nothing */
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Fill in the fpu structure for a core dump.. */
|
|
|
|
int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_SH_FPU
|
|
|
|
int fpvalid;
|
|
|
|
struct task_struct *tsk = current;
|
|
|
|
|
|
|
|
fpvalid = !!tsk_used_math(tsk);
|
|
|
|
if (fpvalid) {
|
|
|
|
if (current == last_task_used_math) {
|
2007-11-19 18:13:38 +08:00
|
|
|
enable_fpu();
|
2007-11-22 16:30:50 +08:00
|
|
|
save_fpu(tsk, regs);
|
2007-11-19 18:13:38 +08:00
|
|
|
disable_fpu();
|
2005-04-17 06:20:36 +08:00
|
|
|
last_task_used_math = 0;
|
|
|
|
regs->sr |= SR_FD;
|
|
|
|
}
|
|
|
|
|
|
|
|
memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu));
|
|
|
|
}
|
|
|
|
|
|
|
|
return fpvalid;
|
|
|
|
#else
|
|
|
|
return 0; /* Task didn't use the fpu at all. */
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
asmlinkage void ret_from_fork(void);
|
|
|
|
|
|
|
|
int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
|
|
|
|
unsigned long unused,
|
|
|
|
struct task_struct *p, struct pt_regs *regs)
|
|
|
|
{
|
|
|
|
struct pt_regs *childregs;
|
|
|
|
unsigned long long se; /* Sign extension */
|
|
|
|
|
|
|
|
#ifdef CONFIG_SH_FPU
|
|
|
|
if(last_task_used_math == current) {
|
2007-11-19 18:13:38 +08:00
|
|
|
enable_fpu();
|
2007-11-22 16:30:50 +08:00
|
|
|
save_fpu(current, regs);
|
2007-11-19 18:13:38 +08:00
|
|
|
disable_fpu();
|
2005-04-17 06:20:36 +08:00
|
|
|
last_task_used_math = NULL;
|
|
|
|
regs->sr |= SR_FD;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
/* Copy from sh version */
|
2006-01-12 17:06:01 +08:00
|
|
|
childregs = (struct pt_regs *)(THREAD_SIZE + task_stack_page(p)) - 1;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
*childregs = *regs;
|
|
|
|
|
|
|
|
if (user_mode(regs)) {
|
|
|
|
childregs->regs[15] = usp;
|
|
|
|
p->thread.uregs = childregs;
|
|
|
|
} else {
|
2006-01-12 17:06:01 +08:00
|
|
|
childregs->regs[15] = (unsigned long)task_stack_page(p) + THREAD_SIZE;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
childregs->regs[9] = 0; /* Set return value for child */
|
|
|
|
childregs->sr |= SR_FD; /* Invalidate FPU flag */
|
|
|
|
|
|
|
|
p->thread.sp = (unsigned long) childregs;
|
|
|
|
p->thread.pc = (unsigned long) ret_from_fork;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Sign extend the edited stack.
|
|
|
|
* Note that thread.pc and thread.pc will stay
|
|
|
|
* 32-bit wide and context switch must take care
|
|
|
|
* of NEFF sign extension.
|
|
|
|
*/
|
|
|
|
|
|
|
|
se = childregs->regs[15];
|
|
|
|
se = (se & NEFF_SIGN) ? (se | NEFF_MASK) : se;
|
|
|
|
childregs->regs[15] = se;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
asmlinkage int sys_fork(unsigned long r2, unsigned long r3,
|
|
|
|
unsigned long r4, unsigned long r5,
|
|
|
|
unsigned long r6, unsigned long r7,
|
|
|
|
struct pt_regs *pregs)
|
|
|
|
{
|
|
|
|
return do_fork(SIGCHLD, pregs->regs[15], pregs, 0, 0, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp,
|
|
|
|
unsigned long r4, unsigned long r5,
|
|
|
|
unsigned long r6, unsigned long r7,
|
|
|
|
struct pt_regs *pregs)
|
|
|
|
{
|
|
|
|
if (!newsp)
|
|
|
|
newsp = pregs->regs[15];
|
|
|
|
return do_fork(clone_flags, newsp, pregs, 0, 0, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is trivial, and on the face of it looks like it
|
|
|
|
* could equally well be done in user mode.
|
|
|
|
*
|
|
|
|
* Not so, for quite unobvious reasons - register pressure.
|
|
|
|
* In user mode vfork() cannot have a stack frame, and if
|
|
|
|
* done by calling the "clone()" system call directly, you
|
|
|
|
* do not have enough call-clobbered registers to hold all
|
|
|
|
* the information you need.
|
|
|
|
*/
|
|
|
|
asmlinkage int sys_vfork(unsigned long r2, unsigned long r3,
|
|
|
|
unsigned long r4, unsigned long r5,
|
|
|
|
unsigned long r6, unsigned long r7,
|
|
|
|
struct pt_regs *pregs)
|
|
|
|
{
|
|
|
|
return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, pregs->regs[15], pregs, 0, 0, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* sys_execve() executes a new program.
|
|
|
|
*/
|
|
|
|
asmlinkage int sys_execve(char *ufilename, char **uargv,
|
|
|
|
char **uenvp, unsigned long r5,
|
|
|
|
unsigned long r6, unsigned long r7,
|
|
|
|
struct pt_regs *pregs)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
char *filename;
|
|
|
|
|
|
|
|
lock_kernel();
|
|
|
|
filename = getname((char __user *)ufilename);
|
|
|
|
error = PTR_ERR(filename);
|
|
|
|
if (IS_ERR(filename))
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
error = do_execve(filename,
|
|
|
|
(char __user * __user *)uargv,
|
|
|
|
(char __user * __user *)uenvp,
|
|
|
|
pregs);
|
|
|
|
if (error == 0) {
|
|
|
|
task_lock(current);
|
|
|
|
current->ptrace &= ~PT_DTRACE;
|
|
|
|
task_unlock(current);
|
|
|
|
}
|
|
|
|
putname(filename);
|
|
|
|
out:
|
|
|
|
unlock_kernel();
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* These bracket the sleeping functions..
|
|
|
|
*/
|
|
|
|
extern void interruptible_sleep_on(wait_queue_head_t *q);
|
|
|
|
|
|
|
|
#define mid_sched ((unsigned long) interruptible_sleep_on)
|
|
|
|
|
2008-02-12 16:02:08 +08:00
|
|
|
#ifdef CONFIG_FRAME_POINTER
|
2005-04-17 06:20:36 +08:00
|
|
|
static int in_sh64_switch_to(unsigned long pc)
|
|
|
|
{
|
|
|
|
extern char __sh64_switch_to_end;
|
|
|
|
/* For a sleeping task, the PC is somewhere in the middle of the function,
|
|
|
|
so we don't have to worry about masking the LSB off */
|
|
|
|
return (pc >= (unsigned long) sh64_switch_to) &&
|
|
|
|
(pc < (unsigned long) &__sh64_switch_to_end);
|
|
|
|
}
|
2008-02-12 16:02:08 +08:00
|
|
|
#endif
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
unsigned long get_wchan(struct task_struct *p)
|
|
|
|
{
|
|
|
|
unsigned long pc;
|
|
|
|
|
|
|
|
if (!p || p == current || p->state == TASK_RUNNING)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The same comment as on the Alpha applies here, too ...
|
|
|
|
*/
|
|
|
|
pc = thread_saved_pc(p);
|
|
|
|
|
|
|
|
#ifdef CONFIG_FRAME_POINTER
|
|
|
|
if (in_sh64_switch_to(pc)) {
|
2008-02-12 16:02:08 +08:00
|
|
|
unsigned long schedule_fp;
|
|
|
|
unsigned long sh64_switch_to_fp;
|
|
|
|
unsigned long schedule_caller_pc;
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
sh64_switch_to_fp = (long) p->thread.sp;
|
|
|
|
/* r14 is saved at offset 4 in the sh64_switch_to frame */
|
|
|
|
schedule_fp = *(unsigned long *) (long)(sh64_switch_to_fp + 4);
|
|
|
|
|
|
|
|
/* and the caller of 'schedule' is (currently!) saved at offset 24
|
|
|
|
in the frame of schedule (from disasm) */
|
|
|
|
schedule_caller_pc = *(unsigned long *) (long)(schedule_fp + 24);
|
|
|
|
return schedule_caller_pc;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
return pc;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Provide a /proc/asids file that lists out the
|
|
|
|
ASIDs currently associated with the processes. (If the DM.PC register is
|
|
|
|
examined through the debug link, this shows ASID + PC. To make use of this,
|
|
|
|
the PID->ASID relationship needs to be known. This is primarily for
|
|
|
|
debugging.)
|
|
|
|
*/
|
|
|
|
|
|
|
|
#if defined(CONFIG_SH64_PROC_ASIDS)
|
|
|
|
static int
|
|
|
|
asids_proc_info(char *buf, char **start, off_t fpos, int length, int *eof, void *data)
|
|
|
|
{
|
|
|
|
int len=0;
|
|
|
|
struct task_struct *p;
|
|
|
|
read_lock(&tasklist_lock);
|
|
|
|
for_each_process(p) {
|
|
|
|
int pid = p->pid;
|
2007-11-21 16:07:46 +08:00
|
|
|
|
|
|
|
if (!pid)
|
|
|
|
continue;
|
|
|
|
if (p->mm)
|
|
|
|
len += sprintf(buf+len, "%5d : %02lx\n", pid,
|
|
|
|
asid_cache(smp_processor_id()));
|
|
|
|
else
|
2005-04-17 06:20:36 +08:00
|
|
|
len += sprintf(buf+len, "%5d : (none)\n", pid);
|
|
|
|
}
|
|
|
|
read_unlock(&tasklist_lock);
|
|
|
|
*eof = 1;
|
|
|
|
return len;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int __init register_proc_asids(void)
|
|
|
|
{
|
2007-11-05 11:18:17 +08:00
|
|
|
create_proc_read_entry("asids", 0, NULL, asids_proc_info, NULL);
|
|
|
|
return 0;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
__initcall(register_proc_asids);
|
|
|
|
#endif
|