forked from luck/tmp_suning_uos_patched
dma-buf: Update cpu access documentation
- Again move the information relevant for driver writers next to the callbacks. - Put the overview and userspace interface documentation into a DOC: section within the code. - Remove the text that mmap needs to be coherent - since the DMA_BUF_IOCTL_SYNC landed that's no longer the case. But keep the text that for pte zapping exporters need to adjust the address space. - Add a FIXME that kmap and the new begin/end stuff used by the SYNC ioctl don't really mix correctly. That's something I just realized while doing this doc rework. - Augment function and structure docs like usual. Cc: linux-doc@vger.kernel.org Cc: Jonathan Corbet <corbet@lwn.net> Cc: Sumit Semwal <sumit.semwal@linaro.org> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Signed-off-by: Sumit Semwal <sumit.semwal@linaro.org> [sumits: fix cosmetic issues] Link: http://patchwork.freedesktop.org/patch/msgid/20161209185309.1682-5-daniel.vetter@ffwll.ch
This commit is contained in:
parent
2904a8c131
commit
0959a1683d
@ -6,205 +6,6 @@
|
||||
<sumit dot semwal at ti dot com>
|
||||
|
||||
|
||||
Kernel cpu access to a dma-buf buffer object
|
||||
--------------------------------------------
|
||||
|
||||
The motivation to allow cpu access from the kernel to a dma-buf object from the
|
||||
importers side are:
|
||||
- fallback operations, e.g. if the devices is connected to a usb bus and the
|
||||
kernel needs to shuffle the data around first before sending it away.
|
||||
- full transparency for existing users on the importer side, i.e. userspace
|
||||
should not notice the difference between a normal object from that subsystem
|
||||
and an imported one backed by a dma-buf. This is really important for drm
|
||||
opengl drivers that expect to still use all the existing upload/download
|
||||
paths.
|
||||
|
||||
Access to a dma_buf from the kernel context involves three steps:
|
||||
|
||||
1. Prepare access, which invalidate any necessary caches and make the object
|
||||
available for cpu access.
|
||||
2. Access the object page-by-page with the dma_buf map apis
|
||||
3. Finish access, which will flush any necessary cpu caches and free reserved
|
||||
resources.
|
||||
|
||||
1. Prepare access
|
||||
|
||||
Before an importer can access a dma_buf object with the cpu from the kernel
|
||||
context, it needs to notify the exporter of the access that is about to
|
||||
happen.
|
||||
|
||||
Interface:
|
||||
int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
|
||||
enum dma_data_direction direction)
|
||||
|
||||
This allows the exporter to ensure that the memory is actually available for
|
||||
cpu access - the exporter might need to allocate or swap-in and pin the
|
||||
backing storage. The exporter also needs to ensure that cpu access is
|
||||
coherent for the access direction. The direction can be used by the exporter
|
||||
to optimize the cache flushing, i.e. access with a different direction (read
|
||||
instead of write) might return stale or even bogus data (e.g. when the
|
||||
exporter needs to copy the data to temporary storage).
|
||||
|
||||
This step might fail, e.g. in oom conditions.
|
||||
|
||||
2. Accessing the buffer
|
||||
|
||||
To support dma_buf objects residing in highmem cpu access is page-based using
|
||||
an api similar to kmap. Accessing a dma_buf is done in aligned chunks of
|
||||
PAGE_SIZE size. Before accessing a chunk it needs to be mapped, which returns
|
||||
a pointer in kernel virtual address space. Afterwards the chunk needs to be
|
||||
unmapped again. There is no limit on how often a given chunk can be mapped
|
||||
and unmapped, i.e. the importer does not need to call begin_cpu_access again
|
||||
before mapping the same chunk again.
|
||||
|
||||
Interfaces:
|
||||
void *dma_buf_kmap(struct dma_buf *, unsigned long);
|
||||
void dma_buf_kunmap(struct dma_buf *, unsigned long, void *);
|
||||
|
||||
There are also atomic variants of these interfaces. Like for kmap they
|
||||
facilitate non-blocking fast-paths. Neither the importer nor the exporter (in
|
||||
the callback) is allowed to block when using these.
|
||||
|
||||
Interfaces:
|
||||
void *dma_buf_kmap_atomic(struct dma_buf *, unsigned long);
|
||||
void dma_buf_kunmap_atomic(struct dma_buf *, unsigned long, void *);
|
||||
|
||||
For importers all the restrictions of using kmap apply, like the limited
|
||||
supply of kmap_atomic slots. Hence an importer shall only hold onto at most 2
|
||||
atomic dma_buf kmaps at the same time (in any given process context).
|
||||
|
||||
dma_buf kmap calls outside of the range specified in begin_cpu_access are
|
||||
undefined. If the range is not PAGE_SIZE aligned, kmap needs to succeed on
|
||||
the partial chunks at the beginning and end but may return stale or bogus
|
||||
data outside of the range (in these partial chunks).
|
||||
|
||||
Note that these calls need to always succeed. The exporter needs to complete
|
||||
any preparations that might fail in begin_cpu_access.
|
||||
|
||||
For some cases the overhead of kmap can be too high, a vmap interface
|
||||
is introduced. This interface should be used very carefully, as vmalloc
|
||||
space is a limited resources on many architectures.
|
||||
|
||||
Interfaces:
|
||||
void *dma_buf_vmap(struct dma_buf *dmabuf)
|
||||
void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
|
||||
|
||||
The vmap call can fail if there is no vmap support in the exporter, or if it
|
||||
runs out of vmalloc space. Fallback to kmap should be implemented. Note that
|
||||
the dma-buf layer keeps a reference count for all vmap access and calls down
|
||||
into the exporter's vmap function only when no vmapping exists, and only
|
||||
unmaps it once. Protection against concurrent vmap/vunmap calls is provided
|
||||
by taking the dma_buf->lock mutex.
|
||||
|
||||
3. Finish access
|
||||
|
||||
When the importer is done accessing the CPU, it needs to announce this to
|
||||
the exporter (to facilitate cache flushing and unpinning of any pinned
|
||||
resources). The result of any dma_buf kmap calls after end_cpu_access is
|
||||
undefined.
|
||||
|
||||
Interface:
|
||||
void dma_buf_end_cpu_access(struct dma_buf *dma_buf,
|
||||
enum dma_data_direction dir);
|
||||
|
||||
|
||||
Direct Userspace Access/mmap Support
|
||||
------------------------------------
|
||||
|
||||
Being able to mmap an export dma-buf buffer object has 2 main use-cases:
|
||||
- CPU fallback processing in a pipeline and
|
||||
- supporting existing mmap interfaces in importers.
|
||||
|
||||
1. CPU fallback processing in a pipeline
|
||||
|
||||
In many processing pipelines it is sometimes required that the cpu can access
|
||||
the data in a dma-buf (e.g. for thumbnail creation, snapshots, ...). To avoid
|
||||
the need to handle this specially in userspace frameworks for buffer sharing
|
||||
it's ideal if the dma_buf fd itself can be used to access the backing storage
|
||||
from userspace using mmap.
|
||||
|
||||
Furthermore Android's ION framework already supports this (and is otherwise
|
||||
rather similar to dma-buf from a userspace consumer side with using fds as
|
||||
handles, too). So it's beneficial to support this in a similar fashion on
|
||||
dma-buf to have a good transition path for existing Android userspace.
|
||||
|
||||
No special interfaces, userspace simply calls mmap on the dma-buf fd, making
|
||||
sure that the cache synchronization ioctl (DMA_BUF_IOCTL_SYNC) is *always*
|
||||
used when the access happens. Note that DMA_BUF_IOCTL_SYNC can fail with
|
||||
-EAGAIN or -EINTR, in which case it must be restarted.
|
||||
|
||||
Some systems might need some sort of cache coherency management e.g. when
|
||||
CPU and GPU domains are being accessed through dma-buf at the same time. To
|
||||
circumvent this problem there are begin/end coherency markers, that forward
|
||||
directly to existing dma-buf device drivers vfunc hooks. Userspace can make
|
||||
use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The sequence
|
||||
would be used like following:
|
||||
- mmap dma-buf fd
|
||||
- for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
|
||||
to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
|
||||
want (with the new data being consumed by the GPU or say scanout device)
|
||||
- munmap once you don't need the buffer any more
|
||||
|
||||
For correctness and optimal performance, it is always required to use
|
||||
SYNC_START and SYNC_END before and after, respectively, when accessing the
|
||||
mapped address. Userspace cannot rely on coherent access, even when there
|
||||
are systems where it just works without calling these ioctls.
|
||||
|
||||
2. Supporting existing mmap interfaces in importers
|
||||
|
||||
Similar to the motivation for kernel cpu access it is again important that
|
||||
the userspace code of a given importing subsystem can use the same interfaces
|
||||
with a imported dma-buf buffer object as with a native buffer object. This is
|
||||
especially important for drm where the userspace part of contemporary OpenGL,
|
||||
X, and other drivers is huge, and reworking them to use a different way to
|
||||
mmap a buffer rather invasive.
|
||||
|
||||
The assumption in the current dma-buf interfaces is that redirecting the
|
||||
initial mmap is all that's needed. A survey of some of the existing
|
||||
subsystems shows that no driver seems to do any nefarious thing like syncing
|
||||
up with outstanding asynchronous processing on the device or allocating
|
||||
special resources at fault time. So hopefully this is good enough, since
|
||||
adding interfaces to intercept pagefaults and allow pte shootdowns would
|
||||
increase the complexity quite a bit.
|
||||
|
||||
Interface:
|
||||
int dma_buf_mmap(struct dma_buf *, struct vm_area_struct *,
|
||||
unsigned long);
|
||||
|
||||
If the importing subsystem simply provides a special-purpose mmap call to set
|
||||
up a mapping in userspace, calling do_mmap with dma_buf->file will equally
|
||||
achieve that for a dma-buf object.
|
||||
|
||||
3. Implementation notes for exporters
|
||||
|
||||
Because dma-buf buffers have invariant size over their lifetime, the dma-buf
|
||||
core checks whether a vma is too large and rejects such mappings. The
|
||||
exporter hence does not need to duplicate this check.
|
||||
|
||||
Because existing importing subsystems might presume coherent mappings for
|
||||
userspace, the exporter needs to set up a coherent mapping. If that's not
|
||||
possible, it needs to fake coherency by manually shooting down ptes when
|
||||
leaving the cpu domain and flushing caches at fault time. Note that all the
|
||||
dma_buf files share the same anon inode, hence the exporter needs to replace
|
||||
the dma_buf file stored in vma->vm_file with it's own if pte shootdown is
|
||||
required. This is because the kernel uses the underlying inode's address_space
|
||||
for vma tracking (and hence pte tracking at shootdown time with
|
||||
unmap_mapping_range).
|
||||
|
||||
If the above shootdown dance turns out to be too expensive in certain
|
||||
scenarios, we can extend dma-buf with a more explicit cache tracking scheme
|
||||
for userspace mappings. But the current assumption is that using mmap is
|
||||
always a slower path, so some inefficiencies should be acceptable.
|
||||
|
||||
Exporters that shoot down mappings (for any reasons) shall not do any
|
||||
synchronization at fault time with outstanding device operations.
|
||||
Synchronization is an orthogonal issue to sharing the backing storage of a
|
||||
buffer and hence should not be handled by dma-buf itself. This is explicitly
|
||||
mentioned here because many people seem to want something like this, but if
|
||||
different exporters handle this differently, buffer sharing can fail in
|
||||
interesting ways depending upong the exporter (if userspace starts depending
|
||||
upon this implicit synchronization).
|
||||
|
||||
Other Interfaces Exposed to Userspace on the dma-buf FD
|
||||
------------------------------------------------------
|
||||
|
||||
@ -240,20 +41,6 @@ Miscellaneous notes
|
||||
the exporting driver to create a dmabuf fd must provide a way to let
|
||||
userspace control setting of O_CLOEXEC flag passed in to dma_buf_fd().
|
||||
|
||||
- If an exporter needs to manually flush caches and hence needs to fake
|
||||
coherency for mmap support, it needs to be able to zap all the ptes pointing
|
||||
at the backing storage. Now linux mm needs a struct address_space associated
|
||||
with the struct file stored in vma->vm_file to do that with the function
|
||||
unmap_mapping_range. But the dma_buf framework only backs every dma_buf fd
|
||||
with the anon_file struct file, i.e. all dma_bufs share the same file.
|
||||
|
||||
Hence exporters need to setup their own file (and address_space) association
|
||||
by setting vma->vm_file and adjusting vma->vm_pgoff in the dma_buf mmap
|
||||
callback. In the specific case of a gem driver the exporter could use the
|
||||
shmem file already provided by gem (and set vm_pgoff = 0). Exporters can then
|
||||
zap ptes by unmapping the corresponding range of the struct address_space
|
||||
associated with their own file.
|
||||
|
||||
References:
|
||||
[1] struct dma_buf_ops in include/linux/dma-buf.h
|
||||
[2] All interfaces mentioned above defined in include/linux/dma-buf.h
|
||||
|
@ -52,6 +52,12 @@ Basic Operation and Device DMA Access
|
||||
.. kernel-doc:: drivers/dma-buf/dma-buf.c
|
||||
:doc: dma buf device access
|
||||
|
||||
CPU Access to DMA Buffer Objects
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. kernel-doc:: drivers/dma-buf/dma-buf.c
|
||||
:doc: cpu access
|
||||
|
||||
Kernel Functions and Structures Reference
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
|
@ -640,6 +640,122 @@ void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
|
||||
|
||||
/**
|
||||
* DOC: cpu access
|
||||
*
|
||||
* There are mutliple reasons for supporting CPU access to a dma buffer object:
|
||||
*
|
||||
* - Fallback operations in the kernel, for example when a device is connected
|
||||
* over USB and the kernel needs to shuffle the data around first before
|
||||
* sending it away. Cache coherency is handled by braketing any transactions
|
||||
* with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
|
||||
* access.
|
||||
*
|
||||
* To support dma_buf objects residing in highmem cpu access is page-based
|
||||
* using an api similar to kmap. Accessing a dma_buf is done in aligned chunks
|
||||
* of PAGE_SIZE size. Before accessing a chunk it needs to be mapped, which
|
||||
* returns a pointer in kernel virtual address space. Afterwards the chunk
|
||||
* needs to be unmapped again. There is no limit on how often a given chunk
|
||||
* can be mapped and unmapped, i.e. the importer does not need to call
|
||||
* begin_cpu_access again before mapping the same chunk again.
|
||||
*
|
||||
* Interfaces::
|
||||
* void \*dma_buf_kmap(struct dma_buf \*, unsigned long);
|
||||
* void dma_buf_kunmap(struct dma_buf \*, unsigned long, void \*);
|
||||
*
|
||||
* There are also atomic variants of these interfaces. Like for kmap they
|
||||
* facilitate non-blocking fast-paths. Neither the importer nor the exporter
|
||||
* (in the callback) is allowed to block when using these.
|
||||
*
|
||||
* Interfaces::
|
||||
* void \*dma_buf_kmap_atomic(struct dma_buf \*, unsigned long);
|
||||
* void dma_buf_kunmap_atomic(struct dma_buf \*, unsigned long, void \*);
|
||||
*
|
||||
* For importers all the restrictions of using kmap apply, like the limited
|
||||
* supply of kmap_atomic slots. Hence an importer shall only hold onto at
|
||||
* max 2 atomic dma_buf kmaps at the same time (in any given process context).
|
||||
*
|
||||
* dma_buf kmap calls outside of the range specified in begin_cpu_access are
|
||||
* undefined. If the range is not PAGE_SIZE aligned, kmap needs to succeed on
|
||||
* the partial chunks at the beginning and end but may return stale or bogus
|
||||
* data outside of the range (in these partial chunks).
|
||||
*
|
||||
* Note that these calls need to always succeed. The exporter needs to
|
||||
* complete any preparations that might fail in begin_cpu_access.
|
||||
*
|
||||
* For some cases the overhead of kmap can be too high, a vmap interface
|
||||
* is introduced. This interface should be used very carefully, as vmalloc
|
||||
* space is a limited resources on many architectures.
|
||||
*
|
||||
* Interfaces::
|
||||
* void \*dma_buf_vmap(struct dma_buf \*dmabuf)
|
||||
* void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
|
||||
*
|
||||
* The vmap call can fail if there is no vmap support in the exporter, or if
|
||||
* it runs out of vmalloc space. Fallback to kmap should be implemented. Note
|
||||
* that the dma-buf layer keeps a reference count for all vmap access and
|
||||
* calls down into the exporter's vmap function only when no vmapping exists,
|
||||
* and only unmaps it once. Protection against concurrent vmap/vunmap calls is
|
||||
* provided by taking the dma_buf->lock mutex.
|
||||
*
|
||||
* - For full compatibility on the importer side with existing userspace
|
||||
* interfaces, which might already support mmap'ing buffers. This is needed in
|
||||
* many processing pipelines (e.g. feeding a software rendered image into a
|
||||
* hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
|
||||
* framework already supported this and for DMA buffer file descriptors to
|
||||
* replace ION buffers mmap support was needed.
|
||||
*
|
||||
* There is no special interfaces, userspace simply calls mmap on the dma-buf
|
||||
* fd. But like for CPU access there's a need to braket the actual access,
|
||||
* which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
|
||||
* DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
|
||||
* be restarted.
|
||||
*
|
||||
* Some systems might need some sort of cache coherency management e.g. when
|
||||
* CPU and GPU domains are being accessed through dma-buf at the same time.
|
||||
* To circumvent this problem there are begin/end coherency markers, that
|
||||
* forward directly to existing dma-buf device drivers vfunc hooks. Userspace
|
||||
* can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
|
||||
* sequence would be used like following:
|
||||
*
|
||||
* - mmap dma-buf fd
|
||||
* - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
|
||||
* to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
|
||||
* want (with the new data being consumed by say the GPU or the scanout
|
||||
* device)
|
||||
* - munmap once you don't need the buffer any more
|
||||
*
|
||||
* For correctness and optimal performance, it is always required to use
|
||||
* SYNC_START and SYNC_END before and after, respectively, when accessing the
|
||||
* mapped address. Userspace cannot rely on coherent access, even when there
|
||||
* are systems where it just works without calling these ioctls.
|
||||
*
|
||||
* - And as a CPU fallback in userspace processing pipelines.
|
||||
*
|
||||
* Similar to the motivation for kernel cpu access it is again important that
|
||||
* the userspace code of a given importing subsystem can use the same
|
||||
* interfaces with a imported dma-buf buffer object as with a native buffer
|
||||
* object. This is especially important for drm where the userspace part of
|
||||
* contemporary OpenGL, X, and other drivers is huge, and reworking them to
|
||||
* use a different way to mmap a buffer rather invasive.
|
||||
*
|
||||
* The assumption in the current dma-buf interfaces is that redirecting the
|
||||
* initial mmap is all that's needed. A survey of some of the existing
|
||||
* subsystems shows that no driver seems to do any nefarious thing like
|
||||
* syncing up with outstanding asynchronous processing on the device or
|
||||
* allocating special resources at fault time. So hopefully this is good
|
||||
* enough, since adding interfaces to intercept pagefaults and allow pte
|
||||
* shootdowns would increase the complexity quite a bit.
|
||||
*
|
||||
* Interface::
|
||||
* int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
|
||||
* unsigned long);
|
||||
*
|
||||
* If the importing subsystem simply provides a special-purpose mmap call to
|
||||
* set up a mapping in userspace, calling do_mmap with dma_buf->file will
|
||||
* equally achieve that for a dma-buf object.
|
||||
*/
|
||||
|
||||
static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
|
||||
enum dma_data_direction direction)
|
||||
{
|
||||
@ -665,6 +781,10 @@ static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
|
||||
* @dmabuf: [in] buffer to prepare cpu access for.
|
||||
* @direction: [in] length of range for cpu access.
|
||||
*
|
||||
* After the cpu access is complete the caller should call
|
||||
* dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
|
||||
* it guaranteed to be coherent with other DMA access.
|
||||
*
|
||||
* Can return negative error values, returns 0 on success.
|
||||
*/
|
||||
int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
|
||||
@ -697,6 +817,8 @@ EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
|
||||
* @dmabuf: [in] buffer to complete cpu access for.
|
||||
* @direction: [in] length of range for cpu access.
|
||||
*
|
||||
* This terminates CPU access started with dma_buf_begin_cpu_access().
|
||||
*
|
||||
* Can return negative error values, returns 0 on success.
|
||||
*/
|
||||
int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
|
||||
|
@ -39,10 +39,6 @@ struct dma_buf_attachment;
|
||||
|
||||
/**
|
||||
* struct dma_buf_ops - operations possible on struct dma_buf
|
||||
* @begin_cpu_access: [optional] called before cpu access to invalidate cpu
|
||||
* caches and allocate backing storage (if not yet done)
|
||||
* respectively pin the object into memory.
|
||||
* @end_cpu_access: [optional] called after cpu access to flush caches.
|
||||
* @kmap_atomic: maps a page from the buffer into kernel address
|
||||
* space, users may not block until the subsequent unmap call.
|
||||
* This callback must not sleep.
|
||||
@ -50,10 +46,6 @@ struct dma_buf_attachment;
|
||||
* This Callback must not sleep.
|
||||
* @kmap: maps a page from the buffer into kernel address space.
|
||||
* @kunmap: [optional] unmaps a page from the buffer.
|
||||
* @mmap: used to expose the backing storage to userspace. Note that the
|
||||
* mapping needs to be coherent - if the exporter doesn't directly
|
||||
* support this, it needs to fake coherency by shooting down any ptes
|
||||
* when transitioning away from the cpu domain.
|
||||
* @vmap: [optional] creates a virtual mapping for the buffer into kernel
|
||||
* address space. Same restrictions as for vmap and friends apply.
|
||||
* @vunmap: [optional] unmaps a vmap from the buffer
|
||||
@ -164,13 +156,96 @@ struct dma_buf_ops {
|
||||
*/
|
||||
void (*release)(struct dma_buf *);
|
||||
|
||||
/**
|
||||
* @begin_cpu_access:
|
||||
*
|
||||
* This is called from dma_buf_begin_cpu_access() and allows the
|
||||
* exporter to ensure that the memory is actually available for cpu
|
||||
* access - the exporter might need to allocate or swap-in and pin the
|
||||
* backing storage. The exporter also needs to ensure that cpu access is
|
||||
* coherent for the access direction. The direction can be used by the
|
||||
* exporter to optimize the cache flushing, i.e. access with a different
|
||||
* direction (read instead of write) might return stale or even bogus
|
||||
* data (e.g. when the exporter needs to copy the data to temporary
|
||||
* storage).
|
||||
*
|
||||
* This callback is optional.
|
||||
*
|
||||
* FIXME: This is both called through the DMA_BUF_IOCTL_SYNC command
|
||||
* from userspace (where storage shouldn't be pinned to avoid handing
|
||||
* de-factor mlock rights to userspace) and for the kernel-internal
|
||||
* users of the various kmap interfaces, where the backing storage must
|
||||
* be pinned to guarantee that the atomic kmap calls can succeed. Since
|
||||
* there's no in-kernel users of the kmap interfaces yet this isn't a
|
||||
* real problem.
|
||||
*
|
||||
* Returns:
|
||||
*
|
||||
* 0 on success or a negative error code on failure. This can for
|
||||
* example fail when the backing storage can't be allocated. Can also
|
||||
* return -ERESTARTSYS or -EINTR when the call has been interrupted and
|
||||
* needs to be restarted.
|
||||
*/
|
||||
int (*begin_cpu_access)(struct dma_buf *, enum dma_data_direction);
|
||||
|
||||
/**
|
||||
* @end_cpu_access:
|
||||
*
|
||||
* This is called from dma_buf_end_cpu_access() when the importer is
|
||||
* done accessing the CPU. The exporter can use this to flush caches and
|
||||
* unpin any resources pinned in @begin_cpu_access.
|
||||
* The result of any dma_buf kmap calls after end_cpu_access is
|
||||
* undefined.
|
||||
*
|
||||
* This callback is optional.
|
||||
*
|
||||
* Returns:
|
||||
*
|
||||
* 0 on success or a negative error code on failure. Can return
|
||||
* -ERESTARTSYS or -EINTR when the call has been interrupted and needs
|
||||
* to be restarted.
|
||||
*/
|
||||
int (*end_cpu_access)(struct dma_buf *, enum dma_data_direction);
|
||||
void *(*kmap_atomic)(struct dma_buf *, unsigned long);
|
||||
void (*kunmap_atomic)(struct dma_buf *, unsigned long, void *);
|
||||
void *(*kmap)(struct dma_buf *, unsigned long);
|
||||
void (*kunmap)(struct dma_buf *, unsigned long, void *);
|
||||
|
||||
/**
|
||||
* @mmap:
|
||||
*
|
||||
* This callback is used by the dma_buf_mmap() function
|
||||
*
|
||||
* Note that the mapping needs to be incoherent, userspace is expected
|
||||
* to braket CPU access using the DMA_BUF_IOCTL_SYNC interface.
|
||||
*
|
||||
* Because dma-buf buffers have invariant size over their lifetime, the
|
||||
* dma-buf core checks whether a vma is too large and rejects such
|
||||
* mappings. The exporter hence does not need to duplicate this check.
|
||||
* Drivers do not need to check this themselves.
|
||||
*
|
||||
* If an exporter needs to manually flush caches and hence needs to fake
|
||||
* coherency for mmap support, it needs to be able to zap all the ptes
|
||||
* pointing at the backing storage. Now linux mm needs a struct
|
||||
* address_space associated with the struct file stored in vma->vm_file
|
||||
* to do that with the function unmap_mapping_range. But the dma_buf
|
||||
* framework only backs every dma_buf fd with the anon_file struct file,
|
||||
* i.e. all dma_bufs share the same file.
|
||||
*
|
||||
* Hence exporters need to setup their own file (and address_space)
|
||||
* association by setting vma->vm_file and adjusting vma->vm_pgoff in
|
||||
* the dma_buf mmap callback. In the specific case of a gem driver the
|
||||
* exporter could use the shmem file already provided by gem (and set
|
||||
* vm_pgoff = 0). Exporters can then zap ptes by unmapping the
|
||||
* corresponding range of the struct address_space associated with their
|
||||
* own file.
|
||||
*
|
||||
* This callback is optional.
|
||||
*
|
||||
* Returns:
|
||||
*
|
||||
* 0 on success or a negative error code on failure.
|
||||
*/
|
||||
int (*mmap)(struct dma_buf *, struct vm_area_struct *vma);
|
||||
|
||||
void *(*vmap)(struct dma_buf *);
|
||||
|
Loading…
Reference in New Issue
Block a user