sh: Tidy up SH-4A unaligned load support.

The current implementation was rather tied to the packed_struct.h
definitions, which immediately began to clash when the packed_struct.h
types changed and drivers began to include packed_struct.h directly.

In order to support this sort of use it's necessary to get out of the way
with regards to namespace collisions, and at the same time we can also
kill off some duplicate code now that the unaligned headers are a bit
more broken out.

Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This commit is contained in:
Paul Mundt 2010-12-24 19:19:23 +09:00
parent 03aa18f550
commit 1dee92bba3

View File

@ -18,10 +18,20 @@
* of spill registers and blowing up when building at low optimization
* levels. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=34777.
*/
#include <linux/unaligned/packed_struct.h>
#include <linux/types.h>
#include <asm/byteorder.h>
static __always_inline u32 __get_unaligned_cpu32(const u8 *p)
static inline u16 sh4a_get_unaligned_cpu16(const u8 *p)
{
#ifdef __LITTLE_ENDIAN
return p[0] | p[1] << 8;
#else
return p[0] << 8 | p[1];
#endif
}
static __always_inline u32 sh4a_get_unaligned_cpu32(const u8 *p)
{
unsigned long unaligned;
@ -34,218 +44,148 @@ static __always_inline u32 __get_unaligned_cpu32(const u8 *p)
return unaligned;
}
struct __una_u16 { u16 x __attribute__((packed)); };
struct __una_u32 { u32 x __attribute__((packed)); };
struct __una_u64 { u64 x __attribute__((packed)); };
static inline u16 __get_unaligned_cpu16(const u8 *p)
{
#ifdef __LITTLE_ENDIAN
return p[0] | p[1] << 8;
#else
return p[0] << 8 | p[1];
#endif
}
/*
* Even though movua.l supports auto-increment on the read side, it can
* only store to r0 due to instruction encoding constraints, so just let
* the compiler sort it out on its own.
*/
static inline u64 __get_unaligned_cpu64(const u8 *p)
static inline u64 sh4a_get_unaligned_cpu64(const u8 *p)
{
#ifdef __LITTLE_ENDIAN
return (u64)__get_unaligned_cpu32(p + 4) << 32 |
__get_unaligned_cpu32(p);
return (u64)sh4a_get_unaligned_cpu32(p + 4) << 32 |
sh4a_get_unaligned_cpu32(p);
#else
return (u64)__get_unaligned_cpu32(p) << 32 |
__get_unaligned_cpu32(p + 4);
return (u64)sh4a_get_unaligned_cpu32(p) << 32 |
sh4a_get_unaligned_cpu32(p + 4);
#endif
}
static inline u16 get_unaligned_le16(const void *p)
{
return le16_to_cpu(__get_unaligned_cpu16(p));
return le16_to_cpu(sh4a_get_unaligned_cpu16(p));
}
static inline u32 get_unaligned_le32(const void *p)
{
return le32_to_cpu(__get_unaligned_cpu32(p));
return le32_to_cpu(sh4a_get_unaligned_cpu32(p));
}
static inline u64 get_unaligned_le64(const void *p)
{
return le64_to_cpu(__get_unaligned_cpu64(p));
return le64_to_cpu(sh4a_get_unaligned_cpu64(p));
}
static inline u16 get_unaligned_be16(const void *p)
{
return be16_to_cpu(__get_unaligned_cpu16(p));
return be16_to_cpu(sh4a_get_unaligned_cpu16(p));
}
static inline u32 get_unaligned_be32(const void *p)
{
return be32_to_cpu(__get_unaligned_cpu32(p));
return be32_to_cpu(sh4a_get_unaligned_cpu32(p));
}
static inline u64 get_unaligned_be64(const void *p)
{
return be64_to_cpu(__get_unaligned_cpu64(p));
return be64_to_cpu(sh4a_get_unaligned_cpu64(p));
}
static inline void __put_le16_noalign(u8 *p, u16 val)
static inline void nonnative_put_le16(u16 val, u8 *p)
{
*p++ = val;
*p++ = val >> 8;
}
static inline void __put_le32_noalign(u8 *p, u32 val)
static inline void nonnative_put_le32(u32 val, u8 *p)
{
__put_le16_noalign(p, val);
__put_le16_noalign(p + 2, val >> 16);
nonnative_put_le16(val, p);
nonnative_put_le16(val >> 16, p + 2);
}
static inline void __put_le64_noalign(u8 *p, u64 val)
static inline void nonnative_put_le64(u64 val, u8 *p)
{
__put_le32_noalign(p, val);
__put_le32_noalign(p + 4, val >> 32);
nonnative_put_le32(val, p);
nonnative_put_le32(val >> 32, p + 4);
}
static inline void __put_be16_noalign(u8 *p, u16 val)
static inline void nonnative_put_be16(u16 val, u8 *p)
{
*p++ = val >> 8;
*p++ = val;
}
static inline void __put_be32_noalign(u8 *p, u32 val)
static inline void nonnative_put_be32(u32 val, u8 *p)
{
__put_be16_noalign(p, val >> 16);
__put_be16_noalign(p + 2, val);
nonnative_put_be16(val >> 16, p);
nonnative_put_be16(val, p + 2);
}
static inline void __put_be64_noalign(u8 *p, u64 val)
static inline void nonnative_put_be64(u64 val, u8 *p)
{
__put_be32_noalign(p, val >> 32);
__put_be32_noalign(p + 4, val);
nonnative_put_be32(val >> 32, p);
nonnative_put_be32(val, p + 4);
}
static inline void put_unaligned_le16(u16 val, void *p)
{
#ifdef __LITTLE_ENDIAN
((struct __una_u16 *)p)->x = val;
__put_unaligned_cpu16(val, p);
#else
__put_le16_noalign(p, val);
nonnative_put_le16(val, p);
#endif
}
static inline void put_unaligned_le32(u32 val, void *p)
{
#ifdef __LITTLE_ENDIAN
((struct __una_u32 *)p)->x = val;
__put_unaligned_cpu32(val, p);
#else
__put_le32_noalign(p, val);
nonnative_put_le32(val, p);
#endif
}
static inline void put_unaligned_le64(u64 val, void *p)
{
#ifdef __LITTLE_ENDIAN
((struct __una_u64 *)p)->x = val;
__put_unaligned_cpu64(val, p);
#else
__put_le64_noalign(p, val);
nonnative_put_le64(val, p);
#endif
}
static inline void put_unaligned_be16(u16 val, void *p)
{
#ifdef __BIG_ENDIAN
((struct __una_u16 *)p)->x = val;
__put_unaligned_cpu16(val, p);
#else
__put_be16_noalign(p, val);
nonnative_put_be16(val, p);
#endif
}
static inline void put_unaligned_be32(u32 val, void *p)
{
#ifdef __BIG_ENDIAN
((struct __una_u32 *)p)->x = val;
__put_unaligned_cpu32(val, p);
#else
__put_be32_noalign(p, val);
nonnative_put_be32(val, p);
#endif
}
static inline void put_unaligned_be64(u64 val, void *p)
{
#ifdef __BIG_ENDIAN
((struct __una_u64 *)p)->x = val;
__put_unaligned_cpu64(val, p);
#else
__put_be64_noalign(p, val);
nonnative_put_be64(val, p);
#endif
}
/*
* Cause a link-time error if we try an unaligned access other than
* 1,2,4 or 8 bytes long
* While it's a bit non-obvious, even though the generic le/be wrappers
* use the __get/put_xxx prefixing, they actually wrap in to the
* non-prefixed get/put_xxx variants as provided above.
*/
extern void __bad_unaligned_access_size(void);
#define __get_unaligned_le(ptr) ((__force typeof(*(ptr)))({ \
__builtin_choose_expr(sizeof(*(ptr)) == 1, *(ptr), \
__builtin_choose_expr(sizeof(*(ptr)) == 2, get_unaligned_le16((ptr)), \
__builtin_choose_expr(sizeof(*(ptr)) == 4, get_unaligned_le32((ptr)), \
__builtin_choose_expr(sizeof(*(ptr)) == 8, get_unaligned_le64((ptr)), \
__bad_unaligned_access_size())))); \
}))
#define __get_unaligned_be(ptr) ((__force typeof(*(ptr)))({ \
__builtin_choose_expr(sizeof(*(ptr)) == 1, *(ptr), \
__builtin_choose_expr(sizeof(*(ptr)) == 2, get_unaligned_be16((ptr)), \
__builtin_choose_expr(sizeof(*(ptr)) == 4, get_unaligned_be32((ptr)), \
__builtin_choose_expr(sizeof(*(ptr)) == 8, get_unaligned_be64((ptr)), \
__bad_unaligned_access_size())))); \
}))
#define __put_unaligned_le(val, ptr) ({ \
void *__gu_p = (ptr); \
switch (sizeof(*(ptr))) { \
case 1: \
*(u8 *)__gu_p = (__force u8)(val); \
break; \
case 2: \
put_unaligned_le16((__force u16)(val), __gu_p); \
break; \
case 4: \
put_unaligned_le32((__force u32)(val), __gu_p); \
break; \
case 8: \
put_unaligned_le64((__force u64)(val), __gu_p); \
break; \
default: \
__bad_unaligned_access_size(); \
break; \
} \
(void)0; })
#define __put_unaligned_be(val, ptr) ({ \
void *__gu_p = (ptr); \
switch (sizeof(*(ptr))) { \
case 1: \
*(u8 *)__gu_p = (__force u8)(val); \
break; \
case 2: \
put_unaligned_be16((__force u16)(val), __gu_p); \
break; \
case 4: \
put_unaligned_be32((__force u32)(val), __gu_p); \
break; \
case 8: \
put_unaligned_be64((__force u64)(val), __gu_p); \
break; \
default: \
__bad_unaligned_access_size(); \
break; \
} \
(void)0; })
#include <linux/unaligned/generic.h>
#ifdef __LITTLE_ENDIAN
# define get_unaligned __get_unaligned_le