From 2247bb335ab9c40058484cac36ea74ee652f3b7b Mon Sep 17 00:00:00 2001 From: Gerald Schaefer Date: Fri, 7 Oct 2016 17:01:07 -0700 Subject: [PATCH] mm/hugetlb: fix memory offline with hugepage size > memory block size Patch series "mm/hugetlb: memory offline issues with hugepages", v4. This addresses several issues with hugepages and memory offline. While the first patch fixes a panic, and is therefore rather important, the last patch is just a performance optimization. The second patch fixes a theoretical issue with reserved hugepages, while still leaving some ugly usability issue, see description. This patch (of 3): dissolve_free_huge_pages() will either run into the VM_BUG_ON() or a list corruption and addressing exception when trying to set a memory block offline that is part (but not the first part) of a "gigantic" hugetlb page with a size > memory block size. When no other smaller hugetlb page sizes are present, the VM_BUG_ON() will trigger directly. In the other case we will run into an addressing exception later, because dissolve_free_huge_page() will not work on the head page of the compound hugetlb page which will result in a NULL hstate from page_hstate(). To fix this, first remove the VM_BUG_ON() because it is wrong, and then use the compound head page in dissolve_free_huge_page(). This means that an unused pre-allocated gigantic page that has any part of itself inside the memory block that is going offline will be dissolved completely. Losing an unused gigantic hugepage is preferable to failing the memory offline, for example in the situation where a (possibly faulty) memory DIMM needs to go offline. Fixes: c8721bbb ("mm: memory-hotplug: enable memory hotplug to handle hugepage") Link: http://lkml.kernel.org/r/20160926172811.94033-2-gerald.schaefer@de.ibm.com Signed-off-by: Gerald Schaefer Acked-by: Michal Hocko Acked-by: Naoya Horiguchi Cc: "Kirill A . Shutemov" Cc: Vlastimil Babka Cc: Mike Kravetz Cc: "Aneesh Kumar K . V" Cc: Martin Schwidefsky Cc: Heiko Carstens Cc: Rui Teng Cc: Dave Hansen Cc: Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds --- mm/hugetlb.c | 13 +++++++------ 1 file changed, 7 insertions(+), 6 deletions(-) diff --git a/mm/hugetlb.c b/mm/hugetlb.c index 87e11d8ad536..603bdd01ec2c 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c @@ -1443,13 +1443,14 @@ static void dissolve_free_huge_page(struct page *page) { spin_lock(&hugetlb_lock); if (PageHuge(page) && !page_count(page)) { - struct hstate *h = page_hstate(page); - int nid = page_to_nid(page); - list_del(&page->lru); + struct page *head = compound_head(page); + struct hstate *h = page_hstate(head); + int nid = page_to_nid(head); + list_del(&head->lru); h->free_huge_pages--; h->free_huge_pages_node[nid]--; h->max_huge_pages--; - update_and_free_page(h, page); + update_and_free_page(h, head); } spin_unlock(&hugetlb_lock); } @@ -1457,7 +1458,8 @@ static void dissolve_free_huge_page(struct page *page) /* * Dissolve free hugepages in a given pfn range. Used by memory hotplug to * make specified memory blocks removable from the system. - * Note that start_pfn should aligned with (minimum) hugepage size. + * Note that this will dissolve a free gigantic hugepage completely, if any + * part of it lies within the given range. */ void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) { @@ -1466,7 +1468,6 @@ void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) if (!hugepages_supported()) return; - VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order)); for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) dissolve_free_huge_page(pfn_to_page(pfn)); }