forked from luck/tmp_suning_uos_patched
Documentation: nvmem: add nvmem api level and how-to doc
This patch add basic how-to and api summary documentation for simple NVMEM framework. Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> Tested-by: Philipp Zabel <p.zabel@pengutronix.de> Tested-by: Rajendra Nayak <rnayak@codeaurora.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:
parent
2af38ab572
commit
354ebb541d
152
Documentation/nvmem/nvmem.txt
Normal file
152
Documentation/nvmem/nvmem.txt
Normal file
|
@ -0,0 +1,152 @@
|
|||
NVMEM SUBSYSTEM
|
||||
Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
|
||||
|
||||
This document explains the NVMEM Framework along with the APIs provided,
|
||||
and how to use it.
|
||||
|
||||
1. Introduction
|
||||
===============
|
||||
*NVMEM* is the abbreviation for Non Volatile Memory layer. It is used to
|
||||
retrieve configuration of SOC or Device specific data from non volatile
|
||||
memories like eeprom, efuses and so on.
|
||||
|
||||
Before this framework existed, NVMEM drivers like eeprom were stored in
|
||||
drivers/misc, where they all had to duplicate pretty much the same code to
|
||||
register a sysfs file, allow in-kernel users to access the content of the
|
||||
devices they were driving, etc.
|
||||
|
||||
This was also a problem as far as other in-kernel users were involved, since
|
||||
the solutions used were pretty much different from one driver to another, there
|
||||
was a rather big abstraction leak.
|
||||
|
||||
This framework aims at solve these problems. It also introduces DT
|
||||
representation for consumer devices to go get the data they require (MAC
|
||||
Addresses, SoC/Revision ID, part numbers, and so on) from the NVMEMs. This
|
||||
framework is based on regmap, so that most of the abstraction available in
|
||||
regmap can be reused, across multiple types of buses.
|
||||
|
||||
NVMEM Providers
|
||||
+++++++++++++++
|
||||
|
||||
NVMEM provider refers to an entity that implements methods to initialize, read
|
||||
and write the non-volatile memory.
|
||||
|
||||
2. Registering/Unregistering the NVMEM provider
|
||||
===============================================
|
||||
|
||||
A NVMEM provider can register with NVMEM core by supplying relevant
|
||||
nvmem configuration to nvmem_register(), on success core would return a valid
|
||||
nvmem_device pointer.
|
||||
|
||||
nvmem_unregister(nvmem) is used to unregister a previously registered provider.
|
||||
|
||||
For example, a simple qfprom case:
|
||||
|
||||
static struct nvmem_config econfig = {
|
||||
.name = "qfprom",
|
||||
.owner = THIS_MODULE,
|
||||
};
|
||||
|
||||
static int qfprom_probe(struct platform_device *pdev)
|
||||
{
|
||||
...
|
||||
econfig.dev = &pdev->dev;
|
||||
nvmem = nvmem_register(&econfig);
|
||||
...
|
||||
}
|
||||
|
||||
It is mandatory that the NVMEM provider has a regmap associated with its
|
||||
struct device. Failure to do would return error code from nvmem_register().
|
||||
|
||||
NVMEM Consumers
|
||||
+++++++++++++++
|
||||
|
||||
NVMEM consumers are the entities which make use of the NVMEM provider to
|
||||
read from and to NVMEM.
|
||||
|
||||
3. NVMEM cell based consumer APIs
|
||||
=================================
|
||||
|
||||
NVMEM cells are the data entries/fields in the NVMEM.
|
||||
The NVMEM framework provides 3 APIs to read/write NVMEM cells.
|
||||
|
||||
struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *name);
|
||||
struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *name);
|
||||
|
||||
void nvmem_cell_put(struct nvmem_cell *cell);
|
||||
void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell);
|
||||
|
||||
void *nvmem_cell_read(struct nvmem_cell *cell, ssize_t *len);
|
||||
int nvmem_cell_write(struct nvmem_cell *cell, void *buf, ssize_t len);
|
||||
|
||||
*nvmem_cell_get() apis will get a reference to nvmem cell for a given id,
|
||||
and nvmem_cell_read/write() can then read or write to the cell.
|
||||
Once the usage of the cell is finished the consumer should call *nvmem_cell_put()
|
||||
to free all the allocation memory for the cell.
|
||||
|
||||
4. Direct NVMEM device based consumer APIs
|
||||
==========================================
|
||||
|
||||
In some instances it is necessary to directly read/write the NVMEM.
|
||||
To facilitate such consumers NVMEM framework provides below apis.
|
||||
|
||||
struct nvmem_device *nvmem_device_get(struct device *dev, const char *name);
|
||||
struct nvmem_device *devm_nvmem_device_get(struct device *dev,
|
||||
const char *name);
|
||||
void nvmem_device_put(struct nvmem_device *nvmem);
|
||||
int nvmem_device_read(struct nvmem_device *nvmem, unsigned int offset,
|
||||
size_t bytes, void *buf);
|
||||
int nvmem_device_write(struct nvmem_device *nvmem, unsigned int offset,
|
||||
size_t bytes, void *buf);
|
||||
int nvmem_device_cell_read(struct nvmem_device *nvmem,
|
||||
struct nvmem_cell_info *info, void *buf);
|
||||
int nvmem_device_cell_write(struct nvmem_device *nvmem,
|
||||
struct nvmem_cell_info *info, void *buf);
|
||||
|
||||
Before the consumers can read/write NVMEM directly, it should get hold
|
||||
of nvmem_controller from one of the *nvmem_device_get() api.
|
||||
|
||||
The difference between these apis and cell based apis is that these apis always
|
||||
take nvmem_device as parameter.
|
||||
|
||||
5. Releasing a reference to the NVMEM
|
||||
=====================================
|
||||
|
||||
When a consumers no longer needs the NVMEM, it has to release the reference
|
||||
to the NVMEM it has obtained using the APIs mentioned in the above section.
|
||||
The NVMEM framework provides 2 APIs to release a reference to the NVMEM.
|
||||
|
||||
void nvmem_cell_put(struct nvmem_cell *cell);
|
||||
void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell);
|
||||
void nvmem_device_put(struct nvmem_device *nvmem);
|
||||
void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem);
|
||||
|
||||
Both these APIs are used to release a reference to the NVMEM and
|
||||
devm_nvmem_cell_put and devm_nvmem_device_put destroys the devres associated
|
||||
with this NVMEM.
|
||||
|
||||
Userspace
|
||||
+++++++++
|
||||
|
||||
6. Userspace binary interface
|
||||
==============================
|
||||
|
||||
Userspace can read/write the raw NVMEM file located at
|
||||
/sys/bus/nvmem/devices/*/nvmem
|
||||
|
||||
ex:
|
||||
|
||||
hexdump /sys/bus/nvmem/devices/qfprom0/nvmem
|
||||
|
||||
0000000 0000 0000 0000 0000 0000 0000 0000 0000
|
||||
*
|
||||
00000a0 db10 2240 0000 e000 0c00 0c00 0000 0c00
|
||||
0000000 0000 0000 0000 0000 0000 0000 0000 0000
|
||||
...
|
||||
*
|
||||
0001000
|
||||
|
||||
7. DeviceTree Binding
|
||||
=====================
|
||||
|
||||
See Documentation/devicetree/bindings/nvmem/nvmem.txt
|
Loading…
Reference in New Issue
Block a user