forked from luck/tmp_suning_uos_patched
ASoC: optimize init sequence of Freescale MPC8610 sound drivers
In the Freescale MPC8610 sound drivers, relocate all code from the _prepare functions into the corresponding _hw_params functions. These drivers assumed that the sample size is known in the _prepare function and not in the _hw_params function, but this is not true. Move the code in fsl_dma_prepare() into fsl_dma_hw_param(). Create fsl_ssi_hw_params() and move the code from fsl_ssi_prepare() into it. Turn off snooping for DMA operations to/from I/O registers, since that's not necessary. Signed-off-by: Timur Tabi <timur@freescale.com> Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
This commit is contained in:
parent
8836c273e4
commit
85ef2375ef
|
@ -464,11 +464,7 @@ static int fsl_dma_open(struct snd_pcm_substream *substream)
|
|||
sizeof(struct fsl_dma_link_descriptor);
|
||||
|
||||
for (i = 0; i < NUM_DMA_LINKS; i++) {
|
||||
struct fsl_dma_link_descriptor *link = &dma_private->link[i];
|
||||
|
||||
link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
|
||||
link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
|
||||
link->next = cpu_to_be64(temp_link);
|
||||
dma_private->link[i].next = cpu_to_be64(temp_link);
|
||||
|
||||
temp_link += sizeof(struct fsl_dma_link_descriptor);
|
||||
}
|
||||
|
@ -525,79 +521,9 @@ static int fsl_dma_open(struct snd_pcm_substream *substream)
|
|||
* This function obtains hardware parameters about the opened stream and
|
||||
* programs the DMA controller accordingly.
|
||||
*
|
||||
* Note that due to a quirk of the SSI's STX register, the target address
|
||||
* for the DMA operations depends on the sample size. So we don't program
|
||||
* the dest_addr (for playback -- source_addr for capture) fields in the
|
||||
* link descriptors here. We do that in fsl_dma_prepare()
|
||||
*/
|
||||
static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
|
||||
struct snd_pcm_hw_params *hw_params)
|
||||
{
|
||||
struct snd_pcm_runtime *runtime = substream->runtime;
|
||||
struct fsl_dma_private *dma_private = runtime->private_data;
|
||||
|
||||
dma_addr_t temp_addr; /* Pointer to next period */
|
||||
|
||||
unsigned int i;
|
||||
|
||||
/* Get all the parameters we need */
|
||||
size_t buffer_size = params_buffer_bytes(hw_params);
|
||||
size_t period_size = params_period_bytes(hw_params);
|
||||
|
||||
/* Initialize our DMA tracking variables */
|
||||
dma_private->period_size = period_size;
|
||||
dma_private->num_periods = params_periods(hw_params);
|
||||
dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
|
||||
dma_private->dma_buf_next = dma_private->dma_buf_phys +
|
||||
(NUM_DMA_LINKS * period_size);
|
||||
if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
|
||||
dma_private->dma_buf_next = dma_private->dma_buf_phys;
|
||||
|
||||
/*
|
||||
* The actual address in STX0 (destination for playback, source for
|
||||
* capture) is based on the sample size, but we don't know the sample
|
||||
* size in this function, so we'll have to adjust that later. See
|
||||
* comments in fsl_dma_prepare().
|
||||
*
|
||||
* The DMA controller does not have a cache, so the CPU does not
|
||||
* need to tell it to flush its cache. However, the DMA
|
||||
* controller does need to tell the CPU to flush its cache.
|
||||
* That's what the SNOOP bit does.
|
||||
*
|
||||
* Also, even though the DMA controller supports 36-bit addressing, for
|
||||
* simplicity we currently support only 32-bit addresses for the audio
|
||||
* buffer itself.
|
||||
*/
|
||||
temp_addr = substream->dma_buffer.addr;
|
||||
|
||||
for (i = 0; i < NUM_DMA_LINKS; i++) {
|
||||
struct fsl_dma_link_descriptor *link = &dma_private->link[i];
|
||||
|
||||
link->count = cpu_to_be32(period_size);
|
||||
|
||||
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
||||
link->source_addr = cpu_to_be32(temp_addr);
|
||||
else
|
||||
link->dest_addr = cpu_to_be32(temp_addr);
|
||||
|
||||
temp_addr += period_size;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* fsl_dma_prepare - prepare the DMA registers for playback.
|
||||
*
|
||||
* This function is called after the specifics of the audio data are known,
|
||||
* i.e. snd_pcm_runtime is initialized.
|
||||
*
|
||||
* In this function, we finish programming the registers of the DMA
|
||||
* controller that are dependent on the sample size.
|
||||
*
|
||||
* One of the drawbacks with big-endian is that when copying integers of
|
||||
* different sizes to a fixed-sized register, the address to which the
|
||||
* integer must be copied is dependent on the size of the integer.
|
||||
* One drawback of big-endian is that when copying integers of different
|
||||
* sizes to a fixed-sized register, the address to which the integer must be
|
||||
* copied is dependent on the size of the integer.
|
||||
*
|
||||
* For example, if P is the address of a 32-bit register, and X is a 32-bit
|
||||
* integer, then X should be copied to address P. However, if X is a 16-bit
|
||||
|
@ -613,22 +539,58 @@ static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
|
|||
* and 8 bytes at a time). So we do not support packed 24-bit samples.
|
||||
* 24-bit data must be padded to 32 bits.
|
||||
*/
|
||||
static int fsl_dma_prepare(struct snd_pcm_substream *substream)
|
||||
static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
|
||||
struct snd_pcm_hw_params *hw_params)
|
||||
{
|
||||
struct snd_pcm_runtime *runtime = substream->runtime;
|
||||
struct fsl_dma_private *dma_private = runtime->private_data;
|
||||
struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
|
||||
u32 mr;
|
||||
unsigned int i;
|
||||
dma_addr_t ssi_sxx_phys; /* Bus address of SSI STX register */
|
||||
unsigned int frame_size; /* Number of bytes per frame */
|
||||
|
||||
ssi_sxx_phys = dma_private->ssi_sxx_phys;
|
||||
/* Number of bits per sample */
|
||||
unsigned int sample_size =
|
||||
snd_pcm_format_physical_width(params_format(hw_params));
|
||||
|
||||
/* Number of bytes per frame */
|
||||
unsigned int frame_size = 2 * (sample_size / 8);
|
||||
|
||||
/* Bus address of SSI STX register */
|
||||
dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
|
||||
|
||||
/* Size of the DMA buffer, in bytes */
|
||||
size_t buffer_size = params_buffer_bytes(hw_params);
|
||||
|
||||
/* Number of bytes per period */
|
||||
size_t period_size = params_period_bytes(hw_params);
|
||||
|
||||
/* Pointer to next period */
|
||||
dma_addr_t temp_addr = substream->dma_buffer.addr;
|
||||
|
||||
/* Pointer to DMA controller */
|
||||
struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
|
||||
|
||||
u32 mr; /* DMA Mode Register */
|
||||
|
||||
unsigned int i;
|
||||
|
||||
/* Initialize our DMA tracking variables */
|
||||
dma_private->period_size = period_size;
|
||||
dma_private->num_periods = params_periods(hw_params);
|
||||
dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
|
||||
dma_private->dma_buf_next = dma_private->dma_buf_phys +
|
||||
(NUM_DMA_LINKS * period_size);
|
||||
|
||||
if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
|
||||
/* This happens if the number of periods == NUM_DMA_LINKS */
|
||||
dma_private->dma_buf_next = dma_private->dma_buf_phys;
|
||||
|
||||
mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
|
||||
CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
|
||||
|
||||
switch (runtime->sample_bits) {
|
||||
/* Due to a quirk of the SSI's STX register, the target address
|
||||
* for the DMA operations depends on the sample size. So we calculate
|
||||
* that offset here. While we're at it, also tell the DMA controller
|
||||
* how much data to transfer per sample.
|
||||
*/
|
||||
switch (sample_size) {
|
||||
case 8:
|
||||
mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
|
||||
ssi_sxx_phys += 3;
|
||||
|
@ -641,12 +603,12 @@ static int fsl_dma_prepare(struct snd_pcm_substream *substream)
|
|||
mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
|
||||
break;
|
||||
default:
|
||||
/* We should never get here */
|
||||
dev_err(substream->pcm->card->dev,
|
||||
"unsupported sample size %u\n", runtime->sample_bits);
|
||||
"unsupported sample size %u\n", sample_size);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
frame_size = runtime->frame_bits / 8;
|
||||
/*
|
||||
* BWC should always be a multiple of the frame size. BWC determines
|
||||
* how many bytes are sent/received before the DMA controller checks the
|
||||
|
@ -655,7 +617,6 @@ static int fsl_dma_prepare(struct snd_pcm_substream *substream)
|
|||
* capture, the receive FIFO is triggered when it contains one frame, so
|
||||
* we want to receive one frame at a time.
|
||||
*/
|
||||
|
||||
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
||||
mr |= CCSR_DMA_MR_BWC(2 * frame_size);
|
||||
else
|
||||
|
@ -663,16 +624,48 @@ static int fsl_dma_prepare(struct snd_pcm_substream *substream)
|
|||
|
||||
out_be32(&dma_channel->mr, mr);
|
||||
|
||||
/*
|
||||
* Program the address of the DMA transfer to/from the SSI.
|
||||
*/
|
||||
for (i = 0; i < NUM_DMA_LINKS; i++) {
|
||||
struct fsl_dma_link_descriptor *link = &dma_private->link[i];
|
||||
|
||||
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
||||
link->count = cpu_to_be32(period_size);
|
||||
|
||||
/* Even though the DMA controller supports 36-bit addressing,
|
||||
* for simplicity we allow only 32-bit addresses for the audio
|
||||
* buffer itself. This was enforced in fsl_dma_new() with the
|
||||
* DMA mask.
|
||||
*
|
||||
* The snoop bit tells the DMA controller whether it should tell
|
||||
* the ECM to snoop during a read or write to an address. For
|
||||
* audio, we use DMA to transfer data between memory and an I/O
|
||||
* device (the SSI's STX0 or SRX0 register). Snooping is only
|
||||
* needed if there is a cache, so we need to snoop memory
|
||||
* addresses only. For playback, that means we snoop the source
|
||||
* but not the destination. For capture, we snoop the
|
||||
* destination but not the source.
|
||||
*
|
||||
* Note that failing to snoop properly is unlikely to cause
|
||||
* cache incoherency if the period size is larger than the
|
||||
* size of L1 cache. This is because filling in one period will
|
||||
* flush out the data for the previous period. So if you
|
||||
* increased period_bytes_min to a large enough size, you might
|
||||
* get more performance by not snooping, and you'll still be
|
||||
* okay.
|
||||
*/
|
||||
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
|
||||
link->source_addr = cpu_to_be32(temp_addr);
|
||||
link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
|
||||
|
||||
link->dest_addr = cpu_to_be32(ssi_sxx_phys);
|
||||
else
|
||||
link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP);
|
||||
} else {
|
||||
link->source_addr = cpu_to_be32(ssi_sxx_phys);
|
||||
link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP);
|
||||
|
||||
link->dest_addr = cpu_to_be32(temp_addr);
|
||||
link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
|
||||
}
|
||||
|
||||
temp_addr += period_size;
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
@ -808,7 +801,6 @@ static struct snd_pcm_ops fsl_dma_ops = {
|
|||
.ioctl = snd_pcm_lib_ioctl,
|
||||
.hw_params = fsl_dma_hw_params,
|
||||
.hw_free = fsl_dma_hw_free,
|
||||
.prepare = fsl_dma_prepare,
|
||||
.pointer = fsl_dma_pointer,
|
||||
};
|
||||
|
||||
|
|
|
@ -400,7 +400,7 @@ static int fsl_ssi_startup(struct snd_pcm_substream *substream,
|
|||
}
|
||||
|
||||
/**
|
||||
* fsl_ssi_prepare: prepare the SSI.
|
||||
* fsl_ssi_hw_params - program the sample size
|
||||
*
|
||||
* Most of the SSI registers have been programmed in the startup function,
|
||||
* but the word length must be programmed here. Unfortunately, programming
|
||||
|
@ -412,20 +412,19 @@ static int fsl_ssi_startup(struct snd_pcm_substream *substream,
|
|||
* Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
|
||||
* clock master.
|
||||
*/
|
||||
static int fsl_ssi_prepare(struct snd_pcm_substream *substream,
|
||||
struct snd_soc_dai *dai)
|
||||
static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
|
||||
struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
|
||||
{
|
||||
struct snd_pcm_runtime *runtime = substream->runtime;
|
||||
struct snd_soc_pcm_runtime *rtd = substream->private_data;
|
||||
struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
|
||||
|
||||
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
|
||||
struct fsl_ssi_private *ssi_private = cpu_dai->private_data;
|
||||
|
||||
if (substream == ssi_private->first_stream) {
|
||||
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
|
||||
unsigned int sample_size =
|
||||
snd_pcm_format_width(params_format(hw_params));
|
||||
u32 wl;
|
||||
|
||||
/* The SSI should always be disabled at this points (SSIEN=0) */
|
||||
wl = CCSR_SSI_SxCCR_WL(snd_pcm_format_width(runtime->format));
|
||||
wl = CCSR_SSI_SxCCR_WL(sample_size);
|
||||
|
||||
/* In synchronous mode, the SSI uses STCCR for capture */
|
||||
clrsetbits_be32(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
|
||||
|
@ -579,7 +578,7 @@ static struct snd_soc_dai fsl_ssi_dai_template = {
|
|||
},
|
||||
.ops = {
|
||||
.startup = fsl_ssi_startup,
|
||||
.prepare = fsl_ssi_prepare,
|
||||
.hw_params = fsl_ssi_hw_params,
|
||||
.shutdown = fsl_ssi_shutdown,
|
||||
.trigger = fsl_ssi_trigger,
|
||||
.set_sysclk = fsl_ssi_set_sysclk,
|
||||
|
|
Loading…
Reference in New Issue
Block a user