forked from luck/tmp_suning_uos_patched
[POWERPC] Prepare for splitting up mmu.h by MMU type
Currently asm-powerpc/mmu.h has definitions for the 64-bit hash based MMU. If CONFIG_PPC64 is not set, it instead includes asm-ppc/mmu.h which contains a particularly horrible mess of #ifdefs giving the definitions for all the various 32-bit MMUs. It would be nice to have the low level definitions for each MMU type neatly in their own separate files. It would also be good to wean arch/powerpc off dependence on the old asm-ppc/mmu.h. This patch makes a start on such a cleanup by moving the definitions for the 64-bit hash MMU to their own file, asm-powerpc/mmu_hash64.h. Definitions for the other MMUs still all come from asm-ppc/mmu.h, however each MMU type can now be one-by-one moved over to their own file, in the process cleaning them up stripping them of cruft no longer necessary in arch/powerpc. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Paul Mackerras <paulus@samba.org>
This commit is contained in:
parent
173ba87b95
commit
8d2169e8d6
include/asm-powerpc
400
include/asm-powerpc/mmu-hash64.h
Normal file
400
include/asm-powerpc/mmu-hash64.h
Normal file
@ -0,0 +1,400 @@
|
||||
#ifndef _ASM_POWERPC_MMU_HASH64_H_
|
||||
#define _ASM_POWERPC_MMU_HASH64_H_
|
||||
/*
|
||||
* PowerPC64 memory management structures
|
||||
*
|
||||
* Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
|
||||
* PPC64 rework.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License
|
||||
* as published by the Free Software Foundation; either version
|
||||
* 2 of the License, or (at your option) any later version.
|
||||
*/
|
||||
|
||||
#include <asm/asm-compat.h>
|
||||
#include <asm/page.h>
|
||||
|
||||
/*
|
||||
* Segment table
|
||||
*/
|
||||
|
||||
#define STE_ESID_V 0x80
|
||||
#define STE_ESID_KS 0x20
|
||||
#define STE_ESID_KP 0x10
|
||||
#define STE_ESID_N 0x08
|
||||
|
||||
#define STE_VSID_SHIFT 12
|
||||
|
||||
/* Location of cpu0's segment table */
|
||||
#define STAB0_PAGE 0x6
|
||||
#define STAB0_OFFSET (STAB0_PAGE << 12)
|
||||
#define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
|
||||
|
||||
#ifndef __ASSEMBLY__
|
||||
extern char initial_stab[];
|
||||
#endif /* ! __ASSEMBLY */
|
||||
|
||||
/*
|
||||
* SLB
|
||||
*/
|
||||
|
||||
#define SLB_NUM_BOLTED 3
|
||||
#define SLB_CACHE_ENTRIES 8
|
||||
|
||||
/* Bits in the SLB ESID word */
|
||||
#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
|
||||
|
||||
/* Bits in the SLB VSID word */
|
||||
#define SLB_VSID_SHIFT 12
|
||||
#define SLB_VSID_B ASM_CONST(0xc000000000000000)
|
||||
#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
|
||||
#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
|
||||
#define SLB_VSID_KS ASM_CONST(0x0000000000000800)
|
||||
#define SLB_VSID_KP ASM_CONST(0x0000000000000400)
|
||||
#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
|
||||
#define SLB_VSID_L ASM_CONST(0x0000000000000100)
|
||||
#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
|
||||
#define SLB_VSID_LP ASM_CONST(0x0000000000000030)
|
||||
#define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
|
||||
#define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
|
||||
#define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
|
||||
#define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
|
||||
#define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
|
||||
|
||||
#define SLB_VSID_KERNEL (SLB_VSID_KP)
|
||||
#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
|
||||
|
||||
#define SLBIE_C (0x08000000)
|
||||
|
||||
/*
|
||||
* Hash table
|
||||
*/
|
||||
|
||||
#define HPTES_PER_GROUP 8
|
||||
|
||||
#define HPTE_V_AVPN_SHIFT 7
|
||||
#define HPTE_V_AVPN ASM_CONST(0xffffffffffffff80)
|
||||
#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
|
||||
#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & HPTE_V_AVPN))
|
||||
#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
|
||||
#define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
|
||||
#define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
|
||||
#define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
|
||||
#define HPTE_V_VALID ASM_CONST(0x0000000000000001)
|
||||
|
||||
#define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
|
||||
#define HPTE_R_TS ASM_CONST(0x4000000000000000)
|
||||
#define HPTE_R_RPN_SHIFT 12
|
||||
#define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000)
|
||||
#define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff)
|
||||
#define HPTE_R_PP ASM_CONST(0x0000000000000003)
|
||||
#define HPTE_R_N ASM_CONST(0x0000000000000004)
|
||||
#define HPTE_R_C ASM_CONST(0x0000000000000080)
|
||||
#define HPTE_R_R ASM_CONST(0x0000000000000100)
|
||||
|
||||
/* Values for PP (assumes Ks=0, Kp=1) */
|
||||
/* pp0 will always be 0 for linux */
|
||||
#define PP_RWXX 0 /* Supervisor read/write, User none */
|
||||
#define PP_RWRX 1 /* Supervisor read/write, User read */
|
||||
#define PP_RWRW 2 /* Supervisor read/write, User read/write */
|
||||
#define PP_RXRX 3 /* Supervisor read, User read */
|
||||
|
||||
#ifndef __ASSEMBLY__
|
||||
|
||||
typedef struct {
|
||||
unsigned long v;
|
||||
unsigned long r;
|
||||
} hpte_t;
|
||||
|
||||
extern hpte_t *htab_address;
|
||||
extern unsigned long htab_size_bytes;
|
||||
extern unsigned long htab_hash_mask;
|
||||
|
||||
/*
|
||||
* Page size definition
|
||||
*
|
||||
* shift : is the "PAGE_SHIFT" value for that page size
|
||||
* sllp : is a bit mask with the value of SLB L || LP to be or'ed
|
||||
* directly to a slbmte "vsid" value
|
||||
* penc : is the HPTE encoding mask for the "LP" field:
|
||||
*
|
||||
*/
|
||||
struct mmu_psize_def
|
||||
{
|
||||
unsigned int shift; /* number of bits */
|
||||
unsigned int penc; /* HPTE encoding */
|
||||
unsigned int tlbiel; /* tlbiel supported for that page size */
|
||||
unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
|
||||
unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
|
||||
};
|
||||
|
||||
#endif /* __ASSEMBLY__ */
|
||||
|
||||
/*
|
||||
* The kernel use the constants below to index in the page sizes array.
|
||||
* The use of fixed constants for this purpose is better for performances
|
||||
* of the low level hash refill handlers.
|
||||
*
|
||||
* A non supported page size has a "shift" field set to 0
|
||||
*
|
||||
* Any new page size being implemented can get a new entry in here. Whether
|
||||
* the kernel will use it or not is a different matter though. The actual page
|
||||
* size used by hugetlbfs is not defined here and may be made variable
|
||||
*/
|
||||
|
||||
#define MMU_PAGE_4K 0 /* 4K */
|
||||
#define MMU_PAGE_64K 1 /* 64K */
|
||||
#define MMU_PAGE_64K_AP 2 /* 64K Admixed (in a 4K segment) */
|
||||
#define MMU_PAGE_1M 3 /* 1M */
|
||||
#define MMU_PAGE_16M 4 /* 16M */
|
||||
#define MMU_PAGE_16G 5 /* 16G */
|
||||
#define MMU_PAGE_COUNT 6
|
||||
|
||||
#ifndef __ASSEMBLY__
|
||||
|
||||
/*
|
||||
* The current system page sizes
|
||||
*/
|
||||
extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
|
||||
extern int mmu_linear_psize;
|
||||
extern int mmu_virtual_psize;
|
||||
extern int mmu_vmalloc_psize;
|
||||
extern int mmu_io_psize;
|
||||
|
||||
/*
|
||||
* If the processor supports 64k normal pages but not 64k cache
|
||||
* inhibited pages, we have to be prepared to switch processes
|
||||
* to use 4k pages when they create cache-inhibited mappings.
|
||||
* If this is the case, mmu_ci_restrictions will be set to 1.
|
||||
*/
|
||||
extern int mmu_ci_restrictions;
|
||||
|
||||
#ifdef CONFIG_HUGETLB_PAGE
|
||||
/*
|
||||
* The page size index of the huge pages for use by hugetlbfs
|
||||
*/
|
||||
extern int mmu_huge_psize;
|
||||
|
||||
#endif /* CONFIG_HUGETLB_PAGE */
|
||||
|
||||
/*
|
||||
* This function sets the AVPN and L fields of the HPTE appropriately
|
||||
* for the page size
|
||||
*/
|
||||
static inline unsigned long hpte_encode_v(unsigned long va, int psize)
|
||||
{
|
||||
unsigned long v =
|
||||
v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm);
|
||||
v <<= HPTE_V_AVPN_SHIFT;
|
||||
if (psize != MMU_PAGE_4K)
|
||||
v |= HPTE_V_LARGE;
|
||||
return v;
|
||||
}
|
||||
|
||||
/*
|
||||
* This function sets the ARPN, and LP fields of the HPTE appropriately
|
||||
* for the page size. We assume the pa is already "clean" that is properly
|
||||
* aligned for the requested page size
|
||||
*/
|
||||
static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
|
||||
{
|
||||
unsigned long r;
|
||||
|
||||
/* A 4K page needs no special encoding */
|
||||
if (psize == MMU_PAGE_4K)
|
||||
return pa & HPTE_R_RPN;
|
||||
else {
|
||||
unsigned int penc = mmu_psize_defs[psize].penc;
|
||||
unsigned int shift = mmu_psize_defs[psize].shift;
|
||||
return (pa & ~((1ul << shift) - 1)) | (penc << 12);
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/*
|
||||
* This hashes a virtual address for a 256Mb segment only for now
|
||||
*/
|
||||
|
||||
static inline unsigned long hpt_hash(unsigned long va, unsigned int shift)
|
||||
{
|
||||
return ((va >> 28) & 0x7fffffffffUL) ^ ((va & 0x0fffffffUL) >> shift);
|
||||
}
|
||||
|
||||
extern int __hash_page_4K(unsigned long ea, unsigned long access,
|
||||
unsigned long vsid, pte_t *ptep, unsigned long trap,
|
||||
unsigned int local);
|
||||
extern int __hash_page_64K(unsigned long ea, unsigned long access,
|
||||
unsigned long vsid, pte_t *ptep, unsigned long trap,
|
||||
unsigned int local);
|
||||
struct mm_struct;
|
||||
extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
|
||||
extern int hash_huge_page(struct mm_struct *mm, unsigned long access,
|
||||
unsigned long ea, unsigned long vsid, int local,
|
||||
unsigned long trap);
|
||||
|
||||
extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
|
||||
unsigned long pstart, unsigned long mode,
|
||||
int psize);
|
||||
|
||||
extern void htab_initialize(void);
|
||||
extern void htab_initialize_secondary(void);
|
||||
extern void hpte_init_native(void);
|
||||
extern void hpte_init_lpar(void);
|
||||
extern void hpte_init_iSeries(void);
|
||||
extern void hpte_init_beat(void);
|
||||
|
||||
extern void stabs_alloc(void);
|
||||
extern void slb_initialize(void);
|
||||
extern void slb_flush_and_rebolt(void);
|
||||
extern void stab_initialize(unsigned long stab);
|
||||
|
||||
#endif /* __ASSEMBLY__ */
|
||||
|
||||
/*
|
||||
* VSID allocation
|
||||
*
|
||||
* We first generate a 36-bit "proto-VSID". For kernel addresses this
|
||||
* is equal to the ESID, for user addresses it is:
|
||||
* (context << 15) | (esid & 0x7fff)
|
||||
*
|
||||
* The two forms are distinguishable because the top bit is 0 for user
|
||||
* addresses, whereas the top two bits are 1 for kernel addresses.
|
||||
* Proto-VSIDs with the top two bits equal to 0b10 are reserved for
|
||||
* now.
|
||||
*
|
||||
* The proto-VSIDs are then scrambled into real VSIDs with the
|
||||
* multiplicative hash:
|
||||
*
|
||||
* VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
|
||||
* where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
|
||||
* VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
|
||||
*
|
||||
* This scramble is only well defined for proto-VSIDs below
|
||||
* 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
|
||||
* reserved. VSID_MULTIPLIER is prime, so in particular it is
|
||||
* co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
|
||||
* Because the modulus is 2^n-1 we can compute it efficiently without
|
||||
* a divide or extra multiply (see below).
|
||||
*
|
||||
* This scheme has several advantages over older methods:
|
||||
*
|
||||
* - We have VSIDs allocated for every kernel address
|
||||
* (i.e. everything above 0xC000000000000000), except the very top
|
||||
* segment, which simplifies several things.
|
||||
*
|
||||
* - We allow for 15 significant bits of ESID and 20 bits of
|
||||
* context for user addresses. i.e. 8T (43 bits) of address space for
|
||||
* up to 1M contexts (although the page table structure and context
|
||||
* allocation will need changes to take advantage of this).
|
||||
*
|
||||
* - The scramble function gives robust scattering in the hash
|
||||
* table (at least based on some initial results). The previous
|
||||
* method was more susceptible to pathological cases giving excessive
|
||||
* hash collisions.
|
||||
*/
|
||||
/*
|
||||
* WARNING - If you change these you must make sure the asm
|
||||
* implementations in slb_allocate (slb_low.S), do_stab_bolted
|
||||
* (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
|
||||
*
|
||||
* You'll also need to change the precomputed VSID values in head.S
|
||||
* which are used by the iSeries firmware.
|
||||
*/
|
||||
|
||||
#define VSID_MULTIPLIER ASM_CONST(200730139) /* 28-bit prime */
|
||||
#define VSID_BITS 36
|
||||
#define VSID_MODULUS ((1UL<<VSID_BITS)-1)
|
||||
|
||||
#define CONTEXT_BITS 19
|
||||
#define USER_ESID_BITS 16
|
||||
|
||||
#define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
|
||||
|
||||
/*
|
||||
* This macro generates asm code to compute the VSID scramble
|
||||
* function. Used in slb_allocate() and do_stab_bolted. The function
|
||||
* computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
|
||||
*
|
||||
* rt = register continaing the proto-VSID and into which the
|
||||
* VSID will be stored
|
||||
* rx = scratch register (clobbered)
|
||||
*
|
||||
* - rt and rx must be different registers
|
||||
* - The answer will end up in the low 36 bits of rt. The higher
|
||||
* bits may contain other garbage, so you may need to mask the
|
||||
* result.
|
||||
*/
|
||||
#define ASM_VSID_SCRAMBLE(rt, rx) \
|
||||
lis rx,VSID_MULTIPLIER@h; \
|
||||
ori rx,rx,VSID_MULTIPLIER@l; \
|
||||
mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
|
||||
\
|
||||
srdi rx,rt,VSID_BITS; \
|
||||
clrldi rt,rt,(64-VSID_BITS); \
|
||||
add rt,rt,rx; /* add high and low bits */ \
|
||||
/* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
|
||||
* 2^36-1+2^28-1. That in particular means that if r3 >= \
|
||||
* 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
|
||||
* the bit clear, r3 already has the answer we want, if it \
|
||||
* doesn't, the answer is the low 36 bits of r3+1. So in all \
|
||||
* cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
|
||||
addi rx,rt,1; \
|
||||
srdi rx,rx,VSID_BITS; /* extract 2^36 bit */ \
|
||||
add rt,rt,rx
|
||||
|
||||
|
||||
#ifndef __ASSEMBLY__
|
||||
|
||||
typedef unsigned long mm_context_id_t;
|
||||
|
||||
typedef struct {
|
||||
mm_context_id_t id;
|
||||
u16 user_psize; /* page size index */
|
||||
u16 sllp; /* SLB entry page size encoding */
|
||||
#ifdef CONFIG_HUGETLB_PAGE
|
||||
u16 low_htlb_areas, high_htlb_areas;
|
||||
#endif
|
||||
unsigned long vdso_base;
|
||||
} mm_context_t;
|
||||
|
||||
|
||||
static inline unsigned long vsid_scramble(unsigned long protovsid)
|
||||
{
|
||||
#if 0
|
||||
/* The code below is equivalent to this function for arguments
|
||||
* < 2^VSID_BITS, which is all this should ever be called
|
||||
* with. However gcc is not clever enough to compute the
|
||||
* modulus (2^n-1) without a second multiply. */
|
||||
return ((protovsid * VSID_MULTIPLIER) % VSID_MODULUS);
|
||||
#else /* 1 */
|
||||
unsigned long x;
|
||||
|
||||
x = protovsid * VSID_MULTIPLIER;
|
||||
x = (x >> VSID_BITS) + (x & VSID_MODULUS);
|
||||
return (x + ((x+1) >> VSID_BITS)) & VSID_MODULUS;
|
||||
#endif /* 1 */
|
||||
}
|
||||
|
||||
/* This is only valid for addresses >= KERNELBASE */
|
||||
static inline unsigned long get_kernel_vsid(unsigned long ea)
|
||||
{
|
||||
return vsid_scramble(ea >> SID_SHIFT);
|
||||
}
|
||||
|
||||
/* This is only valid for user addresses (which are below 2^41) */
|
||||
static inline unsigned long get_vsid(unsigned long context, unsigned long ea)
|
||||
{
|
||||
return vsid_scramble((context << USER_ESID_BITS)
|
||||
| (ea >> SID_SHIFT));
|
||||
}
|
||||
|
||||
#define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER) % VSID_MODULUS)
|
||||
#define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea))
|
||||
|
||||
/* Physical address used by some IO functions */
|
||||
typedef unsigned long phys_addr_t;
|
||||
|
||||
#endif /* __ASSEMBLY__ */
|
||||
|
||||
#endif /* _ASM_POWERPC_MMU_HASH64_H_ */
|
@ -2,408 +2,14 @@
|
||||
#define _ASM_POWERPC_MMU_H_
|
||||
#ifdef __KERNEL__
|
||||
|
||||
#ifndef CONFIG_PPC64
|
||||
#include <asm-ppc/mmu.h>
|
||||
#ifdef CONFIG_PPC64
|
||||
/* 64-bit classic hash table MMU */
|
||||
# include <asm/mmu-hash64.h>
|
||||
#else
|
||||
|
||||
/*
|
||||
* PowerPC memory management structures
|
||||
*
|
||||
* Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
|
||||
* PPC64 rework.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License
|
||||
* as published by the Free Software Foundation; either version
|
||||
* 2 of the License, or (at your option) any later version.
|
||||
*/
|
||||
|
||||
#include <asm/asm-compat.h>
|
||||
#include <asm/page.h>
|
||||
|
||||
/*
|
||||
* Segment table
|
||||
*/
|
||||
|
||||
#define STE_ESID_V 0x80
|
||||
#define STE_ESID_KS 0x20
|
||||
#define STE_ESID_KP 0x10
|
||||
#define STE_ESID_N 0x08
|
||||
|
||||
#define STE_VSID_SHIFT 12
|
||||
|
||||
/* Location of cpu0's segment table */
|
||||
#define STAB0_PAGE 0x6
|
||||
#define STAB0_OFFSET (STAB0_PAGE << 12)
|
||||
#define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
|
||||
|
||||
#ifndef __ASSEMBLY__
|
||||
extern char initial_stab[];
|
||||
#endif /* ! __ASSEMBLY */
|
||||
|
||||
/*
|
||||
* SLB
|
||||
*/
|
||||
|
||||
#define SLB_NUM_BOLTED 3
|
||||
#define SLB_CACHE_ENTRIES 8
|
||||
|
||||
/* Bits in the SLB ESID word */
|
||||
#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
|
||||
|
||||
/* Bits in the SLB VSID word */
|
||||
#define SLB_VSID_SHIFT 12
|
||||
#define SLB_VSID_B ASM_CONST(0xc000000000000000)
|
||||
#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
|
||||
#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
|
||||
#define SLB_VSID_KS ASM_CONST(0x0000000000000800)
|
||||
#define SLB_VSID_KP ASM_CONST(0x0000000000000400)
|
||||
#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
|
||||
#define SLB_VSID_L ASM_CONST(0x0000000000000100)
|
||||
#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
|
||||
#define SLB_VSID_LP ASM_CONST(0x0000000000000030)
|
||||
#define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
|
||||
#define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
|
||||
#define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
|
||||
#define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
|
||||
#define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
|
||||
|
||||
#define SLB_VSID_KERNEL (SLB_VSID_KP)
|
||||
#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
|
||||
|
||||
#define SLBIE_C (0x08000000)
|
||||
|
||||
/*
|
||||
* Hash table
|
||||
*/
|
||||
|
||||
#define HPTES_PER_GROUP 8
|
||||
|
||||
#define HPTE_V_AVPN_SHIFT 7
|
||||
#define HPTE_V_AVPN ASM_CONST(0xffffffffffffff80)
|
||||
#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
|
||||
#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & HPTE_V_AVPN))
|
||||
#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
|
||||
#define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
|
||||
#define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
|
||||
#define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
|
||||
#define HPTE_V_VALID ASM_CONST(0x0000000000000001)
|
||||
|
||||
#define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
|
||||
#define HPTE_R_TS ASM_CONST(0x4000000000000000)
|
||||
#define HPTE_R_RPN_SHIFT 12
|
||||
#define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000)
|
||||
#define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff)
|
||||
#define HPTE_R_PP ASM_CONST(0x0000000000000003)
|
||||
#define HPTE_R_N ASM_CONST(0x0000000000000004)
|
||||
#define HPTE_R_C ASM_CONST(0x0000000000000080)
|
||||
#define HPTE_R_R ASM_CONST(0x0000000000000100)
|
||||
|
||||
/* Values for PP (assumes Ks=0, Kp=1) */
|
||||
/* pp0 will always be 0 for linux */
|
||||
#define PP_RWXX 0 /* Supervisor read/write, User none */
|
||||
#define PP_RWRX 1 /* Supervisor read/write, User read */
|
||||
#define PP_RWRW 2 /* Supervisor read/write, User read/write */
|
||||
#define PP_RXRX 3 /* Supervisor read, User read */
|
||||
|
||||
#ifndef __ASSEMBLY__
|
||||
|
||||
typedef struct {
|
||||
unsigned long v;
|
||||
unsigned long r;
|
||||
} hpte_t;
|
||||
|
||||
extern hpte_t *htab_address;
|
||||
extern unsigned long htab_size_bytes;
|
||||
extern unsigned long htab_hash_mask;
|
||||
|
||||
/*
|
||||
* Page size definition
|
||||
*
|
||||
* shift : is the "PAGE_SHIFT" value for that page size
|
||||
* sllp : is a bit mask with the value of SLB L || LP to be or'ed
|
||||
* directly to a slbmte "vsid" value
|
||||
* penc : is the HPTE encoding mask for the "LP" field:
|
||||
*
|
||||
*/
|
||||
struct mmu_psize_def
|
||||
{
|
||||
unsigned int shift; /* number of bits */
|
||||
unsigned int penc; /* HPTE encoding */
|
||||
unsigned int tlbiel; /* tlbiel supported for that page size */
|
||||
unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
|
||||
unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
|
||||
};
|
||||
|
||||
#endif /* __ASSEMBLY__ */
|
||||
|
||||
/*
|
||||
* The kernel use the constants below to index in the page sizes array.
|
||||
* The use of fixed constants for this purpose is better for performances
|
||||
* of the low level hash refill handlers.
|
||||
*
|
||||
* A non supported page size has a "shift" field set to 0
|
||||
*
|
||||
* Any new page size being implemented can get a new entry in here. Whether
|
||||
* the kernel will use it or not is a different matter though. The actual page
|
||||
* size used by hugetlbfs is not defined here and may be made variable
|
||||
*/
|
||||
|
||||
#define MMU_PAGE_4K 0 /* 4K */
|
||||
#define MMU_PAGE_64K 1 /* 64K */
|
||||
#define MMU_PAGE_64K_AP 2 /* 64K Admixed (in a 4K segment) */
|
||||
#define MMU_PAGE_1M 3 /* 1M */
|
||||
#define MMU_PAGE_16M 4 /* 16M */
|
||||
#define MMU_PAGE_16G 5 /* 16G */
|
||||
#define MMU_PAGE_COUNT 6
|
||||
|
||||
#ifndef __ASSEMBLY__
|
||||
|
||||
/*
|
||||
* The current system page sizes
|
||||
*/
|
||||
extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
|
||||
extern int mmu_linear_psize;
|
||||
extern int mmu_virtual_psize;
|
||||
extern int mmu_vmalloc_psize;
|
||||
extern int mmu_io_psize;
|
||||
|
||||
/*
|
||||
* If the processor supports 64k normal pages but not 64k cache
|
||||
* inhibited pages, we have to be prepared to switch processes
|
||||
* to use 4k pages when they create cache-inhibited mappings.
|
||||
* If this is the case, mmu_ci_restrictions will be set to 1.
|
||||
*/
|
||||
extern int mmu_ci_restrictions;
|
||||
|
||||
#ifdef CONFIG_HUGETLB_PAGE
|
||||
/*
|
||||
* The page size index of the huge pages for use by hugetlbfs
|
||||
*/
|
||||
extern int mmu_huge_psize;
|
||||
|
||||
#endif /* CONFIG_HUGETLB_PAGE */
|
||||
|
||||
/*
|
||||
* This function sets the AVPN and L fields of the HPTE appropriately
|
||||
* for the page size
|
||||
*/
|
||||
static inline unsigned long hpte_encode_v(unsigned long va, int psize)
|
||||
{
|
||||
unsigned long v =
|
||||
v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm);
|
||||
v <<= HPTE_V_AVPN_SHIFT;
|
||||
if (psize != MMU_PAGE_4K)
|
||||
v |= HPTE_V_LARGE;
|
||||
return v;
|
||||
}
|
||||
|
||||
/*
|
||||
* This function sets the ARPN, and LP fields of the HPTE appropriately
|
||||
* for the page size. We assume the pa is already "clean" that is properly
|
||||
* aligned for the requested page size
|
||||
*/
|
||||
static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
|
||||
{
|
||||
unsigned long r;
|
||||
|
||||
/* A 4K page needs no special encoding */
|
||||
if (psize == MMU_PAGE_4K)
|
||||
return pa & HPTE_R_RPN;
|
||||
else {
|
||||
unsigned int penc = mmu_psize_defs[psize].penc;
|
||||
unsigned int shift = mmu_psize_defs[psize].shift;
|
||||
return (pa & ~((1ul << shift) - 1)) | (penc << 12);
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/*
|
||||
* This hashes a virtual address for a 256Mb segment only for now
|
||||
*/
|
||||
|
||||
static inline unsigned long hpt_hash(unsigned long va, unsigned int shift)
|
||||
{
|
||||
return ((va >> 28) & 0x7fffffffffUL) ^ ((va & 0x0fffffffUL) >> shift);
|
||||
}
|
||||
|
||||
extern int __hash_page_4K(unsigned long ea, unsigned long access,
|
||||
unsigned long vsid, pte_t *ptep, unsigned long trap,
|
||||
unsigned int local);
|
||||
extern int __hash_page_64K(unsigned long ea, unsigned long access,
|
||||
unsigned long vsid, pte_t *ptep, unsigned long trap,
|
||||
unsigned int local);
|
||||
struct mm_struct;
|
||||
extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
|
||||
extern int hash_huge_page(struct mm_struct *mm, unsigned long access,
|
||||
unsigned long ea, unsigned long vsid, int local,
|
||||
unsigned long trap);
|
||||
|
||||
extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
|
||||
unsigned long pstart, unsigned long mode,
|
||||
int psize);
|
||||
|
||||
extern void htab_initialize(void);
|
||||
extern void htab_initialize_secondary(void);
|
||||
extern void hpte_init_native(void);
|
||||
extern void hpte_init_lpar(void);
|
||||
extern void hpte_init_iSeries(void);
|
||||
extern void hpte_init_beat(void);
|
||||
|
||||
extern void stabs_alloc(void);
|
||||
extern void slb_initialize(void);
|
||||
extern void slb_flush_and_rebolt(void);
|
||||
extern void stab_initialize(unsigned long stab);
|
||||
|
||||
#endif /* __ASSEMBLY__ */
|
||||
|
||||
/*
|
||||
* VSID allocation
|
||||
*
|
||||
* We first generate a 36-bit "proto-VSID". For kernel addresses this
|
||||
* is equal to the ESID, for user addresses it is:
|
||||
* (context << 15) | (esid & 0x7fff)
|
||||
*
|
||||
* The two forms are distinguishable because the top bit is 0 for user
|
||||
* addresses, whereas the top two bits are 1 for kernel addresses.
|
||||
* Proto-VSIDs with the top two bits equal to 0b10 are reserved for
|
||||
* now.
|
||||
*
|
||||
* The proto-VSIDs are then scrambled into real VSIDs with the
|
||||
* multiplicative hash:
|
||||
*
|
||||
* VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
|
||||
* where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
|
||||
* VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
|
||||
*
|
||||
* This scramble is only well defined for proto-VSIDs below
|
||||
* 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
|
||||
* reserved. VSID_MULTIPLIER is prime, so in particular it is
|
||||
* co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
|
||||
* Because the modulus is 2^n-1 we can compute it efficiently without
|
||||
* a divide or extra multiply (see below).
|
||||
*
|
||||
* This scheme has several advantages over older methods:
|
||||
*
|
||||
* - We have VSIDs allocated for every kernel address
|
||||
* (i.e. everything above 0xC000000000000000), except the very top
|
||||
* segment, which simplifies several things.
|
||||
*
|
||||
* - We allow for 15 significant bits of ESID and 20 bits of
|
||||
* context for user addresses. i.e. 8T (43 bits) of address space for
|
||||
* up to 1M contexts (although the page table structure and context
|
||||
* allocation will need changes to take advantage of this).
|
||||
*
|
||||
* - The scramble function gives robust scattering in the hash
|
||||
* table (at least based on some initial results). The previous
|
||||
* method was more susceptible to pathological cases giving excessive
|
||||
* hash collisions.
|
||||
*/
|
||||
/*
|
||||
* WARNING - If you change these you must make sure the asm
|
||||
* implementations in slb_allocate (slb_low.S), do_stab_bolted
|
||||
* (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
|
||||
*
|
||||
* You'll also need to change the precomputed VSID values in head.S
|
||||
* which are used by the iSeries firmware.
|
||||
*/
|
||||
|
||||
#define VSID_MULTIPLIER ASM_CONST(200730139) /* 28-bit prime */
|
||||
#define VSID_BITS 36
|
||||
#define VSID_MODULUS ((1UL<<VSID_BITS)-1)
|
||||
|
||||
#define CONTEXT_BITS 19
|
||||
#define USER_ESID_BITS 16
|
||||
|
||||
#define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
|
||||
|
||||
/*
|
||||
* This macro generates asm code to compute the VSID scramble
|
||||
* function. Used in slb_allocate() and do_stab_bolted. The function
|
||||
* computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
|
||||
*
|
||||
* rt = register continaing the proto-VSID and into which the
|
||||
* VSID will be stored
|
||||
* rx = scratch register (clobbered)
|
||||
*
|
||||
* - rt and rx must be different registers
|
||||
* - The answer will end up in the low 36 bits of rt. The higher
|
||||
* bits may contain other garbage, so you may need to mask the
|
||||
* result.
|
||||
*/
|
||||
#define ASM_VSID_SCRAMBLE(rt, rx) \
|
||||
lis rx,VSID_MULTIPLIER@h; \
|
||||
ori rx,rx,VSID_MULTIPLIER@l; \
|
||||
mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
|
||||
\
|
||||
srdi rx,rt,VSID_BITS; \
|
||||
clrldi rt,rt,(64-VSID_BITS); \
|
||||
add rt,rt,rx; /* add high and low bits */ \
|
||||
/* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
|
||||
* 2^36-1+2^28-1. That in particular means that if r3 >= \
|
||||
* 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
|
||||
* the bit clear, r3 already has the answer we want, if it \
|
||||
* doesn't, the answer is the low 36 bits of r3+1. So in all \
|
||||
* cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
|
||||
addi rx,rt,1; \
|
||||
srdi rx,rx,VSID_BITS; /* extract 2^36 bit */ \
|
||||
add rt,rt,rx
|
||||
|
||||
|
||||
#ifndef __ASSEMBLY__
|
||||
|
||||
typedef unsigned long mm_context_id_t;
|
||||
|
||||
typedef struct {
|
||||
mm_context_id_t id;
|
||||
u16 user_psize; /* page size index */
|
||||
u16 sllp; /* SLB entry page size encoding */
|
||||
#ifdef CONFIG_HUGETLB_PAGE
|
||||
u16 low_htlb_areas, high_htlb_areas;
|
||||
/* 32-bit. FIXME: split up the 32-bit MMU types, and revise for
|
||||
* arch/powerpc */
|
||||
# include <asm-ppc/mmu.h>
|
||||
#endif
|
||||
unsigned long vdso_base;
|
||||
} mm_context_t;
|
||||
|
||||
|
||||
static inline unsigned long vsid_scramble(unsigned long protovsid)
|
||||
{
|
||||
#if 0
|
||||
/* The code below is equivalent to this function for arguments
|
||||
* < 2^VSID_BITS, which is all this should ever be called
|
||||
* with. However gcc is not clever enough to compute the
|
||||
* modulus (2^n-1) without a second multiply. */
|
||||
return ((protovsid * VSID_MULTIPLIER) % VSID_MODULUS);
|
||||
#else /* 1 */
|
||||
unsigned long x;
|
||||
|
||||
x = protovsid * VSID_MULTIPLIER;
|
||||
x = (x >> VSID_BITS) + (x & VSID_MODULUS);
|
||||
return (x + ((x+1) >> VSID_BITS)) & VSID_MODULUS;
|
||||
#endif /* 1 */
|
||||
}
|
||||
|
||||
/* This is only valid for addresses >= KERNELBASE */
|
||||
static inline unsigned long get_kernel_vsid(unsigned long ea)
|
||||
{
|
||||
return vsid_scramble(ea >> SID_SHIFT);
|
||||
}
|
||||
|
||||
/* This is only valid for user addresses (which are below 2^41) */
|
||||
static inline unsigned long get_vsid(unsigned long context, unsigned long ea)
|
||||
{
|
||||
return vsid_scramble((context << USER_ESID_BITS)
|
||||
| (ea >> SID_SHIFT));
|
||||
}
|
||||
|
||||
#define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER) % VSID_MODULUS)
|
||||
#define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea))
|
||||
|
||||
/* Physical address used by some IO functions */
|
||||
typedef unsigned long phys_addr_t;
|
||||
|
||||
|
||||
#endif /* __ASSEMBLY */
|
||||
|
||||
#endif /* CONFIG_PPC64 */
|
||||
#endif /* __KERNEL__ */
|
||||
#endif /* _ASM_POWERPC_MMU_H_ */
|
||||
|
Loading…
Reference in New Issue
Block a user