Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394/linux1394-2.6

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394/linux1394-2.6: (26 commits)
  firewire: fw-sbp2: Use sbp2 device-provided mgt orb timeout for logins
  firewire: fw-sbp2: increase login orb reply timeout, fix "failed to login"
  firewire: replace subtraction with bitwise and
  firewire: fw-core: react on bus resets while the config ROM is being fetched
  firewire: enforce access order between generation and node ID, fix "giving up on config rom"
  firewire: fw-cdev: use device generation, not card generation
  firewire: fw-sbp2: use device generation, not card generation
  firewire: fw-sbp2: try to increase reconnect_hold (speed up reconnection)
  firewire: fw-sbp2: skip unnecessary logout
  firewire vs. ieee1394: clarify MAINTAINERS
  firewire: fw-ohci: Dynamically allocate buffers for DMA descriptors
  firewire: fw-ohci: CycleTooLong interrupt management
  firewire: Fix extraction of source node id
  firewire: fw-ohci: Bug fixes for packet-per-buffer support
  firewire: fw-ohci: Fix for dualbuffer three-or-more buffers
  firewire: fw-sbp2: remove unused misleading macro
  firewire: fw-sbp2: prepare for s/g chaining
  firewire: fw-sbp2: refactor workq and kref handling
  ieee1394: ohci1394: don't schedule IT tasklets on IR events
  ieee1394: sbp2: raise default transfer size limit
  ...
This commit is contained in:
Linus Torvalds 2008-01-31 11:40:18 +11:00
commit 94ed294c20
14 changed files with 420 additions and 332 deletions

View File

@ -1595,7 +1595,7 @@ P: Alexander Viro
M: viro@zeniv.linux.org.uk M: viro@zeniv.linux.org.uk
S: Maintained S: Maintained
FIREWIRE SUBSYSTEM FIREWIRE SUBSYSTEM (drivers/firewire, <linux/firewire*.h>)
P: Kristian Hoegsberg, Stefan Richter P: Kristian Hoegsberg, Stefan Richter
M: krh@redhat.com, stefanr@s5r6.in-berlin.de M: krh@redhat.com, stefanr@s5r6.in-berlin.de
L: linux1394-devel@lists.sourceforge.net L: linux1394-devel@lists.sourceforge.net
@ -1917,7 +1917,7 @@ L: linux-ide@vger.kernel.org
L: linux-scsi@vger.kernel.org L: linux-scsi@vger.kernel.org
S: Orphan S: Orphan
IEEE 1394 SUBSYSTEM IEEE 1394 SUBSYSTEM (drivers/ieee1394)
P: Ben Collins P: Ben Collins
M: ben.collins@ubuntu.com M: ben.collins@ubuntu.com
P: Stefan Richter P: Stefan Richter

View File

@ -206,12 +206,13 @@ fill_bus_reset_event(struct fw_cdev_event_bus_reset *event,
event->closure = client->bus_reset_closure; event->closure = client->bus_reset_closure;
event->type = FW_CDEV_EVENT_BUS_RESET; event->type = FW_CDEV_EVENT_BUS_RESET;
event->generation = client->device->generation;
smp_rmb(); /* node_id must not be older than generation */
event->node_id = client->device->node_id; event->node_id = client->device->node_id;
event->local_node_id = card->local_node->node_id; event->local_node_id = card->local_node->node_id;
event->bm_node_id = 0; /* FIXME: We don't track the BM. */ event->bm_node_id = 0; /* FIXME: We don't track the BM. */
event->irm_node_id = card->irm_node->node_id; event->irm_node_id = card->irm_node->node_id;
event->root_node_id = card->root_node->node_id; event->root_node_id = card->root_node->node_id;
event->generation = card->generation;
} }
static void static void

View File

@ -27,6 +27,7 @@
#include <linux/idr.h> #include <linux/idr.h>
#include <linux/rwsem.h> #include <linux/rwsem.h>
#include <asm/semaphore.h> #include <asm/semaphore.h>
#include <asm/system.h>
#include <linux/ctype.h> #include <linux/ctype.h>
#include "fw-transaction.h" #include "fw-transaction.h"
#include "fw-topology.h" #include "fw-topology.h"
@ -182,9 +183,14 @@ static void fw_device_release(struct device *dev)
int fw_device_enable_phys_dma(struct fw_device *device) int fw_device_enable_phys_dma(struct fw_device *device)
{ {
int generation = device->generation;
/* device->node_id, accessed below, must not be older than generation */
smp_rmb();
return device->card->driver->enable_phys_dma(device->card, return device->card->driver->enable_phys_dma(device->card,
device->node_id, device->node_id,
device->generation); generation);
} }
EXPORT_SYMBOL(fw_device_enable_phys_dma); EXPORT_SYMBOL(fw_device_enable_phys_dma);
@ -384,17 +390,21 @@ complete_transaction(struct fw_card *card, int rcode,
complete(&callback_data->done); complete(&callback_data->done);
} }
static int read_rom(struct fw_device *device, int index, u32 * data) static int
read_rom(struct fw_device *device, int generation, int index, u32 *data)
{ {
struct read_quadlet_callback_data callback_data; struct read_quadlet_callback_data callback_data;
struct fw_transaction t; struct fw_transaction t;
u64 offset; u64 offset;
/* device->node_id, accessed below, must not be older than generation */
smp_rmb();
init_completion(&callback_data.done); init_completion(&callback_data.done);
offset = 0xfffff0000400ULL + index * 4; offset = 0xfffff0000400ULL + index * 4;
fw_send_request(device->card, &t, TCODE_READ_QUADLET_REQUEST, fw_send_request(device->card, &t, TCODE_READ_QUADLET_REQUEST,
device->node_id, device->generation, device->max_speed, device->node_id, generation, device->max_speed,
offset, NULL, 4, complete_transaction, &callback_data); offset, NULL, 4, complete_transaction, &callback_data);
wait_for_completion(&callback_data.done); wait_for_completion(&callback_data.done);
@ -404,7 +414,14 @@ static int read_rom(struct fw_device *device, int index, u32 * data)
return callback_data.rcode; return callback_data.rcode;
} }
static int read_bus_info_block(struct fw_device *device) /*
* Read the bus info block, perform a speed probe, and read all of the rest of
* the config ROM. We do all this with a cached bus generation. If the bus
* generation changes under us, read_bus_info_block will fail and get retried.
* It's better to start all over in this case because the node from which we
* are reading the ROM may have changed the ROM during the reset.
*/
static int read_bus_info_block(struct fw_device *device, int generation)
{ {
static u32 rom[256]; static u32 rom[256];
u32 stack[16], sp, key; u32 stack[16], sp, key;
@ -414,7 +431,7 @@ static int read_bus_info_block(struct fw_device *device)
/* First read the bus info block. */ /* First read the bus info block. */
for (i = 0; i < 5; i++) { for (i = 0; i < 5; i++) {
if (read_rom(device, i, &rom[i]) != RCODE_COMPLETE) if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
return -1; return -1;
/* /*
* As per IEEE1212 7.2, during power-up, devices can * As per IEEE1212 7.2, during power-up, devices can
@ -449,7 +466,8 @@ static int read_bus_info_block(struct fw_device *device)
device->max_speed = device->card->link_speed; device->max_speed = device->card->link_speed;
while (device->max_speed > SCODE_100) { while (device->max_speed > SCODE_100) {
if (read_rom(device, 0, &dummy) == RCODE_COMPLETE) if (read_rom(device, generation, 0, &dummy) ==
RCODE_COMPLETE)
break; break;
device->max_speed--; device->max_speed--;
} }
@ -482,7 +500,7 @@ static int read_bus_info_block(struct fw_device *device)
return -1; return -1;
/* Read header quadlet for the block to get the length. */ /* Read header quadlet for the block to get the length. */
if (read_rom(device, i, &rom[i]) != RCODE_COMPLETE) if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
return -1; return -1;
end = i + (rom[i] >> 16) + 1; end = i + (rom[i] >> 16) + 1;
i++; i++;
@ -501,7 +519,8 @@ static int read_bus_info_block(struct fw_device *device)
* it references another block, and push it in that case. * it references another block, and push it in that case.
*/ */
while (i < end) { while (i < end) {
if (read_rom(device, i, &rom[i]) != RCODE_COMPLETE) if (read_rom(device, generation, i, &rom[i]) !=
RCODE_COMPLETE)
return -1; return -1;
if ((key >> 30) == 3 && (rom[i] >> 30) > 1 && if ((key >> 30) == 3 && (rom[i] >> 30) > 1 &&
sp < ARRAY_SIZE(stack)) sp < ARRAY_SIZE(stack))
@ -648,7 +667,7 @@ static void fw_device_init(struct work_struct *work)
* device. * device.
*/ */
if (read_bus_info_block(device) < 0) { if (read_bus_info_block(device, device->generation) < 0) {
if (device->config_rom_retries < MAX_RETRIES) { if (device->config_rom_retries < MAX_RETRIES) {
device->config_rom_retries++; device->config_rom_retries++;
schedule_delayed_work(&device->work, RETRY_DELAY); schedule_delayed_work(&device->work, RETRY_DELAY);
@ -801,6 +820,7 @@ void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
device = node->data; device = node->data;
device->node_id = node->node_id; device->node_id = node->node_id;
smp_wmb(); /* update node_id before generation */
device->generation = card->generation; device->generation = card->generation;
if (atomic_read(&device->state) == FW_DEVICE_RUNNING) { if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
PREPARE_DELAYED_WORK(&device->work, fw_device_update); PREPARE_DELAYED_WORK(&device->work, fw_device_update);

View File

@ -35,6 +35,18 @@ struct fw_attribute_group {
struct attribute *attrs[11]; struct attribute *attrs[11];
}; };
/*
* Note, fw_device.generation always has to be read before fw_device.node_id.
* Use SMP memory barriers to ensure this. Otherwise requests will be sent
* to an outdated node_id if the generation was updated in the meantime due
* to a bus reset.
*
* Likewise, fw-core will take care to update .node_id before .generation so
* that whenever fw_device.generation is current WRT the actual bus generation,
* fw_device.node_id is guaranteed to be current too.
*
* The same applies to fw_device.card->node_id vs. fw_device.generation.
*/
struct fw_device { struct fw_device {
atomic_t state; atomic_t state;
struct fw_node *node; struct fw_node *node;

View File

@ -98,17 +98,48 @@ struct context;
typedef int (*descriptor_callback_t)(struct context *ctx, typedef int (*descriptor_callback_t)(struct context *ctx,
struct descriptor *d, struct descriptor *d,
struct descriptor *last); struct descriptor *last);
/*
* A buffer that contains a block of DMA-able coherent memory used for
* storing a portion of a DMA descriptor program.
*/
struct descriptor_buffer {
struct list_head list;
dma_addr_t buffer_bus;
size_t buffer_size;
size_t used;
struct descriptor buffer[0];
};
struct context { struct context {
struct fw_ohci *ohci; struct fw_ohci *ohci;
u32 regs; u32 regs;
int total_allocation;
struct descriptor *buffer; /*
dma_addr_t buffer_bus; * List of page-sized buffers for storing DMA descriptors.
size_t buffer_size; * Head of list contains buffers in use and tail of list contains
struct descriptor *head_descriptor; * free buffers.
struct descriptor *tail_descriptor; */
struct descriptor *tail_descriptor_last; struct list_head buffer_list;
struct descriptor *prev_descriptor;
/*
* Pointer to a buffer inside buffer_list that contains the tail
* end of the current DMA program.
*/
struct descriptor_buffer *buffer_tail;
/*
* The descriptor containing the branch address of the first
* descriptor that has not yet been filled by the device.
*/
struct descriptor *last;
/*
* The last descriptor in the DMA program. It contains the branch
* address that must be updated upon appending a new descriptor.
*/
struct descriptor *prev;
descriptor_callback_t callback; descriptor_callback_t callback;
@ -125,6 +156,7 @@ struct context {
struct iso_context { struct iso_context {
struct fw_iso_context base; struct fw_iso_context base;
struct context context; struct context context;
int excess_bytes;
void *header; void *header;
size_t header_length; size_t header_length;
}; };
@ -197,8 +229,6 @@ static inline struct fw_ohci *fw_ohci(struct fw_card *card)
#define SELF_ID_BUF_SIZE 0x800 #define SELF_ID_BUF_SIZE 0x800
#define OHCI_TCODE_PHY_PACKET 0x0e #define OHCI_TCODE_PHY_PACKET 0x0e
#define OHCI_VERSION_1_1 0x010010 #define OHCI_VERSION_1_1 0x010010
#define ISO_BUFFER_SIZE (64 * 1024)
#define AT_BUFFER_SIZE 4096
static char ohci_driver_name[] = KBUILD_MODNAME; static char ohci_driver_name[] = KBUILD_MODNAME;
@ -455,71 +485,108 @@ find_branch_descriptor(struct descriptor *d, int z)
static void context_tasklet(unsigned long data) static void context_tasklet(unsigned long data)
{ {
struct context *ctx = (struct context *) data; struct context *ctx = (struct context *) data;
struct fw_ohci *ohci = ctx->ohci;
struct descriptor *d, *last; struct descriptor *d, *last;
u32 address; u32 address;
int z; int z;
struct descriptor_buffer *desc;
dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus, desc = list_entry(ctx->buffer_list.next,
ctx->buffer_size, DMA_TO_DEVICE); struct descriptor_buffer, list);
last = ctx->last;
d = ctx->tail_descriptor;
last = ctx->tail_descriptor_last;
while (last->branch_address != 0) { while (last->branch_address != 0) {
struct descriptor_buffer *old_desc = desc;
address = le32_to_cpu(last->branch_address); address = le32_to_cpu(last->branch_address);
z = address & 0xf; z = address & 0xf;
d = ctx->buffer + (address - ctx->buffer_bus) / sizeof(*d); address &= ~0xf;
/* If the branch address points to a buffer outside of the
* current buffer, advance to the next buffer. */
if (address < desc->buffer_bus ||
address >= desc->buffer_bus + desc->used)
desc = list_entry(desc->list.next,
struct descriptor_buffer, list);
d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
last = find_branch_descriptor(d, z); last = find_branch_descriptor(d, z);
if (!ctx->callback(ctx, d, last)) if (!ctx->callback(ctx, d, last))
break; break;
ctx->tail_descriptor = d; if (old_desc != desc) {
ctx->tail_descriptor_last = last; /* If we've advanced to the next buffer, move the
* previous buffer to the free list. */
unsigned long flags;
old_desc->used = 0;
spin_lock_irqsave(&ctx->ohci->lock, flags);
list_move_tail(&old_desc->list, &ctx->buffer_list);
spin_unlock_irqrestore(&ctx->ohci->lock, flags);
}
ctx->last = last;
} }
} }
/*
* Allocate a new buffer and add it to the list of free buffers for this
* context. Must be called with ohci->lock held.
*/
static int
context_add_buffer(struct context *ctx)
{
struct descriptor_buffer *desc;
dma_addr_t bus_addr;
int offset;
/*
* 16MB of descriptors should be far more than enough for any DMA
* program. This will catch run-away userspace or DoS attacks.
*/
if (ctx->total_allocation >= 16*1024*1024)
return -ENOMEM;
desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
&bus_addr, GFP_ATOMIC);
if (!desc)
return -ENOMEM;
offset = (void *)&desc->buffer - (void *)desc;
desc->buffer_size = PAGE_SIZE - offset;
desc->buffer_bus = bus_addr + offset;
desc->used = 0;
list_add_tail(&desc->list, &ctx->buffer_list);
ctx->total_allocation += PAGE_SIZE;
return 0;
}
static int static int
context_init(struct context *ctx, struct fw_ohci *ohci, context_init(struct context *ctx, struct fw_ohci *ohci,
size_t buffer_size, u32 regs, u32 regs, descriptor_callback_t callback)
descriptor_callback_t callback)
{ {
ctx->ohci = ohci; ctx->ohci = ohci;
ctx->regs = regs; ctx->regs = regs;
ctx->buffer_size = buffer_size; ctx->total_allocation = 0;
ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
if (ctx->buffer == NULL) INIT_LIST_HEAD(&ctx->buffer_list);
if (context_add_buffer(ctx) < 0)
return -ENOMEM; return -ENOMEM;
ctx->buffer_tail = list_entry(ctx->buffer_list.next,
struct descriptor_buffer, list);
tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx); tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
ctx->callback = callback; ctx->callback = callback;
ctx->buffer_bus =
dma_map_single(ohci->card.device, ctx->buffer,
buffer_size, DMA_TO_DEVICE);
if (dma_mapping_error(ctx->buffer_bus)) {
kfree(ctx->buffer);
return -ENOMEM;
}
ctx->head_descriptor = ctx->buffer;
ctx->prev_descriptor = ctx->buffer;
ctx->tail_descriptor = ctx->buffer;
ctx->tail_descriptor_last = ctx->buffer;
/* /*
* We put a dummy descriptor in the buffer that has a NULL * We put a dummy descriptor in the buffer that has a NULL
* branch address and looks like it's been sent. That way we * branch address and looks like it's been sent. That way we
* have a descriptor to append DMA programs to. Also, the * have a descriptor to append DMA programs to.
* ring buffer invariant is that it always has at least one
* element so that head == tail means buffer full.
*/ */
memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
memset(ctx->head_descriptor, 0, sizeof(*ctx->head_descriptor)); ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
ctx->head_descriptor->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST); ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011); ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
ctx->head_descriptor++; ctx->last = ctx->buffer_tail->buffer;
ctx->prev = ctx->buffer_tail->buffer;
return 0; return 0;
} }
@ -528,35 +595,42 @@ static void
context_release(struct context *ctx) context_release(struct context *ctx)
{ {
struct fw_card *card = &ctx->ohci->card; struct fw_card *card = &ctx->ohci->card;
struct descriptor_buffer *desc, *tmp;
dma_unmap_single(card->device, ctx->buffer_bus, list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
ctx->buffer_size, DMA_TO_DEVICE); dma_free_coherent(card->device, PAGE_SIZE, desc,
kfree(ctx->buffer); desc->buffer_bus -
((void *)&desc->buffer - (void *)desc));
} }
/* Must be called with ohci->lock held */
static struct descriptor * static struct descriptor *
context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus) context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
{ {
struct descriptor *d, *tail, *end; struct descriptor *d = NULL;
struct descriptor_buffer *desc = ctx->buffer_tail;
d = ctx->head_descriptor; if (z * sizeof(*d) > desc->buffer_size)
tail = ctx->tail_descriptor; return NULL;
end = ctx->buffer + ctx->buffer_size / sizeof(*d);
if (d + z <= tail) { if (z * sizeof(*d) > desc->buffer_size - desc->used) {
goto has_space; /* No room for the descriptor in this buffer, so advance to the
} else if (d > tail && d + z <= end) { * next one. */
goto has_space;
} else if (d > tail && ctx->buffer + z <= tail) { if (desc->list.next == &ctx->buffer_list) {
d = ctx->buffer; /* If there is no free buffer next in the list,
goto has_space; * allocate one. */
if (context_add_buffer(ctx) < 0)
return NULL;
}
desc = list_entry(desc->list.next,
struct descriptor_buffer, list);
ctx->buffer_tail = desc;
} }
return NULL; d = desc->buffer + desc->used / sizeof(*d);
has_space:
memset(d, 0, z * sizeof(*d)); memset(d, 0, z * sizeof(*d));
*d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d); *d_bus = desc->buffer_bus + desc->used;
return d; return d;
} }
@ -566,7 +640,7 @@ static void context_run(struct context *ctx, u32 extra)
struct fw_ohci *ohci = ctx->ohci; struct fw_ohci *ohci = ctx->ohci;
reg_write(ohci, COMMAND_PTR(ctx->regs), reg_write(ohci, COMMAND_PTR(ctx->regs),
le32_to_cpu(ctx->tail_descriptor_last->branch_address)); le32_to_cpu(ctx->last->branch_address));
reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0); reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra); reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
flush_writes(ohci); flush_writes(ohci);
@ -576,15 +650,13 @@ static void context_append(struct context *ctx,
struct descriptor *d, int z, int extra) struct descriptor *d, int z, int extra)
{ {
dma_addr_t d_bus; dma_addr_t d_bus;
struct descriptor_buffer *desc = ctx->buffer_tail;
d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d); d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
ctx->head_descriptor = d + z + extra; desc->used += (z + extra) * sizeof(*d);
ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z); ctx->prev->branch_address = cpu_to_le32(d_bus | z);
ctx->prev_descriptor = find_branch_descriptor(d, z); ctx->prev = find_branch_descriptor(d, z);
dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
ctx->buffer_size, DMA_TO_DEVICE);
reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE); reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
flush_writes(ctx->ohci); flush_writes(ctx->ohci);
@ -1078,6 +1150,13 @@ static irqreturn_t irq_handler(int irq, void *data)
if (unlikely(event & OHCI1394_postedWriteErr)) if (unlikely(event & OHCI1394_postedWriteErr))
fw_error("PCI posted write error\n"); fw_error("PCI posted write error\n");
if (unlikely(event & OHCI1394_cycleTooLong)) {
if (printk_ratelimit())
fw_notify("isochronous cycle too long\n");
reg_write(ohci, OHCI1394_LinkControlSet,
OHCI1394_LinkControl_cycleMaster);
}
if (event & OHCI1394_cycle64Seconds) { if (event & OHCI1394_cycle64Seconds) {
cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer); cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
if ((cycle_time & 0x80000000) == 0) if ((cycle_time & 0x80000000) == 0)
@ -1151,8 +1230,8 @@ static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
OHCI1394_RQPkt | OHCI1394_RSPkt | OHCI1394_RQPkt | OHCI1394_RSPkt |
OHCI1394_reqTxComplete | OHCI1394_respTxComplete | OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
OHCI1394_isochRx | OHCI1394_isochTx | OHCI1394_isochRx | OHCI1394_isochTx |
OHCI1394_postedWriteErr | OHCI1394_cycle64Seconds | OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
OHCI1394_masterIntEnable); OHCI1394_cycle64Seconds | OHCI1394_masterIntEnable);
/* Activate link_on bit and contender bit in our self ID packets.*/ /* Activate link_on bit and contender bit in our self ID packets.*/
if (ohci_update_phy_reg(card, 4, 0, if (ohci_update_phy_reg(card, 4, 0,
@ -1408,9 +1487,13 @@ static int handle_ir_dualbuffer_packet(struct context *context,
void *p, *end; void *p, *end;
int i; int i;
if (db->first_res_count > 0 && db->second_res_count > 0) if (db->first_res_count > 0 && db->second_res_count > 0) {
/* This descriptor isn't done yet, stop iteration. */ if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
return 0; /* This descriptor isn't done yet, stop iteration. */
return 0;
}
ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
}
header_length = le16_to_cpu(db->first_req_count) - header_length = le16_to_cpu(db->first_req_count) -
le16_to_cpu(db->first_res_count); le16_to_cpu(db->first_res_count);
@ -1429,11 +1512,15 @@ static int handle_ir_dualbuffer_packet(struct context *context,
*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4)); *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4); memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
i += ctx->base.header_size; i += ctx->base.header_size;
ctx->excess_bytes +=
(le32_to_cpu(*(u32 *)(p + 4)) >> 16) & 0xffff;
p += ctx->base.header_size + 4; p += ctx->base.header_size + 4;
} }
ctx->header_length = i; ctx->header_length = i;
ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
le16_to_cpu(db->second_res_count);
if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) { if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
ir_header = (__le32 *) (db + 1); ir_header = (__le32 *) (db + 1);
ctx->base.callback(&ctx->base, ctx->base.callback(&ctx->base,
@ -1452,24 +1539,24 @@ static int handle_ir_packet_per_buffer(struct context *context,
{ {
struct iso_context *ctx = struct iso_context *ctx =
container_of(context, struct iso_context, context); container_of(context, struct iso_context, context);
struct descriptor *pd = d + 1; struct descriptor *pd;
__le32 *ir_header; __le32 *ir_header;
size_t header_length; void *p;
void *p, *end; int i;
int i, z;
if (pd->res_count == pd->req_count) for (pd = d; pd <= last; pd++) {
if (pd->transfer_status)
break;
}
if (pd > last)
/* Descriptor(s) not done yet, stop iteration */ /* Descriptor(s) not done yet, stop iteration */
return 0; return 0;
header_length = le16_to_cpu(d->req_count);
i = ctx->header_length; i = ctx->header_length;
z = le32_to_cpu(pd->branch_address) & 0xf; p = last + 1;
p = d + z;
end = p + header_length;
while (p < end && i + ctx->base.header_size <= PAGE_SIZE) { if (ctx->base.header_size > 0 &&
i + ctx->base.header_size <= PAGE_SIZE) {
/* /*
* The iso header is byteswapped to little endian by * The iso header is byteswapped to little endian by
* the controller, but the remaining header quadlets * the controller, but the remaining header quadlets
@ -1478,14 +1565,11 @@ static int handle_ir_packet_per_buffer(struct context *context,
*/ */
*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4)); *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4); memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
i += ctx->base.header_size; ctx->header_length += ctx->base.header_size;
p += ctx->base.header_size + 4;
} }
ctx->header_length = i; if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
ir_header = (__le32 *) p;
if (le16_to_cpu(pd->control) & DESCRIPTOR_IRQ_ALWAYS) {
ir_header = (__le32 *) (d + z);
ctx->base.callback(&ctx->base, ctx->base.callback(&ctx->base,
le32_to_cpu(ir_header[0]) & 0xffff, le32_to_cpu(ir_header[0]) & 0xffff,
ctx->header_length, ctx->header, ctx->header_length, ctx->header,
@ -1493,7 +1577,6 @@ static int handle_ir_packet_per_buffer(struct context *context,
ctx->header_length = 0; ctx->header_length = 0;
} }
return 1; return 1;
} }
@ -1559,8 +1642,7 @@ ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
if (ctx->header == NULL) if (ctx->header == NULL)
goto out; goto out;
retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE, retval = context_init(&ctx->context, ohci, regs, callback);
regs, callback);
if (retval < 0) if (retval < 0)
goto out_with_header; goto out_with_header;
@ -1775,19 +1857,6 @@ ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
* packet, retransmit or terminate.. * packet, retransmit or terminate..
*/ */
if (packet->skip) {
d = context_get_descriptors(&ctx->context, 2, &d_bus);
if (d == NULL)
return -ENOMEM;
db = (struct db_descriptor *) d;
db->control = cpu_to_le16(DESCRIPTOR_STATUS |
DESCRIPTOR_BRANCH_ALWAYS |
DESCRIPTOR_WAIT);
db->first_size = cpu_to_le16(ctx->base.header_size + 4);
context_append(&ctx->context, d, 2, 0);
}
p = packet; p = packet;
z = 2; z = 2;
@ -1815,11 +1884,18 @@ ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
db->control = cpu_to_le16(DESCRIPTOR_STATUS | db->control = cpu_to_le16(DESCRIPTOR_STATUS |
DESCRIPTOR_BRANCH_ALWAYS); DESCRIPTOR_BRANCH_ALWAYS);
db->first_size = cpu_to_le16(ctx->base.header_size + 4); db->first_size = cpu_to_le16(ctx->base.header_size + 4);
db->first_req_count = cpu_to_le16(header_size); if (p->skip && rest == p->payload_length) {
db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
db->first_req_count = db->first_size;
} else {
db->first_req_count = cpu_to_le16(header_size);
}
db->first_res_count = db->first_req_count; db->first_res_count = db->first_req_count;
db->first_buffer = cpu_to_le32(d_bus + sizeof(*db)); db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
if (offset + rest < PAGE_SIZE) if (p->skip && rest == p->payload_length)
length = 4;
else if (offset + rest < PAGE_SIZE)
length = rest; length = rest;
else else
length = PAGE_SIZE - offset; length = PAGE_SIZE - offset;
@ -1835,7 +1911,8 @@ ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
context_append(&ctx->context, d, z, header_z); context_append(&ctx->context, d, z, header_z);
offset = (offset + length) & ~PAGE_MASK; offset = (offset + length) & ~PAGE_MASK;
rest -= length; rest -= length;
page++; if (offset == 0)
page++;
} }
return 0; return 0;
@ -1849,67 +1926,70 @@ ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
{ {
struct iso_context *ctx = container_of(base, struct iso_context, base); struct iso_context *ctx = container_of(base, struct iso_context, base);
struct descriptor *d = NULL, *pd = NULL; struct descriptor *d = NULL, *pd = NULL;
struct fw_iso_packet *p; struct fw_iso_packet *p = packet;
dma_addr_t d_bus, page_bus; dma_addr_t d_bus, page_bus;
u32 z, header_z, rest; u32 z, header_z, rest;
int i, page, offset, packet_count, header_size; int i, j, length;
int page, offset, packet_count, header_size, payload_per_buffer;
if (packet->skip) {
d = context_get_descriptors(&ctx->context, 1, &d_bus);
if (d == NULL)
return -ENOMEM;
d->control = cpu_to_le16(DESCRIPTOR_STATUS |
DESCRIPTOR_INPUT_LAST |
DESCRIPTOR_BRANCH_ALWAYS |
DESCRIPTOR_WAIT);
context_append(&ctx->context, d, 1, 0);
}
/* one descriptor for header, one for payload */
/* FIXME: handle cases where we need multiple desc. for payload */
z = 2;
p = packet;
/* /*
* The OHCI controller puts the status word in the * The OHCI controller puts the status word in the
* buffer too, so we need 4 extra bytes per packet. * buffer too, so we need 4 extra bytes per packet.
*/ */
packet_count = p->header_length / ctx->base.header_size; packet_count = p->header_length / ctx->base.header_size;
header_size = packet_count * (ctx->base.header_size + 4); header_size = ctx->base.header_size + 4;
/* Get header size in number of descriptors. */ /* Get header size in number of descriptors. */
header_z = DIV_ROUND_UP(header_size, sizeof(*d)); header_z = DIV_ROUND_UP(header_size, sizeof(*d));
page = payload >> PAGE_SHIFT; page = payload >> PAGE_SHIFT;
offset = payload & ~PAGE_MASK; offset = payload & ~PAGE_MASK;
rest = p->payload_length; payload_per_buffer = p->payload_length / packet_count;
for (i = 0; i < packet_count; i++) { for (i = 0; i < packet_count; i++) {
/* d points to the header descriptor */ /* d points to the header descriptor */
z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
d = context_get_descriptors(&ctx->context, d = context_get_descriptors(&ctx->context,
z + header_z, &d_bus); z + header_z, &d_bus);
if (d == NULL) if (d == NULL)
return -ENOMEM; return -ENOMEM;
d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE); d->control = cpu_to_le16(DESCRIPTOR_STATUS |
DESCRIPTOR_INPUT_MORE);
if (p->skip && i == 0)
d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
d->req_count = cpu_to_le16(header_size); d->req_count = cpu_to_le16(header_size);
d->res_count = d->req_count; d->res_count = d->req_count;
d->transfer_status = 0;
d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d))); d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
/* pd points to the payload descriptor */ rest = payload_per_buffer;
pd = d + 1; for (j = 1; j < z; j++) {
pd = d + j;
pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
DESCRIPTOR_INPUT_MORE);
if (offset + rest < PAGE_SIZE)
length = rest;
else
length = PAGE_SIZE - offset;
pd->req_count = cpu_to_le16(length);
pd->res_count = pd->req_count;
pd->transfer_status = 0;
page_bus = page_private(buffer->pages[page]);
pd->data_address = cpu_to_le32(page_bus + offset);
offset = (offset + length) & ~PAGE_MASK;
rest -= length;
if (offset == 0)
page++;
}
pd->control = cpu_to_le16(DESCRIPTOR_STATUS | pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
DESCRIPTOR_INPUT_LAST | DESCRIPTOR_INPUT_LAST |
DESCRIPTOR_BRANCH_ALWAYS); DESCRIPTOR_BRANCH_ALWAYS);
if (p->interrupt) if (p->interrupt && i == packet_count - 1)
pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS); pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
pd->req_count = cpu_to_le16(rest);
pd->res_count = pd->req_count;
page_bus = page_private(buffer->pages[page]);
pd->data_address = cpu_to_le32(page_bus + offset);
context_append(&ctx->context, d, z, header_z); context_append(&ctx->context, d, z, header_z);
} }
@ -1923,16 +2003,22 @@ ohci_queue_iso(struct fw_iso_context *base,
unsigned long payload) unsigned long payload)
{ {
struct iso_context *ctx = container_of(base, struct iso_context, base); struct iso_context *ctx = container_of(base, struct iso_context, base);
unsigned long flags;
int retval;
spin_lock_irqsave(&ctx->context.ohci->lock, flags);
if (base->type == FW_ISO_CONTEXT_TRANSMIT) if (base->type == FW_ISO_CONTEXT_TRANSMIT)
return ohci_queue_iso_transmit(base, packet, buffer, payload); retval = ohci_queue_iso_transmit(base, packet, buffer, payload);
else if (ctx->context.ohci->version >= OHCI_VERSION_1_1) else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
return ohci_queue_iso_receive_dualbuffer(base, packet, retval = ohci_queue_iso_receive_dualbuffer(base, packet,
buffer, payload); buffer, payload);
else else
return ohci_queue_iso_receive_packet_per_buffer(base, packet, retval = ohci_queue_iso_receive_packet_per_buffer(base, packet,
buffer, buffer,
payload); payload);
spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
return retval;
} }
static const struct fw_card_driver ohci_driver = { static const struct fw_card_driver ohci_driver = {
@ -2004,10 +2090,10 @@ pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
ar_context_init(&ohci->ar_response_ctx, ohci, ar_context_init(&ohci->ar_response_ctx, ohci,
OHCI1394_AsRspRcvContextControlSet); OHCI1394_AsRspRcvContextControlSet);
context_init(&ohci->at_request_ctx, ohci, AT_BUFFER_SIZE, context_init(&ohci->at_request_ctx, ohci,
OHCI1394_AsReqTrContextControlSet, handle_at_packet); OHCI1394_AsReqTrContextControlSet, handle_at_packet);
context_init(&ohci->at_response_ctx, ohci, AT_BUFFER_SIZE, context_init(&ohci->at_response_ctx, ohci,
OHCI1394_AsRspTrContextControlSet, handle_at_packet); OHCI1394_AsRspTrContextControlSet, handle_at_packet);
reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0); reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);

View File

@ -40,6 +40,7 @@
#include <linux/stringify.h> #include <linux/stringify.h>
#include <linux/timer.h> #include <linux/timer.h>
#include <linux/workqueue.h> #include <linux/workqueue.h>
#include <asm/system.h>
#include <scsi/scsi.h> #include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h> #include <scsi/scsi_cmnd.h>
@ -148,18 +149,26 @@ struct sbp2_target {
unsigned workarounds; unsigned workarounds;
struct list_head lu_list; struct list_head lu_list;
unsigned int mgt_orb_timeout;
}; };
#define SBP2_MAX_SG_ELEMENT_LENGTH 0xf000 /*
#define SBP2_MAX_SECTORS 255 /* Max sectors supported */ * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
* provided in the config rom. Most devices do provide a value, which
* we'll use for login management orbs, but with some sane limits.
*/
#define SBP2_MIN_LOGIN_ORB_TIMEOUT 5000U /* Timeout in ms */
#define SBP2_MAX_LOGIN_ORB_TIMEOUT 40000U /* Timeout in ms */
#define SBP2_ORB_TIMEOUT 2000 /* Timeout in ms */ #define SBP2_ORB_TIMEOUT 2000 /* Timeout in ms */
#define SBP2_ORB_NULL 0x80000000 #define SBP2_ORB_NULL 0x80000000
#define SBP2_MAX_SG_ELEMENT_LENGTH 0xf000
#define SBP2_DIRECTION_TO_MEDIA 0x0 #define SBP2_DIRECTION_TO_MEDIA 0x0
#define SBP2_DIRECTION_FROM_MEDIA 0x1 #define SBP2_DIRECTION_FROM_MEDIA 0x1
/* Unit directory keys */ /* Unit directory keys */
#define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
#define SBP2_CSR_FIRMWARE_REVISION 0x3c #define SBP2_CSR_FIRMWARE_REVISION 0x3c
#define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
@ -489,6 +498,7 @@ sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
{ {
struct fw_device *device = fw_device(lu->tgt->unit->device.parent); struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
struct sbp2_management_orb *orb; struct sbp2_management_orb *orb;
unsigned int timeout;
int retval = -ENOMEM; int retval = -ENOMEM;
orb = kzalloc(sizeof(*orb), GFP_ATOMIC); orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
@ -516,9 +526,13 @@ sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
orb->request.status_fifo.low = lu->address_handler.offset; orb->request.status_fifo.low = lu->address_handler.offset;
if (function == SBP2_LOGIN_REQUEST) { if (function == SBP2_LOGIN_REQUEST) {
/* Ask for 2^2 == 4 seconds reconnect grace period */
orb->request.misc |= orb->request.misc |=
MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login) | MANAGEMENT_ORB_RECONNECT(2) |
MANAGEMENT_ORB_RECONNECT(0); MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login);
timeout = lu->tgt->mgt_orb_timeout;
} else {
timeout = SBP2_ORB_TIMEOUT;
} }
fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request)); fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
@ -535,8 +549,7 @@ sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
sbp2_send_orb(&orb->base, lu, node_id, generation, sbp2_send_orb(&orb->base, lu, node_id, generation,
lu->tgt->management_agent_address); lu->tgt->management_agent_address);
wait_for_completion_timeout(&orb->done, wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
msecs_to_jiffies(SBP2_ORB_TIMEOUT));
retval = -EIO; retval = -EIO;
if (sbp2_cancel_orbs(lu) == 0) { if (sbp2_cancel_orbs(lu) == 0) {
@ -608,13 +621,17 @@ static void sbp2_release_target(struct kref *kref)
struct sbp2_logical_unit *lu, *next; struct sbp2_logical_unit *lu, *next;
struct Scsi_Host *shost = struct Scsi_Host *shost =
container_of((void *)tgt, struct Scsi_Host, hostdata[0]); container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
struct fw_device *device = fw_device(tgt->unit->device.parent);
list_for_each_entry_safe(lu, next, &tgt->lu_list, link) { list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
if (lu->sdev) if (lu->sdev)
scsi_remove_device(lu->sdev); scsi_remove_device(lu->sdev);
sbp2_send_management_orb(lu, tgt->node_id, lu->generation, if (!fw_device_is_shutdown(device))
SBP2_LOGOUT_REQUEST, lu->login_id, NULL); sbp2_send_management_orb(lu, tgt->node_id,
lu->generation, SBP2_LOGOUT_REQUEST,
lu->login_id, NULL);
fw_core_remove_address_handler(&lu->address_handler); fw_core_remove_address_handler(&lu->address_handler);
list_del(&lu->link); list_del(&lu->link);
kfree(lu); kfree(lu);
@ -628,6 +645,21 @@ static void sbp2_release_target(struct kref *kref)
static struct workqueue_struct *sbp2_wq; static struct workqueue_struct *sbp2_wq;
/*
* Always get the target's kref when scheduling work on one its units.
* Each workqueue job is responsible to call sbp2_target_put() upon return.
*/
static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
{
if (queue_delayed_work(sbp2_wq, &lu->work, delay))
kref_get(&lu->tgt->kref);
}
static void sbp2_target_put(struct sbp2_target *tgt)
{
kref_put(&tgt->kref, sbp2_release_target);
}
static void sbp2_reconnect(struct work_struct *work); static void sbp2_reconnect(struct work_struct *work);
static void sbp2_login(struct work_struct *work) static void sbp2_login(struct work_struct *work)
@ -643,22 +675,19 @@ static void sbp2_login(struct work_struct *work)
struct sbp2_login_response response; struct sbp2_login_response response;
int generation, node_id, local_node_id; int generation, node_id, local_node_id;
generation = device->card->generation; generation = device->generation;
node_id = device->node->node_id; smp_rmb(); /* node_id must not be older than generation */
local_node_id = device->card->local_node->node_id; node_id = device->node_id;
local_node_id = device->card->node_id;
if (sbp2_send_management_orb(lu, node_id, generation, if (sbp2_send_management_orb(lu, node_id, generation,
SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) { SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
if (lu->retries++ < 5) { if (lu->retries++ < 5)
if (queue_delayed_work(sbp2_wq, &lu->work, sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
DIV_ROUND_UP(HZ, 5))) else
kref_get(&lu->tgt->kref);
} else {
fw_error("failed to login to %s LUN %04x\n", fw_error("failed to login to %s LUN %04x\n",
unit->device.bus_id, lu->lun); unit->device.bus_id, lu->lun);
} goto out;
kref_put(&lu->tgt->kref, sbp2_release_target);
return;
} }
lu->generation = generation; lu->generation = generation;
@ -700,7 +729,8 @@ static void sbp2_login(struct work_struct *work)
lu->sdev = sdev; lu->sdev = sdev;
scsi_device_put(sdev); scsi_device_put(sdev);
} }
kref_put(&lu->tgt->kref, sbp2_release_target); out:
sbp2_target_put(lu->tgt);
} }
static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry) static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
@ -750,6 +780,7 @@ static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
{ {
struct fw_csr_iterator ci; struct fw_csr_iterator ci;
int key, value; int key, value;
unsigned int timeout;
fw_csr_iterator_init(&ci, directory); fw_csr_iterator_init(&ci, directory);
while (fw_csr_iterator_next(&ci, &key, &value)) { while (fw_csr_iterator_next(&ci, &key, &value)) {
@ -772,6 +803,21 @@ static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
*firmware_revision = value; *firmware_revision = value;
break; break;
case SBP2_CSR_UNIT_CHARACTERISTICS:
/* the timeout value is stored in 500ms units */
timeout = ((unsigned int) value >> 8 & 0xff) * 500;
timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
tgt->mgt_orb_timeout =
min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);
if (timeout > tgt->mgt_orb_timeout)
fw_notify("%s: config rom contains %ds "
"management ORB timeout, limiting "
"to %ds\n", tgt->unit->device.bus_id,
timeout / 1000,
tgt->mgt_orb_timeout / 1000);
break;
case SBP2_CSR_LOGICAL_UNIT_NUMBER: case SBP2_CSR_LOGICAL_UNIT_NUMBER:
if (sbp2_add_logical_unit(tgt, value) < 0) if (sbp2_add_logical_unit(tgt, value) < 0)
return -ENOMEM; return -ENOMEM;
@ -865,18 +911,13 @@ static int sbp2_probe(struct device *dev)
get_device(&unit->device); get_device(&unit->device);
/* /* Do the login in a workqueue so we can easily reschedule retries. */
* We schedule work to do the login so we can easily
* reschedule retries. Always get the ref before scheduling
* work.
*/
list_for_each_entry(lu, &tgt->lu_list, link) list_for_each_entry(lu, &tgt->lu_list, link)
if (queue_delayed_work(sbp2_wq, &lu->work, 0)) sbp2_queue_work(lu, 0);
kref_get(&tgt->kref);
return 0; return 0;
fail_tgt_put: fail_tgt_put:
kref_put(&tgt->kref, sbp2_release_target); sbp2_target_put(tgt);
return -ENOMEM; return -ENOMEM;
fail_shost_put: fail_shost_put:
@ -889,7 +930,7 @@ static int sbp2_remove(struct device *dev)
struct fw_unit *unit = fw_unit(dev); struct fw_unit *unit = fw_unit(dev);
struct sbp2_target *tgt = unit->device.driver_data; struct sbp2_target *tgt = unit->device.driver_data;
kref_put(&tgt->kref, sbp2_release_target); sbp2_target_put(tgt);
return 0; return 0;
} }
@ -901,9 +942,10 @@ static void sbp2_reconnect(struct work_struct *work)
struct fw_device *device = fw_device(unit->device.parent); struct fw_device *device = fw_device(unit->device.parent);
int generation, node_id, local_node_id; int generation, node_id, local_node_id;
generation = device->card->generation; generation = device->generation;
node_id = device->node->node_id; smp_rmb(); /* node_id must not be older than generation */
local_node_id = device->card->local_node->node_id; node_id = device->node_id;
local_node_id = device->card->node_id;
if (sbp2_send_management_orb(lu, node_id, generation, if (sbp2_send_management_orb(lu, node_id, generation,
SBP2_RECONNECT_REQUEST, SBP2_RECONNECT_REQUEST,
@ -915,10 +957,8 @@ static void sbp2_reconnect(struct work_struct *work)
lu->retries = 0; lu->retries = 0;
PREPARE_DELAYED_WORK(&lu->work, sbp2_login); PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
} }
if (queue_delayed_work(sbp2_wq, &lu->work, DIV_ROUND_UP(HZ, 5))) sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
kref_get(&lu->tgt->kref); goto out;
kref_put(&lu->tgt->kref, sbp2_release_target);
return;
} }
lu->generation = generation; lu->generation = generation;
@ -930,8 +970,8 @@ static void sbp2_reconnect(struct work_struct *work)
sbp2_agent_reset(lu); sbp2_agent_reset(lu);
sbp2_cancel_orbs(lu); sbp2_cancel_orbs(lu);
out:
kref_put(&lu->tgt->kref, sbp2_release_target); sbp2_target_put(lu->tgt);
} }
static void sbp2_update(struct fw_unit *unit) static void sbp2_update(struct fw_unit *unit)
@ -947,8 +987,7 @@ static void sbp2_update(struct fw_unit *unit)
*/ */
list_for_each_entry(lu, &tgt->lu_list, link) { list_for_each_entry(lu, &tgt->lu_list, link) {
lu->retries = 0; lu->retries = 0;
if (queue_delayed_work(sbp2_wq, &lu->work, 0)) sbp2_queue_work(lu, 0);
kref_get(&tgt->kref);
} }
} }
@ -1103,9 +1142,9 @@ sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
* elements larger than 65535 bytes, some IOMMUs may merge sg elements * elements larger than 65535 bytes, some IOMMUs may merge sg elements
* during DMA mapping, and Linux currently doesn't prevent this. * during DMA mapping, and Linux currently doesn't prevent this.
*/ */
for (i = 0, j = 0; i < count; i++) { for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
sg_len = sg_dma_len(sg + i); sg_len = sg_dma_len(sg);
sg_addr = sg_dma_address(sg + i); sg_addr = sg_dma_address(sg);
while (sg_len) { while (sg_len) {
/* FIXME: This won't get us out of the pinch. */ /* FIXME: This won't get us out of the pinch. */
if (unlikely(j >= ARRAY_SIZE(orb->page_table))) { if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {

View File

@ -21,6 +21,7 @@
#include <linux/module.h> #include <linux/module.h>
#include <linux/wait.h> #include <linux/wait.h>
#include <linux/errno.h> #include <linux/errno.h>
#include <asm/system.h>
#include "fw-transaction.h" #include "fw-transaction.h"
#include "fw-topology.h" #include "fw-topology.h"
@ -518,6 +519,11 @@ fw_core_handle_bus_reset(struct fw_card *card,
card->bm_retries = 0; card->bm_retries = 0;
card->node_id = node_id; card->node_id = node_id;
/*
* Update node_id before generation to prevent anybody from using
* a stale node_id together with a current generation.
*/
smp_wmb();
card->generation = generation; card->generation = generation;
card->reset_jiffies = jiffies; card->reset_jiffies = jiffies;
schedule_delayed_work(&card->work, 0); schedule_delayed_work(&card->work, 0);

View File

@ -153,7 +153,7 @@ fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
int ext_tcode; int ext_tcode;
if (tcode > 0x10) { if (tcode > 0x10) {
ext_tcode = tcode - 0x10; ext_tcode = tcode & ~0x10;
tcode = TCODE_LOCK_REQUEST; tcode = TCODE_LOCK_REQUEST;
} else } else
ext_tcode = 0; ext_tcode = 0;
@ -650,7 +650,7 @@ fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) | p->header[2]; HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) | p->header[2];
tcode = HEADER_GET_TCODE(p->header[0]); tcode = HEADER_GET_TCODE(p->header[0]);
destination = HEADER_GET_DESTINATION(p->header[0]); destination = HEADER_GET_DESTINATION(p->header[0]);
source = HEADER_GET_SOURCE(p->header[0]); source = HEADER_GET_SOURCE(p->header[1]);
spin_lock_irqsave(&address_handler_lock, flags); spin_lock_irqsave(&address_handler_lock, flags);
handler = lookup_enclosing_address_handler(&address_handler_list, handler = lookup_enclosing_address_handler(&address_handler_list,

View File

@ -231,37 +231,24 @@ void dma_region_sync_for_device(struct dma_region *dma, unsigned long offset,
#ifdef CONFIG_MMU #ifdef CONFIG_MMU
/* nopage() handler for mmap access */ static int dma_region_pagefault(struct vm_area_struct *vma,
struct vm_fault *vmf)
static struct page *dma_region_pagefault(struct vm_area_struct *area,
unsigned long address, int *type)
{ {
unsigned long offset; struct dma_region *dma = (struct dma_region *)vma->vm_private_data;
unsigned long kernel_virt_addr;
struct page *ret = NOPAGE_SIGBUS;
struct dma_region *dma = (struct dma_region *)area->vm_private_data;
if (!dma->kvirt) if (!dma->kvirt)
goto out; return VM_FAULT_SIGBUS;
if ((address < (unsigned long)area->vm_start) || if (vmf->pgoff >= dma->n_pages)
(address > return VM_FAULT_SIGBUS;
(unsigned long)area->vm_start + (dma->n_pages << PAGE_SHIFT)))
goto out;
if (type) vmf->page = vmalloc_to_page(dma->kvirt + (vmf->pgoff << PAGE_SHIFT));
*type = VM_FAULT_MINOR; get_page(vmf->page);
offset = address - area->vm_start; return 0;
kernel_virt_addr = (unsigned long)dma->kvirt + offset;
ret = vmalloc_to_page((void *)kernel_virt_addr);
get_page(ret);
out:
return ret;
} }
static struct vm_operations_struct dma_region_vm_ops = { static struct vm_operations_struct dma_region_vm_ops = {
.nopage = dma_region_pagefault, .fault = dma_region_pagefault,
}; };
/** /**
@ -275,7 +262,7 @@ int dma_region_mmap(struct dma_region *dma, struct file *file,
if (!dma->kvirt) if (!dma->kvirt)
return -EINVAL; return -EINVAL;
/* must be page-aligned */ /* must be page-aligned (XXX: comment is wrong, we could allow pgoff) */
if (vma->vm_pgoff != 0) if (vma->vm_pgoff != 0)
return -EINVAL; return -EINVAL;

View File

@ -570,71 +570,3 @@ int hpsb_write(struct hpsb_host *host, nodeid_t node, unsigned int generation,
return retval; return retval;
} }
#if 0
int hpsb_lock(struct hpsb_host *host, nodeid_t node, unsigned int generation,
u64 addr, int extcode, quadlet_t * data, quadlet_t arg)
{
struct hpsb_packet *packet;
int retval = 0;
BUG_ON(in_interrupt()); // We can't be called in an interrupt, yet
packet = hpsb_make_lockpacket(host, node, addr, extcode, data, arg);
if (!packet)
return -ENOMEM;
packet->generation = generation;
retval = hpsb_send_packet_and_wait(packet);
if (retval < 0)
goto hpsb_lock_fail;
retval = hpsb_packet_success(packet);
if (retval == 0) {
*data = packet->data[0];
}
hpsb_lock_fail:
hpsb_free_tlabel(packet);
hpsb_free_packet(packet);
return retval;
}
int hpsb_send_gasp(struct hpsb_host *host, int channel, unsigned int generation,
quadlet_t * buffer, size_t length, u32 specifier_id,
unsigned int version)
{
struct hpsb_packet *packet;
int retval = 0;
u16 specifier_id_hi = (specifier_id & 0x00ffff00) >> 8;
u8 specifier_id_lo = specifier_id & 0xff;
HPSB_VERBOSE("Send GASP: channel = %d, length = %Zd", channel, length);
length += 8;
packet = hpsb_make_streampacket(host, NULL, length, channel, 3, 0);
if (!packet)
return -ENOMEM;
packet->data[0] = cpu_to_be32((host->node_id << 16) | specifier_id_hi);
packet->data[1] =
cpu_to_be32((specifier_id_lo << 24) | (version & 0x00ffffff));
memcpy(&(packet->data[2]), buffer, length - 8);
packet->generation = generation;
packet->no_waiter = 1;
retval = hpsb_send_packet(packet);
if (retval < 0)
hpsb_free_packet(packet);
return retval;
}
#endif /* 0 */

View File

@ -2126,10 +2126,14 @@ static void ohci_schedule_iso_tasklets(struct ti_ohci *ohci,
list_for_each_entry(t, &ohci->iso_tasklet_list, link) { list_for_each_entry(t, &ohci->iso_tasklet_list, link) {
mask = 1 << t->context; mask = 1 << t->context;
if (t->type == OHCI_ISO_TRANSMIT && tx_event & mask) if (t->type == OHCI_ISO_TRANSMIT) {
tasklet_schedule(&t->tasklet); if (tx_event & mask)
else if (rx_event & mask) tasklet_schedule(&t->tasklet);
tasklet_schedule(&t->tasklet); } else {
/* OHCI_ISO_RECEIVE or OHCI_ISO_MULTICHANNEL_RECEIVE */
if (rx_event & mask)
tasklet_schedule(&t->tasklet);
}
} }
spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags); spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);

View File

@ -858,7 +858,7 @@ static int arm_read(struct hpsb_host *host, int nodeid, quadlet_t * buffer,
int found = 0, size = 0, rcode = -1; int found = 0, size = 0, rcode = -1;
struct arm_request_response *arm_req_resp = NULL; struct arm_request_response *arm_req_resp = NULL;
DBGMSG("arm_read called by node: %X" DBGMSG("arm_read called by node: %X "
"addr: %4.4x %8.8x length: %Zu", nodeid, "addr: %4.4x %8.8x length: %Zu", nodeid,
(u16) ((addr >> 32) & 0xFFFF), (u32) (addr & 0xFFFFFFFF), (u16) ((addr >> 32) & 0xFFFF), (u32) (addr & 0xFFFFFFFF),
length); length);
@ -1012,7 +1012,7 @@ static int arm_write(struct hpsb_host *host, int nodeid, int destid,
int found = 0, size = 0, rcode = -1, length_conflict = 0; int found = 0, size = 0, rcode = -1, length_conflict = 0;
struct arm_request_response *arm_req_resp = NULL; struct arm_request_response *arm_req_resp = NULL;
DBGMSG("arm_write called by node: %X" DBGMSG("arm_write called by node: %X "
"addr: %4.4x %8.8x length: %Zu", nodeid, "addr: %4.4x %8.8x length: %Zu", nodeid,
(u16) ((addr >> 32) & 0xFFFF), (u32) (addr & 0xFFFFFFFF), (u16) ((addr >> 32) & 0xFFFF), (u32) (addr & 0xFFFFFFFF),
length); length);

View File

@ -51,6 +51,7 @@
* Grep for inline FIXME comments below. * Grep for inline FIXME comments below.
*/ */
#include <linux/blkdev.h>
#include <linux/compiler.h> #include <linux/compiler.h>
#include <linux/delay.h> #include <linux/delay.h>
#include <linux/device.h> #include <linux/device.h>
@ -127,17 +128,21 @@ MODULE_PARM_DESC(serialize_io, "Serialize requests coming from SCSI drivers "
"(default = Y, faster but buggy = N)"); "(default = Y, faster but buggy = N)");
/* /*
* Bump up max_sectors if you'd like to support very large sized * Adjust max_sectors if you'd like to influence how many sectors each SCSI
* transfers. Please note that some older sbp2 bridge chips are broken for * command can transfer at most. Please note that some older SBP-2 bridge
* transfers greater or equal to 128KB. Default is a value of 255 * chips are broken for transfers greater or equal to 128KB, therefore
* sectors, or just under 128KB (at 512 byte sector size). I can note that * max_sectors used to be a safe 255 sectors for many years. We now have a
* the Oxsemi sbp2 chipsets have no problems supporting very large * default of 0 here which means that we let the SCSI stack choose a limit.
* transfer sizes. *
* The SBP2_WORKAROUND_128K_MAX_TRANS flag, if set either in the workarounds
* module parameter or in the sbp2_workarounds_table[], will override the
* value of max_sectors. We should use sbp2_workarounds_table[] to cover any
* bridge chip which becomes known to need the 255 sectors limit.
*/ */
static int sbp2_max_sectors = SBP2_MAX_SECTORS; static int sbp2_max_sectors;
module_param_named(max_sectors, sbp2_max_sectors, int, 0444); module_param_named(max_sectors, sbp2_max_sectors, int, 0444);
MODULE_PARM_DESC(max_sectors, "Change max sectors per I/O supported " MODULE_PARM_DESC(max_sectors, "Change max sectors per I/O supported "
"(default = " __stringify(SBP2_MAX_SECTORS) ")"); "(default = 0 = use SCSI stack's default)");
/* /*
* Exclusive login to sbp2 device? In most cases, the sbp2 driver should * Exclusive login to sbp2 device? In most cases, the sbp2 driver should
@ -1451,7 +1456,7 @@ static void sbp2_prep_command_orb_sg(struct sbp2_command_orb *orb,
struct sbp2_fwhost_info *hi, struct sbp2_fwhost_info *hi,
struct sbp2_command_info *cmd, struct sbp2_command_info *cmd,
unsigned int scsi_use_sg, unsigned int scsi_use_sg,
struct scatterlist *sgpnt, struct scatterlist *sg,
u32 orb_direction, u32 orb_direction,
enum dma_data_direction dma_dir) enum dma_data_direction dma_dir)
{ {
@ -1461,12 +1466,12 @@ static void sbp2_prep_command_orb_sg(struct sbp2_command_orb *orb,
/* special case if only one element (and less than 64KB in size) */ /* special case if only one element (and less than 64KB in size) */
if ((scsi_use_sg == 1) && if ((scsi_use_sg == 1) &&
(sgpnt[0].length <= SBP2_MAX_SG_ELEMENT_LENGTH)) { (sg_dma_len(sg) <= SBP2_MAX_SG_ELEMENT_LENGTH)) {
cmd->dma_size = sgpnt[0].length; cmd->dma_size = sg_dma_len(sg);
cmd->dma_type = CMD_DMA_PAGE; cmd->dma_type = CMD_DMA_PAGE;
cmd->cmd_dma = dma_map_page(hi->host->device.parent, cmd->cmd_dma = dma_map_page(hi->host->device.parent,
sg_page(&sgpnt[0]), sgpnt[0].offset, sg_page(sg), sg->offset,
cmd->dma_size, cmd->dma_dir); cmd->dma_size, cmd->dma_dir);
orb->data_descriptor_lo = cmd->cmd_dma; orb->data_descriptor_lo = cmd->cmd_dma;
@ -1477,11 +1482,11 @@ static void sbp2_prep_command_orb_sg(struct sbp2_command_orb *orb,
&cmd->scatter_gather_element[0]; &cmd->scatter_gather_element[0];
u32 sg_count, sg_len; u32 sg_count, sg_len;
dma_addr_t sg_addr; dma_addr_t sg_addr;
int i, count = dma_map_sg(hi->host->device.parent, sgpnt, int i, count = dma_map_sg(hi->host->device.parent, sg,
scsi_use_sg, dma_dir); scsi_use_sg, dma_dir);
cmd->dma_size = scsi_use_sg; cmd->dma_size = scsi_use_sg;
cmd->sge_buffer = sgpnt; cmd->sge_buffer = sg;
/* use page tables (s/g) */ /* use page tables (s/g) */
orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1); orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1);
@ -1489,9 +1494,9 @@ static void sbp2_prep_command_orb_sg(struct sbp2_command_orb *orb,
/* loop through and fill out our SBP-2 page tables /* loop through and fill out our SBP-2 page tables
* (and split up anything too large) */ * (and split up anything too large) */
for (i = 0, sg_count = 0 ; i < count; i++, sgpnt++) { for (i = 0, sg_count = 0; i < count; i++, sg = sg_next(sg)) {
sg_len = sg_dma_len(sgpnt); sg_len = sg_dma_len(sg);
sg_addr = sg_dma_address(sgpnt); sg_addr = sg_dma_address(sg);
while (sg_len) { while (sg_len) {
sg_element[sg_count].segment_base_lo = sg_addr; sg_element[sg_count].segment_base_lo = sg_addr;
if (sg_len > SBP2_MAX_SG_ELEMENT_LENGTH) { if (sg_len > SBP2_MAX_SG_ELEMENT_LENGTH) {
@ -1521,11 +1526,10 @@ static void sbp2_create_command_orb(struct sbp2_lu *lu,
unchar *scsi_cmd, unchar *scsi_cmd,
unsigned int scsi_use_sg, unsigned int scsi_use_sg,
unsigned int scsi_request_bufflen, unsigned int scsi_request_bufflen,
void *scsi_request_buffer, struct scatterlist *sg,
enum dma_data_direction dma_dir) enum dma_data_direction dma_dir)
{ {
struct sbp2_fwhost_info *hi = lu->hi; struct sbp2_fwhost_info *hi = lu->hi;
struct scatterlist *sgpnt = (struct scatterlist *)scsi_request_buffer;
struct sbp2_command_orb *orb = &cmd->command_orb; struct sbp2_command_orb *orb = &cmd->command_orb;
u32 orb_direction; u32 orb_direction;
@ -1560,7 +1564,7 @@ static void sbp2_create_command_orb(struct sbp2_lu *lu,
orb->data_descriptor_lo = 0x0; orb->data_descriptor_lo = 0x0;
orb->misc |= ORB_SET_DIRECTION(1); orb->misc |= ORB_SET_DIRECTION(1);
} else } else
sbp2_prep_command_orb_sg(orb, hi, cmd, scsi_use_sg, sgpnt, sbp2_prep_command_orb_sg(orb, hi, cmd, scsi_use_sg, sg,
orb_direction, dma_dir); orb_direction, dma_dir);
sbp2util_cpu_to_be32_buffer(orb, sizeof(*orb)); sbp2util_cpu_to_be32_buffer(orb, sizeof(*orb));
@ -1650,7 +1654,6 @@ static int sbp2_send_command(struct sbp2_lu *lu, struct scsi_cmnd *SCpnt,
void (*done)(struct scsi_cmnd *)) void (*done)(struct scsi_cmnd *))
{ {
unchar *scsi_cmd = (unchar *)SCpnt->cmnd; unchar *scsi_cmd = (unchar *)SCpnt->cmnd;
unsigned int request_bufflen = scsi_bufflen(SCpnt);
struct sbp2_command_info *cmd; struct sbp2_command_info *cmd;
cmd = sbp2util_allocate_command_orb(lu, SCpnt, done); cmd = sbp2util_allocate_command_orb(lu, SCpnt, done);
@ -1658,7 +1661,7 @@ static int sbp2_send_command(struct sbp2_lu *lu, struct scsi_cmnd *SCpnt,
return -EIO; return -EIO;
sbp2_create_command_orb(lu, cmd, scsi_cmd, scsi_sg_count(SCpnt), sbp2_create_command_orb(lu, cmd, scsi_cmd, scsi_sg_count(SCpnt),
request_bufflen, scsi_sglist(SCpnt), scsi_bufflen(SCpnt), scsi_sglist(SCpnt),
SCpnt->sc_data_direction); SCpnt->sc_data_direction);
sbp2_link_orb_command(lu, cmd); sbp2_link_orb_command(lu, cmd);
@ -1987,6 +1990,8 @@ static int sbp2scsi_slave_configure(struct scsi_device *sdev)
sdev->skip_ms_page_8 = 1; sdev->skip_ms_page_8 = 1;
if (lu->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) if (lu->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
sdev->fix_capacity = 1; sdev->fix_capacity = 1;
if (lu->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
return 0; return 0;
} }
@ -2093,9 +2098,6 @@ static int sbp2_module_init(void)
sbp2_shost_template.cmd_per_lun = 1; sbp2_shost_template.cmd_per_lun = 1;
} }
if (sbp2_default_workarounds & SBP2_WORKAROUND_128K_MAX_TRANS &&
(sbp2_max_sectors * 512) > (128 * 1024))
sbp2_max_sectors = 128 * 1024 / 512;
sbp2_shost_template.max_sectors = sbp2_max_sectors; sbp2_shost_template.max_sectors = sbp2_max_sectors;
hpsb_register_highlevel(&sbp2_highlevel); hpsb_register_highlevel(&sbp2_highlevel);

View File

@ -222,7 +222,6 @@ struct sbp2_status_block {
*/ */
#define SBP2_MAX_SG_ELEMENT_LENGTH 0xf000 #define SBP2_MAX_SG_ELEMENT_LENGTH 0xf000
#define SBP2_MAX_SECTORS 255
/* There is no real limitation of the queue depth (i.e. length of the linked /* There is no real limitation of the queue depth (i.e. length of the linked
* list of command ORBs) at the target. The chosen depth is merely an * list of command ORBs) at the target. The chosen depth is merely an
* implementation detail of the sbp2 driver. */ * implementation detail of the sbp2 driver. */