kvm: x86/mmu: Support dirty logging for the TDP MMU

Dirty logging is a key feature of the KVM MMU and must be supported by
the TDP MMU. Add support for both the write protection and PML dirty
logging modes.

Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.

This series can be viewed in Gerrit at:
	https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-16-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit is contained in:
Ben Gardon 2020-10-14 11:26:55 -07:00 committed by Paolo Bonzini
parent 1d8dd6b3f1
commit a6a0b05da9
6 changed files with 328 additions and 9 deletions

View File

@ -1223,6 +1223,9 @@ static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
{ {
struct kvm_rmap_head *rmap_head; struct kvm_rmap_head *rmap_head;
if (kvm->arch.tdp_mmu_enabled)
kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
slot->base_gfn + gfn_offset, mask, true);
while (mask) { while (mask) {
rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
PG_LEVEL_4K, slot); PG_LEVEL_4K, slot);
@ -1249,6 +1252,9 @@ void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
{ {
struct kvm_rmap_head *rmap_head; struct kvm_rmap_head *rmap_head;
if (kvm->arch.tdp_mmu_enabled)
kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
slot->base_gfn + gfn_offset, mask, false);
while (mask) { while (mask) {
rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
PG_LEVEL_4K, slot); PG_LEVEL_4K, slot);
@ -5473,6 +5479,8 @@ void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
spin_lock(&kvm->mmu_lock); spin_lock(&kvm->mmu_lock);
flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect, flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
start_level, KVM_MAX_HUGEPAGE_LEVEL, false); start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
if (kvm->arch.tdp_mmu_enabled)
flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
spin_unlock(&kvm->mmu_lock); spin_unlock(&kvm->mmu_lock);
/* /*
@ -5561,6 +5569,8 @@ void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
spin_lock(&kvm->mmu_lock); spin_lock(&kvm->mmu_lock);
flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false); flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
if (kvm->arch.tdp_mmu_enabled)
flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
spin_unlock(&kvm->mmu_lock); spin_unlock(&kvm->mmu_lock);
/* /*
@ -5582,6 +5592,8 @@ void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
spin_lock(&kvm->mmu_lock); spin_lock(&kvm->mmu_lock);
flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect, flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
false); false);
if (kvm->arch.tdp_mmu_enabled)
flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M);
spin_unlock(&kvm->mmu_lock); spin_unlock(&kvm->mmu_lock);
if (flush) if (flush)
@ -5596,6 +5608,8 @@ void kvm_mmu_slot_set_dirty(struct kvm *kvm,
spin_lock(&kvm->mmu_lock); spin_lock(&kvm->mmu_lock);
flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false); flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
if (kvm->arch.tdp_mmu_enabled)
flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot);
spin_unlock(&kvm->mmu_lock); spin_unlock(&kvm->mmu_lock);
if (flush) if (flush)

View File

@ -41,11 +41,14 @@ struct tdp_iter {
* Iterates over every SPTE mapping the GFN range [start, end) in a * Iterates over every SPTE mapping the GFN range [start, end) in a
* preorder traversal. * preorder traversal.
*/ */
#define for_each_tdp_pte(iter, root, root_level, start, end) \ #define for_each_tdp_pte_min_level(iter, root, root_level, min_level, start, end) \
for (tdp_iter_start(&iter, root, root_level, PG_LEVEL_4K, start); \ for (tdp_iter_start(&iter, root, root_level, min_level, start); \
iter.valid && iter.gfn < end; \ iter.valid && iter.gfn < end; \
tdp_iter_next(&iter)) tdp_iter_next(&iter))
#define for_each_tdp_pte(iter, root, root_level, start, end) \
for_each_tdp_pte_min_level(iter, root, root_level, PG_LEVEL_4K, start, end)
u64 *spte_to_child_pt(u64 pte, int level); u64 *spte_to_child_pt(u64 pte, int level);
void tdp_iter_start(struct tdp_iter *iter, u64 *root_pt, int root_level, void tdp_iter_start(struct tdp_iter *iter, u64 *root_pt, int root_level,

View File

@ -161,6 +161,24 @@ static void handle_changed_spte_acc_track(u64 old_spte, u64 new_spte, int level)
kvm_set_pfn_accessed(spte_to_pfn(old_spte)); kvm_set_pfn_accessed(spte_to_pfn(old_spte));
} }
static void handle_changed_spte_dirty_log(struct kvm *kvm, int as_id, gfn_t gfn,
u64 old_spte, u64 new_spte, int level)
{
bool pfn_changed;
struct kvm_memory_slot *slot;
if (level > PG_LEVEL_4K)
return;
pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
if ((!is_writable_pte(old_spte) || pfn_changed) &&
is_writable_pte(new_spte)) {
slot = __gfn_to_memslot(__kvm_memslots(kvm, as_id), gfn);
mark_page_dirty_in_slot(slot, gfn);
}
}
/** /**
* handle_changed_spte - handle bookkeeping associated with an SPTE change * handle_changed_spte - handle bookkeeping associated with an SPTE change
* @kvm: kvm instance * @kvm: kvm instance
@ -273,10 +291,13 @@ static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
{ {
__handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level); __handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level);
handle_changed_spte_acc_track(old_spte, new_spte, level); handle_changed_spte_acc_track(old_spte, new_spte, level);
handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
new_spte, level);
} }
static inline void __tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter, static inline void __tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
u64 new_spte, bool record_acc_track) u64 new_spte, bool record_acc_track,
bool record_dirty_log)
{ {
u64 *root_pt = tdp_iter_root_pt(iter); u64 *root_pt = tdp_iter_root_pt(iter);
struct kvm_mmu_page *root = sptep_to_sp(root_pt); struct kvm_mmu_page *root = sptep_to_sp(root_pt);
@ -289,19 +310,30 @@ static inline void __tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
if (record_acc_track) if (record_acc_track)
handle_changed_spte_acc_track(iter->old_spte, new_spte, handle_changed_spte_acc_track(iter->old_spte, new_spte,
iter->level); iter->level);
if (record_dirty_log)
handle_changed_spte_dirty_log(kvm, as_id, iter->gfn,
iter->old_spte, new_spte,
iter->level);
} }
static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter, static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
u64 new_spte) u64 new_spte)
{ {
__tdp_mmu_set_spte(kvm, iter, new_spte, true); __tdp_mmu_set_spte(kvm, iter, new_spte, true, true);
} }
static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm, static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm,
struct tdp_iter *iter, struct tdp_iter *iter,
u64 new_spte) u64 new_spte)
{ {
__tdp_mmu_set_spte(kvm, iter, new_spte, false); __tdp_mmu_set_spte(kvm, iter, new_spte, false, true);
}
static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm,
struct tdp_iter *iter,
u64 new_spte)
{
__tdp_mmu_set_spte(kvm, iter, new_spte, true, false);
} }
#define tdp_root_for_each_pte(_iter, _root, _start, _end) \ #define tdp_root_for_each_pte(_iter, _root, _start, _end) \
@ -334,6 +366,14 @@ static bool tdp_mmu_iter_flush_cond_resched(struct kvm *kvm, struct tdp_iter *it
} }
} }
static void tdp_mmu_iter_cond_resched(struct kvm *kvm, struct tdp_iter *iter)
{
if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
cond_resched_lock(&kvm->mmu_lock);
tdp_iter_refresh_walk(iter);
}
}
/* /*
* Tears down the mappings for the range of gfns, [start, end), and frees the * Tears down the mappings for the range of gfns, [start, end), and frees the
* non-root pages mapping GFNs strictly within that range. Returns true if * non-root pages mapping GFNs strictly within that range. Returns true if
@ -638,6 +678,7 @@ static int age_gfn_range(struct kvm *kvm, struct kvm_memory_slot *slot,
new_spte = mark_spte_for_access_track(new_spte); new_spte = mark_spte_for_access_track(new_spte);
} }
new_spte &= ~shadow_dirty_mask;
tdp_mmu_set_spte_no_acc_track(kvm, &iter, new_spte); tdp_mmu_set_spte_no_acc_track(kvm, &iter, new_spte);
young = 1; young = 1;
@ -727,3 +768,255 @@ int kvm_tdp_mmu_set_spte_hva(struct kvm *kvm, unsigned long address,
set_tdp_spte); set_tdp_spte);
} }
/*
* Remove write access from all the SPTEs mapping GFNs [start, end). If
* skip_4k is set, SPTEs that map 4k pages, will not be write-protected.
* Returns true if an SPTE has been changed and the TLBs need to be flushed.
*/
static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
gfn_t start, gfn_t end, int min_level)
{
struct tdp_iter iter;
u64 new_spte;
bool spte_set = false;
BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
for_each_tdp_pte_min_level(iter, root->spt, root->role.level,
min_level, start, end) {
if (!is_shadow_present_pte(iter.old_spte) ||
!is_last_spte(iter.old_spte, iter.level))
continue;
new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
spte_set = true;
tdp_mmu_iter_cond_resched(kvm, &iter);
}
return spte_set;
}
/*
* Remove write access from all the SPTEs mapping GFNs in the memslot. Will
* only affect leaf SPTEs down to min_level.
* Returns true if an SPTE has been changed and the TLBs need to be flushed.
*/
bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, struct kvm_memory_slot *slot,
int min_level)
{
struct kvm_mmu_page *root;
int root_as_id;
bool spte_set = false;
for_each_tdp_mmu_root(kvm, root) {
root_as_id = kvm_mmu_page_as_id(root);
if (root_as_id != slot->as_id)
continue;
/*
* Take a reference on the root so that it cannot be freed if
* this thread releases the MMU lock and yields in this loop.
*/
kvm_mmu_get_root(kvm, root);
spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn,
slot->base_gfn + slot->npages, min_level);
kvm_mmu_put_root(kvm, root);
}
return spte_set;
}
/*
* Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
* AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
* If AD bits are not enabled, this will require clearing the writable bit on
* each SPTE. Returns true if an SPTE has been changed and the TLBs need to
* be flushed.
*/
static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
gfn_t start, gfn_t end)
{
struct tdp_iter iter;
u64 new_spte;
bool spte_set = false;
tdp_root_for_each_leaf_pte(iter, root, start, end) {
if (spte_ad_need_write_protect(iter.old_spte)) {
if (is_writable_pte(iter.old_spte))
new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
else
continue;
} else {
if (iter.old_spte & shadow_dirty_mask)
new_spte = iter.old_spte & ~shadow_dirty_mask;
else
continue;
}
tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
spte_set = true;
tdp_mmu_iter_cond_resched(kvm, &iter);
}
return spte_set;
}
/*
* Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
* AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
* If AD bits are not enabled, this will require clearing the writable bit on
* each SPTE. Returns true if an SPTE has been changed and the TLBs need to
* be flushed.
*/
bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, struct kvm_memory_slot *slot)
{
struct kvm_mmu_page *root;
int root_as_id;
bool spte_set = false;
for_each_tdp_mmu_root(kvm, root) {
root_as_id = kvm_mmu_page_as_id(root);
if (root_as_id != slot->as_id)
continue;
/*
* Take a reference on the root so that it cannot be freed if
* this thread releases the MMU lock and yields in this loop.
*/
kvm_mmu_get_root(kvm, root);
spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn,
slot->base_gfn + slot->npages);
kvm_mmu_put_root(kvm, root);
}
return spte_set;
}
/*
* Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
* set in mask, starting at gfn. The given memslot is expected to contain all
* the GFNs represented by set bits in the mask. If AD bits are enabled,
* clearing the dirty status will involve clearing the dirty bit on each SPTE
* or, if AD bits are not enabled, clearing the writable bit on each SPTE.
*/
static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
gfn_t gfn, unsigned long mask, bool wrprot)
{
struct tdp_iter iter;
u64 new_spte;
tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask),
gfn + BITS_PER_LONG) {
if (!mask)
break;
if (iter.level > PG_LEVEL_4K ||
!(mask & (1UL << (iter.gfn - gfn))))
continue;
if (wrprot || spte_ad_need_write_protect(iter.old_spte)) {
if (is_writable_pte(iter.old_spte))
new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
else
continue;
} else {
if (iter.old_spte & shadow_dirty_mask)
new_spte = iter.old_spte & ~shadow_dirty_mask;
else
continue;
}
tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
mask &= ~(1UL << (iter.gfn - gfn));
}
}
/*
* Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
* set in mask, starting at gfn. The given memslot is expected to contain all
* the GFNs represented by set bits in the mask. If AD bits are enabled,
* clearing the dirty status will involve clearing the dirty bit on each SPTE
* or, if AD bits are not enabled, clearing the writable bit on each SPTE.
*/
void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *slot,
gfn_t gfn, unsigned long mask,
bool wrprot)
{
struct kvm_mmu_page *root;
int root_as_id;
lockdep_assert_held(&kvm->mmu_lock);
for_each_tdp_mmu_root(kvm, root) {
root_as_id = kvm_mmu_page_as_id(root);
if (root_as_id != slot->as_id)
continue;
clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot);
}
}
/*
* Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
* only used for PML, and so will involve setting the dirty bit on each SPTE.
* Returns true if an SPTE has been changed and the TLBs need to be flushed.
*/
static bool set_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
gfn_t start, gfn_t end)
{
struct tdp_iter iter;
u64 new_spte;
bool spte_set = false;
tdp_root_for_each_pte(iter, root, start, end) {
if (!is_shadow_present_pte(iter.old_spte))
continue;
new_spte = iter.old_spte | shadow_dirty_mask;
tdp_mmu_set_spte(kvm, &iter, new_spte);
spte_set = true;
tdp_mmu_iter_cond_resched(kvm, &iter);
}
return spte_set;
}
/*
* Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
* only used for PML, and so will involve setting the dirty bit on each SPTE.
* Returns true if an SPTE has been changed and the TLBs need to be flushed.
*/
bool kvm_tdp_mmu_slot_set_dirty(struct kvm *kvm, struct kvm_memory_slot *slot)
{
struct kvm_mmu_page *root;
int root_as_id;
bool spte_set = false;
for_each_tdp_mmu_root(kvm, root) {
root_as_id = kvm_mmu_page_as_id(root);
if (root_as_id != slot->as_id)
continue;
/*
* Take a reference on the root so that it cannot be freed if
* this thread releases the MMU lock and yields in this loop.
*/
kvm_mmu_get_root(kvm, root);
spte_set |= set_dirty_gfn_range(kvm, root, slot->base_gfn,
slot->base_gfn + slot->npages);
kvm_mmu_put_root(kvm, root);
}
return spte_set;
}

View File

@ -28,4 +28,14 @@ int kvm_tdp_mmu_test_age_hva(struct kvm *kvm, unsigned long hva);
int kvm_tdp_mmu_set_spte_hva(struct kvm *kvm, unsigned long address, int kvm_tdp_mmu_set_spte_hva(struct kvm *kvm, unsigned long address,
pte_t *host_ptep); pte_t *host_ptep);
bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, struct kvm_memory_slot *slot,
int min_level);
bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm,
struct kvm_memory_slot *slot);
void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *slot,
gfn_t gfn, unsigned long mask,
bool wrprot);
bool kvm_tdp_mmu_slot_set_dirty(struct kvm *kvm, struct kvm_memory_slot *slot);
#endif /* __KVM_X86_MMU_TDP_MMU_H */ #endif /* __KVM_X86_MMU_TDP_MMU_H */

View File

@ -798,6 +798,7 @@ struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
void mark_page_dirty(struct kvm *kvm, gfn_t gfn); void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);

View File

@ -143,8 +143,6 @@ static void hardware_disable_all(void);
static void kvm_io_bus_destroy(struct kvm_io_bus *bus); static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
__visible bool kvm_rebooting; __visible bool kvm_rebooting;
EXPORT_SYMBOL_GPL(kvm_rebooting); EXPORT_SYMBOL_GPL(kvm_rebooting);
@ -2645,8 +2643,7 @@ int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
} }
EXPORT_SYMBOL_GPL(kvm_clear_guest); EXPORT_SYMBOL_GPL(kvm_clear_guest);
static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn)
gfn_t gfn)
{ {
if (memslot && memslot->dirty_bitmap) { if (memslot && memslot->dirty_bitmap) {
unsigned long rel_gfn = gfn - memslot->base_gfn; unsigned long rel_gfn = gfn - memslot->base_gfn;
@ -2654,6 +2651,7 @@ static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
set_bit_le(rel_gfn, memslot->dirty_bitmap); set_bit_le(rel_gfn, memslot->dirty_bitmap);
} }
} }
EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
void mark_page_dirty(struct kvm *kvm, gfn_t gfn) void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
{ {