forked from luck/tmp_suning_uos_patched
x86: EFI runtime service support: remove duplicated code from efi_32.c
This patch removes the duplicated code between efi_32.c and efi.c. Signed-off-by: Huang Ying <ying.huang@intel.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This commit is contained in:
parent
9ad65e4748
commit
e429795c68
@ -38,7 +38,7 @@ obj-$(CONFIG_X86_SUMMIT_NUMA) += summit_32.o
|
||||
obj-$(CONFIG_KPROBES) += kprobes_32.o
|
||||
obj-$(CONFIG_MODULES) += module_32.o
|
||||
obj-$(CONFIG_ACPI_SRAT) += srat_32.o
|
||||
obj-$(CONFIG_EFI) += efi_32.o efi_stub_32.o
|
||||
obj-$(CONFIG_EFI) += efi.o efi_32.o efi_stub_32.o
|
||||
obj-$(CONFIG_DOUBLEFAULT) += doublefault_32.o
|
||||
obj-$(CONFIG_VM86) += vm86_32.o
|
||||
obj-$(CONFIG_EARLY_PRINTK) += early_printk.o
|
||||
|
@ -17,11 +17,6 @@
|
||||
#include <asm/e820.h>
|
||||
#include <asm/setup.h>
|
||||
|
||||
#ifdef CONFIG_EFI
|
||||
int efi_enabled = 0;
|
||||
EXPORT_SYMBOL(efi_enabled);
|
||||
#endif
|
||||
|
||||
struct e820map e820;
|
||||
struct change_member {
|
||||
struct e820entry *pbios; /* pointer to original bios entry */
|
||||
|
@ -39,21 +39,8 @@
|
||||
#include <asm/desc.h>
|
||||
#include <asm/tlbflush.h>
|
||||
|
||||
#define EFI_DEBUG 0
|
||||
#define PFX "EFI: "
|
||||
|
||||
extern efi_status_t asmlinkage efi_call_phys(void *, ...);
|
||||
|
||||
struct efi efi;
|
||||
EXPORT_SYMBOL(efi);
|
||||
static struct efi efi_phys;
|
||||
struct efi_memory_map memmap;
|
||||
|
||||
/*
|
||||
* We require an early boot_ioremap mapping mechanism initially
|
||||
*/
|
||||
extern void * boot_ioremap(unsigned long, unsigned long);
|
||||
|
||||
/*
|
||||
* To make EFI call EFI runtime service in physical addressing mode we need
|
||||
* prelog/epilog before/after the invocation to disable interrupt, to
|
||||
@ -65,7 +52,7 @@ static unsigned long efi_rt_eflags;
|
||||
static DEFINE_SPINLOCK(efi_rt_lock);
|
||||
static pgd_t efi_bak_pg_dir_pointer[2];
|
||||
|
||||
static void efi_call_phys_prelog(void) __acquires(efi_rt_lock)
|
||||
void efi_call_phys_prelog(void) __acquires(efi_rt_lock)
|
||||
{
|
||||
unsigned long cr4;
|
||||
unsigned long temp;
|
||||
@ -108,7 +95,7 @@ static void efi_call_phys_prelog(void) __acquires(efi_rt_lock)
|
||||
load_gdt(&gdt_descr);
|
||||
}
|
||||
|
||||
static void efi_call_phys_epilog(void) __releases(efi_rt_lock)
|
||||
void efi_call_phys_epilog(void) __releases(efi_rt_lock)
|
||||
{
|
||||
unsigned long cr4;
|
||||
struct desc_ptr gdt_descr;
|
||||
@ -138,87 +125,6 @@ static void efi_call_phys_epilog(void) __releases(efi_rt_lock)
|
||||
spin_unlock(&efi_rt_lock);
|
||||
}
|
||||
|
||||
static efi_status_t
|
||||
phys_efi_set_virtual_address_map(unsigned long memory_map_size,
|
||||
unsigned long descriptor_size,
|
||||
u32 descriptor_version,
|
||||
efi_memory_desc_t *virtual_map)
|
||||
{
|
||||
efi_status_t status;
|
||||
|
||||
efi_call_phys_prelog();
|
||||
status = efi_call_phys(efi_phys.set_virtual_address_map,
|
||||
memory_map_size, descriptor_size,
|
||||
descriptor_version, virtual_map);
|
||||
efi_call_phys_epilog();
|
||||
return status;
|
||||
}
|
||||
|
||||
static efi_status_t
|
||||
phys_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
|
||||
{
|
||||
efi_status_t status;
|
||||
|
||||
efi_call_phys_prelog();
|
||||
status = efi_call_phys(efi_phys.get_time, tm, tc);
|
||||
efi_call_phys_epilog();
|
||||
return status;
|
||||
}
|
||||
|
||||
inline int efi_set_rtc_mmss(unsigned long nowtime)
|
||||
{
|
||||
int real_seconds, real_minutes;
|
||||
efi_status_t status;
|
||||
efi_time_t eft;
|
||||
efi_time_cap_t cap;
|
||||
|
||||
spin_lock(&efi_rt_lock);
|
||||
status = efi.get_time(&eft, &cap);
|
||||
spin_unlock(&efi_rt_lock);
|
||||
if (status != EFI_SUCCESS)
|
||||
panic("Ooops, efitime: can't read time!\n");
|
||||
real_seconds = nowtime % 60;
|
||||
real_minutes = nowtime / 60;
|
||||
|
||||
if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
|
||||
real_minutes += 30;
|
||||
real_minutes %= 60;
|
||||
|
||||
eft.minute = real_minutes;
|
||||
eft.second = real_seconds;
|
||||
|
||||
if (status != EFI_SUCCESS) {
|
||||
printk("Ooops: efitime: can't read time!\n");
|
||||
return -1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
/*
|
||||
* This is used during kernel init before runtime
|
||||
* services have been remapped and also during suspend, therefore,
|
||||
* we'll need to call both in physical and virtual modes.
|
||||
*/
|
||||
inline unsigned long efi_get_time(void)
|
||||
{
|
||||
efi_status_t status;
|
||||
efi_time_t eft;
|
||||
efi_time_cap_t cap;
|
||||
|
||||
if (efi.get_time) {
|
||||
/* if we are in virtual mode use remapped function */
|
||||
status = efi.get_time(&eft, &cap);
|
||||
} else {
|
||||
/* we are in physical mode */
|
||||
status = phys_efi_get_time(&eft, &cap);
|
||||
}
|
||||
|
||||
if (status != EFI_SUCCESS)
|
||||
printk("Oops: efitime: can't read time status: 0x%lx\n",status);
|
||||
|
||||
return mktime(eft.year, eft.month, eft.day, eft.hour,
|
||||
eft.minute, eft.second);
|
||||
}
|
||||
|
||||
int is_available_memory(efi_memory_desc_t * md)
|
||||
{
|
||||
if (!(md->attribute & EFI_MEMORY_WB))
|
||||
@ -250,24 +156,6 @@ void __init efi_map_memmap(void)
|
||||
memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
|
||||
}
|
||||
|
||||
#if EFI_DEBUG
|
||||
static void __init print_efi_memmap(void)
|
||||
{
|
||||
efi_memory_desc_t *md;
|
||||
void *p;
|
||||
int i;
|
||||
|
||||
for (p = memmap.map, i = 0; p < memmap.map_end; p += memmap.desc_size, i++) {
|
||||
md = p;
|
||||
printk(KERN_INFO "mem%02u: type=%u, attr=0x%llx, "
|
||||
"range=[0x%016llx-0x%016llx) (%lluMB)\n",
|
||||
i, md->type, md->attribute, md->phys_addr,
|
||||
md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
|
||||
(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
|
||||
}
|
||||
}
|
||||
#endif /* EFI_DEBUG */
|
||||
|
||||
/*
|
||||
* Walks the EFI memory map and calls CALLBACK once for each EFI
|
||||
* memory descriptor that has memory that is available for kernel use.
|
||||
@ -319,288 +207,6 @@ void efi_memmap_walk(efi_freemem_callback_t callback, void *arg)
|
||||
}
|
||||
}
|
||||
|
||||
void __init efi_init(void)
|
||||
{
|
||||
efi_config_table_t *config_tables;
|
||||
efi_runtime_services_t *runtime;
|
||||
efi_char16_t *c16;
|
||||
char vendor[100] = "unknown";
|
||||
unsigned long num_config_tables;
|
||||
int i = 0;
|
||||
|
||||
memset(&efi, 0, sizeof(efi) );
|
||||
memset(&efi_phys, 0, sizeof(efi_phys));
|
||||
|
||||
efi_phys.systab =
|
||||
(efi_system_table_t *)boot_params.efi_info.efi_systab;
|
||||
memmap.phys_map = (void *)boot_params.efi_info.efi_memmap;
|
||||
memmap.nr_map = boot_params.efi_info.efi_memmap_size/
|
||||
boot_params.efi_info.efi_memdesc_size;
|
||||
memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
|
||||
memmap.desc_size = boot_params.efi_info.efi_memdesc_size;
|
||||
|
||||
efi.systab = (efi_system_table_t *)
|
||||
boot_ioremap((unsigned long) efi_phys.systab,
|
||||
sizeof(efi_system_table_t));
|
||||
/*
|
||||
* Verify the EFI Table
|
||||
*/
|
||||
if (efi.systab == NULL)
|
||||
printk(KERN_ERR PFX "Woah! Couldn't map the EFI system table.\n");
|
||||
if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
|
||||
printk(KERN_ERR PFX "Woah! EFI system table signature incorrect\n");
|
||||
if ((efi.systab->hdr.revision >> 16) == 0)
|
||||
printk(KERN_ERR PFX "Warning: EFI system table version "
|
||||
"%d.%02d, expected 1.00 or greater\n",
|
||||
efi.systab->hdr.revision >> 16,
|
||||
efi.systab->hdr.revision & 0xffff);
|
||||
|
||||
/*
|
||||
* Grab some details from the system table
|
||||
*/
|
||||
num_config_tables = efi.systab->nr_tables;
|
||||
config_tables = (efi_config_table_t *)efi.systab->tables;
|
||||
runtime = efi.systab->runtime;
|
||||
|
||||
/*
|
||||
* Show what we know for posterity
|
||||
*/
|
||||
c16 = (efi_char16_t *) boot_ioremap(efi.systab->fw_vendor, 2);
|
||||
if (c16) {
|
||||
for (i = 0; i < (sizeof(vendor) - 1) && *c16; ++i)
|
||||
vendor[i] = *c16++;
|
||||
vendor[i] = '\0';
|
||||
} else
|
||||
printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
|
||||
|
||||
printk(KERN_INFO PFX "EFI v%u.%.02u by %s \n",
|
||||
efi.systab->hdr.revision >> 16,
|
||||
efi.systab->hdr.revision & 0xffff, vendor);
|
||||
|
||||
/*
|
||||
* Let's see what config tables the firmware passed to us.
|
||||
*/
|
||||
config_tables = (efi_config_table_t *)
|
||||
boot_ioremap((unsigned long) config_tables,
|
||||
num_config_tables * sizeof(efi_config_table_t));
|
||||
|
||||
if (config_tables == NULL)
|
||||
printk(KERN_ERR PFX "Could not map EFI Configuration Table!\n");
|
||||
|
||||
efi.mps = EFI_INVALID_TABLE_ADDR;
|
||||
efi.acpi = EFI_INVALID_TABLE_ADDR;
|
||||
efi.acpi20 = EFI_INVALID_TABLE_ADDR;
|
||||
efi.smbios = EFI_INVALID_TABLE_ADDR;
|
||||
efi.sal_systab = EFI_INVALID_TABLE_ADDR;
|
||||
efi.boot_info = EFI_INVALID_TABLE_ADDR;
|
||||
efi.hcdp = EFI_INVALID_TABLE_ADDR;
|
||||
efi.uga = EFI_INVALID_TABLE_ADDR;
|
||||
|
||||
for (i = 0; i < num_config_tables; i++) {
|
||||
if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
|
||||
efi.mps = config_tables[i].table;
|
||||
printk(KERN_INFO " MPS=0x%lx ", config_tables[i].table);
|
||||
} else
|
||||
if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
|
||||
efi.acpi20 = config_tables[i].table;
|
||||
printk(KERN_INFO " ACPI 2.0=0x%lx ", config_tables[i].table);
|
||||
} else
|
||||
if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
|
||||
efi.acpi = config_tables[i].table;
|
||||
printk(KERN_INFO " ACPI=0x%lx ", config_tables[i].table);
|
||||
} else
|
||||
if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
|
||||
efi.smbios = config_tables[i].table;
|
||||
printk(KERN_INFO " SMBIOS=0x%lx ", config_tables[i].table);
|
||||
} else
|
||||
if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
|
||||
efi.hcdp = config_tables[i].table;
|
||||
printk(KERN_INFO " HCDP=0x%lx ", config_tables[i].table);
|
||||
} else
|
||||
if (efi_guidcmp(config_tables[i].guid, UGA_IO_PROTOCOL_GUID) == 0) {
|
||||
efi.uga = config_tables[i].table;
|
||||
printk(KERN_INFO " UGA=0x%lx ", config_tables[i].table);
|
||||
}
|
||||
}
|
||||
printk("\n");
|
||||
|
||||
/*
|
||||
* Check out the runtime services table. We need to map
|
||||
* the runtime services table so that we can grab the physical
|
||||
* address of several of the EFI runtime functions, needed to
|
||||
* set the firmware into virtual mode.
|
||||
*/
|
||||
|
||||
runtime = (efi_runtime_services_t *) boot_ioremap((unsigned long)
|
||||
runtime,
|
||||
sizeof(efi_runtime_services_t));
|
||||
if (runtime != NULL) {
|
||||
/*
|
||||
* We will only need *early* access to the following
|
||||
* two EFI runtime services before set_virtual_address_map
|
||||
* is invoked.
|
||||
*/
|
||||
efi_phys.get_time = (efi_get_time_t *) runtime->get_time;
|
||||
efi_phys.set_virtual_address_map =
|
||||
(efi_set_virtual_address_map_t *)
|
||||
runtime->set_virtual_address_map;
|
||||
} else
|
||||
printk(KERN_ERR PFX "Could not map the runtime service table!\n");
|
||||
|
||||
/* Map the EFI memory map for use until paging_init() */
|
||||
memmap.map = boot_ioremap(boot_params.efi_info.efi_memmap,
|
||||
boot_params.efi_info.efi_memmap_size);
|
||||
if (memmap.map == NULL)
|
||||
printk(KERN_ERR PFX "Could not map the EFI memory map!\n");
|
||||
|
||||
memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
|
||||
|
||||
#if EFI_DEBUG
|
||||
print_efi_memmap();
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline void __init check_range_for_systab(efi_memory_desc_t *md)
|
||||
{
|
||||
if (((unsigned long)md->phys_addr <= (unsigned long)efi_phys.systab) &&
|
||||
((unsigned long)efi_phys.systab < md->phys_addr +
|
||||
((unsigned long)md->num_pages << EFI_PAGE_SHIFT))) {
|
||||
unsigned long addr;
|
||||
|
||||
addr = md->virt_addr - md->phys_addr +
|
||||
(unsigned long)efi_phys.systab;
|
||||
efi.systab = (efi_system_table_t *)addr;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Wrap all the virtual calls in a way that forces the parameters on the stack.
|
||||
*/
|
||||
|
||||
#define efi_call_virt(f, args...) \
|
||||
((efi_##f##_t __attribute__((regparm(0)))*)efi.systab->runtime->f)(args)
|
||||
|
||||
static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
|
||||
{
|
||||
return efi_call_virt(get_time, tm, tc);
|
||||
}
|
||||
|
||||
static efi_status_t virt_efi_set_time (efi_time_t *tm)
|
||||
{
|
||||
return efi_call_virt(set_time, tm);
|
||||
}
|
||||
|
||||
static efi_status_t virt_efi_get_wakeup_time (efi_bool_t *enabled,
|
||||
efi_bool_t *pending,
|
||||
efi_time_t *tm)
|
||||
{
|
||||
return efi_call_virt(get_wakeup_time, enabled, pending, tm);
|
||||
}
|
||||
|
||||
static efi_status_t virt_efi_set_wakeup_time (efi_bool_t enabled,
|
||||
efi_time_t *tm)
|
||||
{
|
||||
return efi_call_virt(set_wakeup_time, enabled, tm);
|
||||
}
|
||||
|
||||
static efi_status_t virt_efi_get_variable (efi_char16_t *name,
|
||||
efi_guid_t *vendor, u32 *attr,
|
||||
unsigned long *data_size, void *data)
|
||||
{
|
||||
return efi_call_virt(get_variable, name, vendor, attr, data_size, data);
|
||||
}
|
||||
|
||||
static efi_status_t virt_efi_get_next_variable (unsigned long *name_size,
|
||||
efi_char16_t *name,
|
||||
efi_guid_t *vendor)
|
||||
{
|
||||
return efi_call_virt(get_next_variable, name_size, name, vendor);
|
||||
}
|
||||
|
||||
static efi_status_t virt_efi_set_variable (efi_char16_t *name,
|
||||
efi_guid_t *vendor,
|
||||
unsigned long attr,
|
||||
unsigned long data_size, void *data)
|
||||
{
|
||||
return efi_call_virt(set_variable, name, vendor, attr, data_size, data);
|
||||
}
|
||||
|
||||
static efi_status_t virt_efi_get_next_high_mono_count (u32 *count)
|
||||
{
|
||||
return efi_call_virt(get_next_high_mono_count, count);
|
||||
}
|
||||
|
||||
static void virt_efi_reset_system (int reset_type, efi_status_t status,
|
||||
unsigned long data_size,
|
||||
efi_char16_t *data)
|
||||
{
|
||||
efi_call_virt(reset_system, reset_type, status, data_size, data);
|
||||
}
|
||||
|
||||
/*
|
||||
* This function will switch the EFI runtime services to virtual mode.
|
||||
* Essentially, look through the EFI memmap and map every region that
|
||||
* has the runtime attribute bit set in its memory descriptor and update
|
||||
* that memory descriptor with the virtual address obtained from ioremap().
|
||||
* This enables the runtime services to be called without having to
|
||||
* thunk back into physical mode for every invocation.
|
||||
*/
|
||||
|
||||
void __init efi_enter_virtual_mode(void)
|
||||
{
|
||||
efi_memory_desc_t *md;
|
||||
efi_status_t status;
|
||||
void *p;
|
||||
|
||||
efi.systab = NULL;
|
||||
|
||||
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
||||
md = p;
|
||||
|
||||
if (!(md->attribute & EFI_MEMORY_RUNTIME))
|
||||
continue;
|
||||
|
||||
md->virt_addr = (unsigned long)ioremap(md->phys_addr,
|
||||
md->num_pages << EFI_PAGE_SHIFT);
|
||||
if (!(unsigned long)md->virt_addr) {
|
||||
printk(KERN_ERR PFX "ioremap of 0x%lX failed\n",
|
||||
(unsigned long)md->phys_addr);
|
||||
}
|
||||
/* update the virtual address of the EFI system table */
|
||||
check_range_for_systab(md);
|
||||
}
|
||||
|
||||
BUG_ON(!efi.systab);
|
||||
|
||||
status = phys_efi_set_virtual_address_map(
|
||||
memmap.desc_size * memmap.nr_map,
|
||||
memmap.desc_size,
|
||||
memmap.desc_version,
|
||||
memmap.phys_map);
|
||||
|
||||
if (status != EFI_SUCCESS) {
|
||||
printk (KERN_ALERT "You are screwed! "
|
||||
"Unable to switch EFI into virtual mode "
|
||||
"(status=%lx)\n", status);
|
||||
panic("EFI call to SetVirtualAddressMap() failed!");
|
||||
}
|
||||
|
||||
/*
|
||||
* Now that EFI is in virtual mode, update the function
|
||||
* pointers in the runtime service table to the new virtual addresses.
|
||||
*/
|
||||
|
||||
efi.get_time = virt_efi_get_time;
|
||||
efi.set_time = virt_efi_set_time;
|
||||
efi.get_wakeup_time = virt_efi_get_wakeup_time;
|
||||
efi.set_wakeup_time = virt_efi_set_wakeup_time;
|
||||
efi.get_variable = virt_efi_get_variable;
|
||||
efi.get_next_variable = virt_efi_get_next_variable;
|
||||
efi.set_variable = virt_efi_set_variable;
|
||||
efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
|
||||
efi.reset_system = virt_efi_reset_system;
|
||||
}
|
||||
|
||||
void __init
|
||||
efi_initialize_iomem_resources(struct resource *code_resource,
|
||||
struct resource *data_resource,
|
||||
@ -683,35 +289,3 @@ efi_initialize_iomem_resources(struct resource *code_resource,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Convenience functions to obtain memory types and attributes
|
||||
*/
|
||||
|
||||
u32 efi_mem_type(unsigned long phys_addr)
|
||||
{
|
||||
efi_memory_desc_t *md;
|
||||
void *p;
|
||||
|
||||
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
||||
md = p;
|
||||
if ((md->phys_addr <= phys_addr) && (phys_addr <
|
||||
(md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
|
||||
return md->type;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
u64 efi_mem_attributes(unsigned long phys_addr)
|
||||
{
|
||||
efi_memory_desc_t *md;
|
||||
void *p;
|
||||
|
||||
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
||||
md = p;
|
||||
if ((md->phys_addr <= phys_addr) && (phys_addr <
|
||||
(md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
|
||||
return md->attribute;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
@ -618,16 +618,9 @@ void __init setup_arch(char **cmdline_p)
|
||||
pre_setup_arch_hook();
|
||||
early_cpu_init();
|
||||
|
||||
/*
|
||||
* FIXME: This isn't an official loader_type right
|
||||
* now but does currently work with elilo.
|
||||
* If we were configured as an EFI kernel, check to make
|
||||
* sure that we were loaded correctly from elilo and that
|
||||
* the system table is valid. If not, then initialize normally.
|
||||
*/
|
||||
#ifdef CONFIG_EFI
|
||||
if ((boot_params.hdr.type_of_loader == 0x50) &&
|
||||
boot_params.efi_info.efi_systab)
|
||||
if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
|
||||
"EL32", 4))
|
||||
efi_enabled = 1;
|
||||
#endif
|
||||
|
||||
|
@ -2,6 +2,48 @@
|
||||
#define _ASM_X86_EFI_H
|
||||
|
||||
#ifdef CONFIG_X86_32
|
||||
|
||||
extern unsigned long asmlinkage efi_call_phys(void *, ...);
|
||||
|
||||
#define efi_call_phys0(f) efi_call_phys(f)
|
||||
#define efi_call_phys1(f, a1) efi_call_phys(f, a1)
|
||||
#define efi_call_phys2(f, a1, a2) efi_call_phys(f, a1, a2)
|
||||
#define efi_call_phys3(f, a1, a2, a3) efi_call_phys(f, a1, a2, a3)
|
||||
#define efi_call_phys4(f, a1, a2, a3, a4) \
|
||||
efi_call_phys(f, a1, a2, a3, a4)
|
||||
#define efi_call_phys5(f, a1, a2, a3, a4, a5) \
|
||||
efi_call_phys(f, a1, a2, a3, a4, a5)
|
||||
#define efi_call_phys6(f, a1, a2, a3, a4, a5, a6) \
|
||||
efi_call_phys(f, a1, a2, a3, a4, a5, a6)
|
||||
/*
|
||||
* Wrap all the virtual calls in a way that forces the parameters on the stack.
|
||||
*/
|
||||
|
||||
#define efi_call_virt(f, args...) \
|
||||
((efi_##f##_t __attribute__((regparm(0)))*)efi.systab->runtime->f)(args)
|
||||
|
||||
#define efi_call_virt0(f) efi_call_virt(f)
|
||||
#define efi_call_virt1(f, a1) efi_call_virt(f, a1)
|
||||
#define efi_call_virt2(f, a1, a2) efi_call_virt(f, a1, a2)
|
||||
#define efi_call_virt3(f, a1, a2, a3) efi_call_virt(f, a1, a2, a3)
|
||||
#define efi_call_virt4(f, a1, a2, a3, a4) \
|
||||
efi_call_virt(f, a1, a2, a3, a4)
|
||||
#define efi_call_virt5(f, a1, a2, a3, a4, a5) \
|
||||
efi_call_virt(f, a1, a2, a3, a4, a5)
|
||||
#define efi_call_virt6(f, a1, a2, a3, a4, a5, a6) \
|
||||
efi_call_virt(f, a1, a2, a3, a4, a5, a6)
|
||||
/*
|
||||
* We require an early boot_ioremap mapping mechanism initially
|
||||
*/
|
||||
extern void *boot_ioremap(unsigned long, unsigned long);
|
||||
|
||||
#define efi_early_ioremap(addr, size) boot_ioremap(addr, size)
|
||||
#define efi_early_iounmap(vaddr, size)
|
||||
|
||||
#define efi_ioremap(addr, size) ioremap(addr, size)
|
||||
|
||||
#define end_pfn_map max_low_pfn
|
||||
|
||||
#else /* !CONFIG_X86_32 */
|
||||
|
||||
#define MAX_EFI_IO_PAGES 100
|
||||
|
Loading…
Reference in New Issue
Block a user