kselftest: arm64: mangle_pstate_invalid_compat_toggle and common utils

Add some arm64/signal specific boilerplate and utility code to help
further testcases' development.

Introduce also one simple testcase mangle_pstate_invalid_compat_toggle
and some related helpers: it is a simple mangle testcase which messes
with the ucontext_t from within the signal handler, trying to toggle
PSTATE state bits to switch the system between 32bit/64bit execution
state. Expects SIGSEGV on test PASS.

Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Cristian Marussi <cristian.marussi@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This commit is contained in:
Cristian Marussi 2019-10-25 18:57:07 +01:00 committed by Catalin Marinas
parent 313a4db7f3
commit f96bf43403
11 changed files with 800 additions and 1 deletions

View File

@ -4,7 +4,7 @@
ARCH ?= $(shell uname -m 2>/dev/null || echo not)
ifneq (,$(filter $(ARCH),aarch64 arm64))
ARM64_SUBTARGETS ?= tags
ARM64_SUBTARGETS ?= tags signal
else
ARM64_SUBTARGETS :=
endif

View File

@ -0,0 +1,3 @@
mangle_*
fake_sigreturn_*
!*.[ch]

View File

@ -0,0 +1,32 @@
# SPDX-License-Identifier: GPL-2.0
# Copyright (C) 2019 ARM Limited
# Additional include paths needed by kselftest.h and local headers
CFLAGS += -D_GNU_SOURCE -std=gnu99 -I.
SRCS := $(filter-out testcases/testcases.c,$(wildcard testcases/*.c))
PROGS := $(patsubst %.c,%,$(SRCS))
# Generated binaries to be installed by top KSFT script
TEST_GEN_PROGS := $(notdir $(PROGS))
# Get Kernel headers installed and use them.
KSFT_KHDR_INSTALL := 1
# Including KSFT lib.mk here will also mangle the TEST_GEN_PROGS list
# to account for any OUTPUT target-dirs optionally provided by
# the toplevel makefile
include ../../lib.mk
$(TEST_GEN_PROGS): $(PROGS)
cp $(PROGS) $(OUTPUT)/
clean:
$(CLEAN)
rm -f $(PROGS)
# Common test-unit targets to build common-layout test-cases executables
# Needs secondary expansion to properly include the testcase c-file in pre-reqs
.SECONDEXPANSION:
$(PROGS): test_signals.c test_signals_utils.c testcases/testcases.c $$@.c test_signals.h test_signals_utils.h testcases/testcases.h
$(CC) $(CFLAGS) $^ -o $@

View File

@ -0,0 +1,59 @@
KSelfTest arm64/signal/
=======================
Signals Tests
+++++++++++++
- Tests are built around a common main compilation unit: such shared main
enforces a standard sequence of operations needed to perform a single
signal-test (setup/trigger/run/result/cleanup)
- The above mentioned ops are configurable on a test-by-test basis: each test
is described (and configured) using the descriptor signals.h::struct tdescr
- Each signal testcase is compiled into its own executable: a separate
executable is used for each test since many tests complete successfully
by receiving some kind of fatal signal from the Kernel, so it's safer
to run each test unit in its own standalone process, so as to start each
test from a clean slate.
- New tests can be simply defined in testcases/ dir providing a proper struct
tdescr overriding all the defaults we wish to change (as of now providing a
custom run method is mandatory though)
- Signals' test-cases hereafter defined belong currently to two
principal families:
- 'mangle_' tests: a real signal (SIGUSR1) is raised and used as a trigger
and then the test case code modifies the signal frame from inside the
signal handler itself.
- 'fake_sigreturn_' tests: a brand new custom artificial sigframe structure
is placed on the stack and a sigreturn syscall is called to simulate a
real signal return. This kind of tests does not use a trigger usually and
they are just fired using some simple included assembly trampoline code.
- Most of these tests are successfully passing if the process gets killed by
some fatal signal: usually SIGSEGV or SIGBUS. Since while writing this
kind of tests it is extremely easy in fact to end-up injecting other
unrelated SEGV bugs in the testcases, it becomes extremely tricky to
be really sure that the tests are really addressing what they are meant
to address and they are not instead falling apart due to unplanned bugs
in the test code.
In order to alleviate the misery of the life of such test-developer, a few
helpers are provided:
- a couple of ASSERT_BAD/GOOD_CONTEXT() macros to easily parse a ucontext_t
and verify if it is indeed GOOD or BAD (depending on what we were
expecting), using the same logic/perspective as in the arm64 Kernel signals
routines.
- a sanity mechanism to be used in 'fake_sigreturn_'-alike tests: enabled by
default it takes care to verify that the test-execution had at least
successfully progressed up to the stage of triggering the fake sigreturn
call.
In both cases test results are expected in terms of:
- some fatal signal sent by the Kernel to the test process
or
- analyzing some final regs state

View File

@ -0,0 +1,29 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2019 ARM Limited
*
* Generic test wrapper for arm64 signal tests.
*
* Each test provides its own tde struct tdescr descriptor to link with
* this wrapper. Framework provides common helpers.
*/
#include <kselftest.h>
#include "test_signals.h"
#include "test_signals_utils.h"
struct tdescr *current;
int main(int argc, char *argv[])
{
current = &tde;
ksft_print_msg("%s :: %s\n", current->name, current->descr);
if (test_setup(current)) {
test_run(current);
test_result(current);
test_cleanup(current);
}
return current->pass ? KSFT_PASS : KSFT_FAIL;
}

View File

@ -0,0 +1,93 @@
/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright (C) 2019 ARM Limited */
#ifndef __TEST_SIGNALS_H__
#define __TEST_SIGNALS_H__
#include <signal.h>
#include <stdbool.h>
#include <ucontext.h>
/*
* Using ARCH specific and sanitized Kernel headers installed by KSFT
* framework since we asked for it by setting flag KSFT_KHDR_INSTALL
* in our Makefile.
*/
#include <asm/ptrace.h>
#include <asm/hwcap.h>
#define __stringify_1(x...) #x
#define __stringify(x...) __stringify_1(x)
#define get_regval(regname, out) \
{ \
asm volatile("mrs %0, " __stringify(regname) \
: "=r" (out) \
: \
: "memory"); \
}
/*
* Feature flags used in tdescr.feats_required to specify
* any feature by the test
*/
enum {
FSSBS_BIT,
FMAX_END
};
#define FEAT_SSBS (1UL << FSSBS_BIT)
/*
* A descriptor used to describe and configure a test case.
* Fields with a non-trivial meaning are described inline in the following.
*/
struct tdescr {
/* KEEP THIS FIELD FIRST for easier lookup from assembly */
void *token;
/* when disabled token based sanity checking is skipped in handler */
bool sanity_disabled;
/* just a name for the test-case; manadatory field */
char *name;
char *descr;
unsigned long feats_required;
/* bitmask of effectively supported feats: populated at run-time */
unsigned long feats_supported;
bool initialized;
unsigned int minsigstksz;
/* signum used as a test trigger. Zero if no trigger-signal is used */
int sig_trig;
/*
* signum considered as a successful test completion.
* Zero when no signal is expected on success
*/
int sig_ok;
/* signum expected on unsupported CPU features. */
int sig_unsupp;
/* a timeout in second for test completion */
unsigned int timeout;
bool triggered;
bool pass;
/* optional sa_flags for the installed handler */
int sa_flags;
ucontext_t saved_uc;
/* optional test private data */
void *priv;
/* a custom setup function to be called before test starts */
int (*setup)(struct tdescr *td);
/* a custom cleanup function called before test exits */
void (*cleanup)(struct tdescr *td);
/* an optional function to be used as a trigger for test starting */
int (*trigger)(struct tdescr *td);
/*
* the actual test-core: invoked differently depending on the
* presence of the trigger function above; this is mandatory
*/
int (*run)(struct tdescr *td, siginfo_t *si, ucontext_t *uc);
/* an optional function for custom results' processing */
void (*check_result)(struct tdescr *td);
};
extern struct tdescr tde;
#endif

View File

@ -0,0 +1,283 @@
// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2019 ARM Limited */
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <string.h>
#include <unistd.h>
#include <assert.h>
#include <sys/auxv.h>
#include <linux/auxvec.h>
#include <ucontext.h>
#include "test_signals.h"
#include "test_signals_utils.h"
#include "testcases/testcases.h"
extern struct tdescr *current;
static char const *const feats_names[FMAX_END] = {
" SSBS ",
};
#define MAX_FEATS_SZ 128
static char feats_string[MAX_FEATS_SZ];
static inline char *feats_to_string(unsigned long feats)
{
size_t flen = MAX_FEATS_SZ - 1;
for (int i = 0; i < FMAX_END; i++) {
if (feats & (1UL << i)) {
size_t tlen = strlen(feats_names[i]);
assert(flen > tlen);
flen -= tlen;
strncat(feats_string, feats_names[i], flen);
}
}
return feats_string;
}
static void unblock_signal(int signum)
{
sigset_t sset;
sigemptyset(&sset);
sigaddset(&sset, signum);
sigprocmask(SIG_UNBLOCK, &sset, NULL);
}
static void default_result(struct tdescr *td, bool force_exit)
{
if (td->pass)
fprintf(stderr, "==>> completed. PASS(1)\n");
else
fprintf(stdout, "==>> completed. FAIL(0)\n");
if (force_exit)
exit(td->pass ? EXIT_SUCCESS : EXIT_FAILURE);
}
/*
* The following handle_signal_* helpers are used by main default_handler
* and are meant to return true when signal is handled successfully:
* when false is returned instead, it means that the signal was somehow
* unexpected in that context and it was NOT handled; default_handler will
* take care of such unexpected situations.
*/
static bool handle_signal_unsupported(struct tdescr *td,
siginfo_t *si, void *uc)
{
if (feats_ok(td))
return false;
/* Mangling PC to avoid loops on original SIGILL */
((ucontext_t *)uc)->uc_mcontext.pc += 4;
if (!td->initialized) {
fprintf(stderr,
"Got SIG_UNSUPP @test_init. Ignore.\n");
} else {
fprintf(stderr,
"-- RX SIG_UNSUPP on unsupported feat...OK\n");
td->pass = 1;
default_result(current, 1);
}
return true;
}
static bool handle_signal_trigger(struct tdescr *td,
siginfo_t *si, void *uc)
{
td->triggered = 1;
/* ->run was asserted NON-NULL in test_setup() already */
td->run(td, si, uc);
return true;
}
static bool handle_signal_ok(struct tdescr *td,
siginfo_t *si, void *uc)
{
/*
* it's a bug in the test code when this assert fail:
* if sig_trig was defined, it must have been used before getting here.
*/
assert(!td->sig_trig || td->triggered);
fprintf(stderr,
"SIG_OK -- SP:0x%llX si_addr@:%p si_code:%d token@:%p offset:%ld\n",
((ucontext_t *)uc)->uc_mcontext.sp,
si->si_addr, si->si_code, td->token, td->token - si->si_addr);
/*
* fake_sigreturn tests, which have sanity_enabled=1, set, at the very
* last time, the token field to the SP address used to place the fake
* sigframe: so token==0 means we never made it to the end,
* segfaulting well-before, and the test is possibly broken.
*/
if (!td->sanity_disabled && !td->token) {
fprintf(stdout,
"current->token ZEROED...test is probably broken!\n");
abort();
}
/*
* Trying to narrow down the SEGV to the ones generated by Kernel itself
* via arm64_notify_segfault(). This is a best-effort check anyway, and
* the si_code check may need to change if this aspect of the kernel
* ABI changes.
*/
if (td->sig_ok == SIGSEGV && si->si_code != SEGV_ACCERR) {
fprintf(stdout,
"si_code != SEGV_ACCERR...test is probably broken!\n");
abort();
}
td->pass = 1;
/*
* Some tests can lead to SEGV loops: in such a case we want to
* terminate immediately exiting straight away; some others are not
* supposed to outlive the signal handler code, due to the content of
* the fake sigframe which caused the signal itself.
*/
default_result(current, 1);
return true;
}
static void default_handler(int signum, siginfo_t *si, void *uc)
{
if (current->sig_unsupp && signum == current->sig_unsupp &&
handle_signal_unsupported(current, si, uc)) {
fprintf(stderr, "Handled SIG_UNSUPP\n");
} else if (current->sig_trig && signum == current->sig_trig &&
handle_signal_trigger(current, si, uc)) {
fprintf(stderr, "Handled SIG_TRIG\n");
} else if (current->sig_ok && signum == current->sig_ok &&
handle_signal_ok(current, si, uc)) {
fprintf(stderr, "Handled SIG_OK\n");
} else {
if (signum == SIGALRM && current->timeout) {
fprintf(stderr, "-- Timeout !\n");
} else {
fprintf(stderr,
"-- RX UNEXPECTED SIGNAL: %d\n", signum);
}
default_result(current, 1);
}
}
static int default_setup(struct tdescr *td)
{
struct sigaction sa;
sa.sa_sigaction = default_handler;
sa.sa_flags = SA_SIGINFO | SA_RESTART;
sa.sa_flags |= td->sa_flags;
sigemptyset(&sa.sa_mask);
/* uncatchable signals naturally skipped ... */
for (int sig = 1; sig < 32; sig++)
sigaction(sig, &sa, NULL);
/*
* RT Signals default disposition is Term but they cannot be
* generated by the Kernel in response to our tests; so just catch
* them all and report them as UNEXPECTED signals.
*/
for (int sig = SIGRTMIN; sig <= SIGRTMAX; sig++)
sigaction(sig, &sa, NULL);
/* just in case...unblock explicitly all we need */
if (td->sig_trig)
unblock_signal(td->sig_trig);
if (td->sig_ok)
unblock_signal(td->sig_ok);
if (td->sig_unsupp)
unblock_signal(td->sig_unsupp);
if (td->timeout) {
unblock_signal(SIGALRM);
alarm(td->timeout);
}
fprintf(stderr, "Registered handlers for all signals.\n");
return 1;
}
static inline int default_trigger(struct tdescr *td)
{
return !raise(td->sig_trig);
}
static int test_init(struct tdescr *td)
{
td->minsigstksz = getauxval(AT_MINSIGSTKSZ);
if (!td->minsigstksz)
td->minsigstksz = MINSIGSTKSZ;
fprintf(stderr, "Detected MINSTKSIGSZ:%d\n", td->minsigstksz);
if (td->feats_required) {
td->feats_supported = 0;
/*
* Checking for CPU required features using both the
* auxval and the arm64 MRS Emulation to read sysregs.
*/
if (getauxval(AT_HWCAP) & HWCAP_SSBS)
td->feats_supported |= FEAT_SSBS;
if (feats_ok(td))
fprintf(stderr,
"Required Features: [%s] supported\n",
feats_to_string(td->feats_required &
td->feats_supported));
else
fprintf(stderr,
"Required Features: [%s] NOT supported\n",
feats_to_string(td->feats_required &
~td->feats_supported));
}
td->initialized = 1;
return 1;
}
int test_setup(struct tdescr *td)
{
/* assert core invariants symptom of a rotten testcase */
assert(current);
assert(td);
assert(td->name);
assert(td->run);
if (!test_init(td))
return 0;
if (td->setup)
return td->setup(td);
else
return default_setup(td);
}
int test_run(struct tdescr *td)
{
if (td->sig_trig) {
if (td->trigger)
return td->trigger(td);
else
return default_trigger(td);
} else {
return td->run(td, NULL, NULL);
}
}
void test_result(struct tdescr *td)
{
if (td->check_result)
td->check_result(td);
default_result(td, 0);
}
void test_cleanup(struct tdescr *td)
{
if (td->cleanup)
td->cleanup(td);
}

View File

@ -0,0 +1,19 @@
/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright (C) 2019 ARM Limited */
#ifndef __TEST_SIGNALS_UTILS_H__
#define __TEST_SIGNALS_UTILS_H__
#include "test_signals.h"
int test_setup(struct tdescr *td);
void test_cleanup(struct tdescr *td);
int test_run(struct tdescr *td);
void test_result(struct tdescr *td);
static inline bool feats_ok(struct tdescr *td)
{
return (td->feats_required & td->feats_supported) == td->feats_required;
}
#endif

View File

@ -0,0 +1,31 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2019 ARM Limited
*
* Try to mangle the ucontext from inside a signal handler, toggling
* the execution state bit: this attempt must be spotted by Kernel and
* the test case is expected to be terminated via SEGV.
*/
#include "test_signals_utils.h"
#include "testcases.h"
static int mangle_invalid_pstate_run(struct tdescr *td, siginfo_t *si,
ucontext_t *uc)
{
ASSERT_GOOD_CONTEXT(uc);
/* This config should trigger a SIGSEGV by Kernel */
uc->uc_mcontext.pstate ^= PSR_MODE32_BIT;
return 1;
}
struct tdescr tde = {
.sanity_disabled = true,
.name = "MANGLE_PSTATE_INVALID_STATE_TOGGLE",
.descr = "Mangling uc_mcontext with INVALID STATE_TOGGLE",
.sig_trig = SIGUSR1,
.sig_ok = SIGSEGV,
.run = mangle_invalid_pstate_run,
};

View File

@ -0,0 +1,150 @@
// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2019 ARM Limited */
#include "testcases.h"
struct _aarch64_ctx *get_header(struct _aarch64_ctx *head, uint32_t magic,
size_t resv_sz, size_t *offset)
{
size_t offs = 0;
struct _aarch64_ctx *found = NULL;
if (!head || resv_sz < HDR_SZ)
return found;
while (offs <= resv_sz - HDR_SZ &&
head->magic != magic && head->magic) {
offs += head->size;
head = GET_RESV_NEXT_HEAD(head);
}
if (head->magic == magic) {
found = head;
if (offset)
*offset = offs;
}
return found;
}
bool validate_extra_context(struct extra_context *extra, char **err)
{
struct _aarch64_ctx *term;
if (!extra || !err)
return false;
fprintf(stderr, "Validating EXTRA...\n");
term = GET_RESV_NEXT_HEAD(extra);
if (!term || term->magic || term->size) {
*err = "Missing terminator after EXTRA context";
return false;
}
if (extra->datap & 0x0fUL)
*err = "Extra DATAP misaligned";
else if (extra->size & 0x0fUL)
*err = "Extra SIZE misaligned";
else if (extra->datap != (uint64_t)term + sizeof(*term))
*err = "Extra DATAP misplaced (not contiguos)";
if (*err)
return false;
return true;
}
bool validate_reserved(ucontext_t *uc, size_t resv_sz, char **err)
{
bool terminated = false;
size_t offs = 0;
int flags = 0;
struct extra_context *extra = NULL;
struct _aarch64_ctx *head =
(struct _aarch64_ctx *)uc->uc_mcontext.__reserved;
if (!err)
return false;
/* Walk till the end terminator verifying __reserved contents */
while (head && !terminated && offs < resv_sz) {
if ((uint64_t)head & 0x0fUL) {
*err = "Misaligned HEAD";
return false;
}
switch (head->magic) {
case 0:
if (head->size)
*err = "Bad size for terminator";
else
terminated = true;
break;
case FPSIMD_MAGIC:
if (flags & FPSIMD_CTX)
*err = "Multiple FPSIMD_MAGIC";
else if (head->size !=
sizeof(struct fpsimd_context))
*err = "Bad size for fpsimd_context";
flags |= FPSIMD_CTX;
break;
case ESR_MAGIC:
if (head->size != sizeof(struct esr_context))
*err = "Bad size for esr_context";
break;
case SVE_MAGIC:
if (flags & SVE_CTX)
*err = "Multiple SVE_MAGIC";
else if (head->size !=
sizeof(struct sve_context))
*err = "Bad size for sve_context";
flags |= SVE_CTX;
break;
case EXTRA_MAGIC:
if (flags & EXTRA_CTX)
*err = "Multiple EXTRA_MAGIC";
else if (head->size !=
sizeof(struct extra_context))
*err = "Bad size for extra_context";
flags |= EXTRA_CTX;
extra = (struct extra_context *)head;
break;
case KSFT_BAD_MAGIC:
/*
* This is a BAD magic header defined
* artificially by a testcase and surely
* unknown to the Kernel parse_user_sigframe().
* It MUST cause a Kernel induced SEGV
*/
*err = "BAD MAGIC !";
break;
default:
/*
* A still unknown Magic: potentially freshly added
* to the Kernel code and still unknown to the
* tests.
*/
fprintf(stdout,
"SKIP Unknown MAGIC: 0x%X - Is KSFT arm64/signal up to date ?\n",
head->magic);
break;
}
if (*err)
return false;
offs += head->size;
if (resv_sz < offs + sizeof(*head)) {
*err = "HEAD Overrun";
return false;
}
if (flags & EXTRA_CTX)
if (!validate_extra_context(extra, err))
return false;
head = GET_RESV_NEXT_HEAD(head);
}
if (terminated && !(flags & FPSIMD_CTX)) {
*err = "Missing FPSIMD";
return false;
}
return true;
}

View File

@ -0,0 +1,100 @@
/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright (C) 2019 ARM Limited */
#ifndef __TESTCASES_H__
#define __TESTCASES_H__
#include <stddef.h>
#include <stdio.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <ucontext.h>
#include <signal.h>
/* Architecture specific sigframe definitions */
#include <asm/sigcontext.h>
#define FPSIMD_CTX (1 << 0)
#define SVE_CTX (1 << 1)
#define EXTRA_CTX (1 << 2)
#define KSFT_BAD_MAGIC 0xdeadbeef
#define HDR_SZ \
sizeof(struct _aarch64_ctx)
#define GET_SF_RESV_HEAD(sf) \
(struct _aarch64_ctx *)(&(sf).uc.uc_mcontext.__reserved)
#define GET_SF_RESV_SIZE(sf) \
sizeof((sf).uc.uc_mcontext.__reserved)
#define GET_UCP_RESV_SIZE(ucp) \
sizeof((ucp)->uc_mcontext.__reserved)
#define ASSERT_BAD_CONTEXT(uc) do { \
char *err = NULL; \
if (!validate_reserved((uc), GET_UCP_RESV_SIZE((uc)), &err)) { \
if (err) \
fprintf(stderr, \
"Using badly built context - ERR: %s\n",\
err); \
} else { \
abort(); \
} \
} while (0)
#define ASSERT_GOOD_CONTEXT(uc) do { \
char *err = NULL; \
if (!validate_reserved((uc), GET_UCP_RESV_SIZE((uc)), &err)) { \
if (err) \
fprintf(stderr, \
"Detected BAD context - ERR: %s\n", err);\
abort(); \
} else { \
fprintf(stderr, "uc context validated.\n"); \
} \
} while (0)
/*
* A simple record-walker for __reserved area: it walks through assuming
* only to find a proper struct __aarch64_ctx header descriptor.
*
* Instead it makes no assumptions on the content and ordering of the
* records, any needed bounds checking must be enforced by the caller
* if wanted: this way can be used by caller on any maliciously built bad
* contexts.
*
* head->size accounts both for payload and header _aarch64_ctx size !
*/
#define GET_RESV_NEXT_HEAD(h) \
(struct _aarch64_ctx *)((char *)(h) + (h)->size)
struct fake_sigframe {
siginfo_t info;
ucontext_t uc;
};
bool validate_reserved(ucontext_t *uc, size_t resv_sz, char **err);
bool validate_extra_context(struct extra_context *extra, char **err);
struct _aarch64_ctx *get_header(struct _aarch64_ctx *head, uint32_t magic,
size_t resv_sz, size_t *offset);
static inline struct _aarch64_ctx *get_terminator(struct _aarch64_ctx *head,
size_t resv_sz,
size_t *offset)
{
return get_header(head, 0, resv_sz, offset);
}
static inline void write_terminator_record(struct _aarch64_ctx *tail)
{
if (tail) {
tail->magic = 0;
tail->size = 0;
}
}
#endif