Commit a695cb5816 "tracing: Prevent deleting instances when they are being read"
tried to fix a race between deleting a trace instance and reading contents
of a trace file. But it wasn't good enough. The following could crash the kernel:
# cd /sys/kernel/debug/tracing/instances
# ( while :; do mkdir foo; rmdir foo; done ) &
# ( while :; do echo 1 > foo/events/sched/sched_switch 2> /dev/null; done ) &
Luckily this can only be done by root user, but it should be fixed regardless.
The problem is that a delete of the file can happen after the write to the event
is opened, but before the enabling happens.
The solution is to make sure the trace_array is available before succeeding in
opening for write, and incerment the ref counter while opened.
Now the instance can be deleted when the events are writing to the buffer,
but the deletion of the instance will disable all events before the instance
is actually deleted.
Cc: stable@vger.kernel.org # 3.10
Reported-by: Alexander Lam <azl@google.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
There are multiple places where the ftrace_trace_arrays list is accessed in
trace_events.c without the trace_types_lock held.
Link: http://lkml.kernel.org/r/1372732674-22726-1-git-send-email-azl@google.com
Cc: Vaibhav Nagarnaik <vnagarnaik@google.com>
Cc: David Sharp <dhsharp@google.com>
Cc: Alexander Z Lam <lambchop468@gmail.com>
Cc: stable@vger.kernel.org # 3.10
Signed-off-by: Alexander Z Lam <azl@google.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
If the kernel command line ftrace filter parameters are set
(ftrace_filter or ftrace_notrace), force the function self test to
pass, with a warning why it was forced.
If the user adds a filter to the kernel command line, it is assumed
that they know what they are doing, and the self test should just not
run instead of failing (which disables function tracing) or clearing
the filter, as that will probably annoy the user.
If the user wants the selftest to run, the message will tell them why
it did not.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Pull perf updates from Ingo Molnar:
"Features:
- Add "uretprobes" - an optimization to uprobes, like kretprobes are
an optimization to kprobes. "perf probe -x file sym%return" now
works like kretprobes. By Oleg Nesterov.
- Introduce per core aggregation in 'perf stat', from Stephane
Eranian.
- Add memory profiling via PEBS, from Stephane Eranian.
- Event group view for 'annotate' in --stdio, --tui and --gtk, from
Namhyung Kim.
- Add support for AMD NB and L2I "uncore" counters, by Jacob Shin.
- Add Ivy Bridge-EP uncore support, by Zheng Yan
- IBM zEnterprise EC12 oprofile support patchlet from Robert Richter.
- Add perf test entries for checking breakpoint overflow signal
handler issues, from Jiri Olsa.
- Add perf test entry for for checking number of EXIT events, from
Namhyung Kim.
- Add perf test entries for checking --cpu in record and stat, from
Jiri Olsa.
- Introduce perf stat --repeat forever, from Frederik Deweerdt.
- Add --no-demangle to report/top, from Namhyung Kim.
- PowerPC fixes plus a couple of cleanups/optimizations in uprobes
and trace_uprobes, by Oleg Nesterov.
Various fixes and refactorings:
- Fix dependency of the python binding wrt libtraceevent, from
Naohiro Aota.
- Simplify some perf_evlist methods and to allow 'stat' to share code
with 'record' and 'trace', by Arnaldo Carvalho de Melo.
- Remove dead code in related to libtraceevent integration, from
Namhyung Kim.
- Revert "perf sched: Handle PERF_RECORD_EXIT events" to get 'perf
sched lat' back working, by Arnaldo Carvalho de Melo
- We don't use Newt anymore, just plain libslang, by Arnaldo Carvalho
de Melo.
- Kill a bunch of die() calls, from Namhyung Kim.
- Fix build on non-glibc systems due to libio.h absence, from Cody P
Schafer.
- Remove some perf_session and tracing dead code, from David Ahern.
- Honor parallel jobs, fix from Borislav Petkov
- Introduce tools/lib/lk library, initially just removing duplication
among tools/perf and tools/vm. from Borislav Petkov
... and many more I missed to list, see the shortlog and git log for
more details."
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (136 commits)
perf/x86/intel/P4: Robistify P4 PMU types
perf/x86/amd: Fix AMD NB and L2I "uncore" support
perf/x86/amd: Remove old-style NB counter support from perf_event_amd.c
perf/x86: Check all MSRs before passing hw check
perf/x86/amd: Add support for AMD NB and L2I "uncore" counters
perf/x86/intel: Add Ivy Bridge-EP uncore support
perf/x86/intel: Fix SNB-EP CBO and PCU uncore PMU filter management
perf/x86: Avoid kfree() in CPU_{STARTING,DYING}
uprobes/perf: Avoid perf_trace_buf_prepare/submit if ->perf_events is empty
uprobes/tracing: Don't pass addr=ip to perf_trace_buf_submit()
uprobes/tracing: Change create_trace_uprobe() to support uretprobes
uprobes/tracing: Make seq_printf() code uretprobe-friendly
uprobes/tracing: Make register_uprobe_event() paths uretprobe-friendly
uprobes/tracing: Make uprobe_{trace,perf}_print() uretprobe-friendly
uprobes/tracing: Introduce is_ret_probe() and uretprobe_dispatcher()
uprobes/tracing: Introduce uprobe_{trace,perf}_print() helpers
uprobes/tracing: Generalize struct uprobe_trace_entry_head
uprobes/tracing: Kill the pointless local_save_flags/preempt_count calls
uprobes/tracing: Kill the pointless seq_print_ip_sym() call
uprobes/tracing: Kill the pointless task_pt_regs() calls
...
struct uprobe_trace_entry_head has a single member for reporting,
"unsigned long ip". If we want to support uretprobes we need to
create another struct which has "func" and "ret_ip" and duplicate
a lot of functions, like trace_kprobe.c does.
To avoid this copy-and-paste horror we turn ->ip into ->vaddr[]
and add couple of trivial helpers to calculate sizeof/data. This
uglifies the code a bit, but this allows us to avoid a lot more
complications later, when we add the support for ret-probes.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Anton Arapov <anton@redhat.com>
By moving find_event_field() and trace_find_field() into trace_events.c,
the ftrace_common_fields list and trace_get_fields() can become local to
the trace_events.c file.
find_event_field() is renamed to trace_find_event_field() to conform to
the tracing global function names.
Link: http://lkml.kernel.org/r/513D8426.9070109@huawei.com
Signed-off-by: zhangwei(Jovi) <jovi.zhangwei@huawei.com>
[ rostedt: Modified trace_find_field() to trace_find_event_field() ]
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Currently, the only way to stop the latency tracers from doing function
tracing is to fully disable the function tracer from the proc file
system:
echo 0 > /proc/sys/kernel/ftrace_enabled
This is a big hammer approach as it disables function tracing for
all users. This includes kprobes, perf, stack tracer, etc.
Instead, create a function-trace option that the latency tracers can
check to determine if it should enable function tracing or not.
This option can be set or cleared even while the tracer is active
and the tracers will disable or enable function tracing depending
on how the option was set.
Instead of using the proc file, disable latency function tracing with
echo 0 > /debug/tracing/options/function-trace
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Clark Williams <williams@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
There's a few places that ftrace uses trace_printk() for internal
use, but this requires context (normal, softirq, irq, NMI) buffers
to keep things lockless. But the trace_puts() does not, as it can
write the string directly into the ring buffer. Make a internal helper
for trace_puts() and have the internal functions use that.
This way the extra context buffers are not used.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The trace_printk() is extremely fast and is very handy as it can be
used in any context (including NMIs!). But it still requires scanning
the fmt string for parsing the args. Even the trace_bprintk() requires
a scan to know what args will be saved, although it doesn't copy the
format string itself.
Several times trace_printk() has no args, and wastes cpu cycles scanning
the fmt string.
Adding trace_puts() allows the developer to use an even faster
tracing method that only saves the pointer to the string in the
ring buffer without doing any format parsing at all. This will
help remove even more of the "Heisenbug" effect, when debugging.
Also fixed up the F_printk()s for the ftrace internal bprint and print events.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
If debugging the kernel, and the developer wants to use
tracing_snapshot() in places where tracing_snapshot_alloc() may
be difficult (or more likely, the developer is lazy and doesn't
want to bother with tracing_snapshot_alloc() at all), then adding
alloc_snapshot
to the kernel command line parameter will tell ftrace to allocate
the snapshot buffer (if configured) when it allocates the main
tracing buffer.
I also noticed that ring_buffer_expanded and tracing_selftest_disabled
had inconsistent use of boolean "true" and "false" with "0" and "1".
I cleaned that up too.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Add a ref count to the trace_array structure and prevent removal
of instances that have open descriptors.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The snapshot buffer belongs to the trace array not the tracer that is
running. The trace array should be the data structure that keeps track
of whether or not the snapshot buffer is allocated, not the tracer
desciptor. Having the trace array keep track of it makes modifications
so much easier.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Currently, the way the latency tracers and snapshot feature works
is to have a separate trace_array called "max_tr" that holds the
snapshot buffer. For latency tracers, this snapshot buffer is used
to swap the running buffer with this buffer to save the current max
latency.
The only items needed for the max_tr is really just a copy of the buffer
itself, the per_cpu data pointers, the time_start timestamp that states
when the max latency was triggered, and the cpu that the max latency
was triggered on. All other fields in trace_array are unused by the
max_tr, making the max_tr mostly bloat.
This change removes the max_tr completely, and adds a new structure
called trace_buffer, that holds the buffer pointer, the per_cpu data
pointers, the time_start timestamp, and the cpu where the latency occurred.
The trace_array, now has two trace_buffers, one for the normal trace and
one for the max trace or snapshot. By doing this, not only do we remove
the bloat from the max_trace but the instances of traces can now use
their own snapshot feature and not have just the top level global_trace have
the snapshot feature and latency tracers for itself.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Currently we do not know what buffer a module event was enabled in.
On unload, it is safest to clear all buffer instances, not just the
top level buffer.
Todo: Clear only the buffer that the event was used in. The
infrastructure is there to do this, but it makes the code a bit
more complex. Lets get the current code vetted before we add that.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
With the conversion of the data array to per cpu, sparse now complains
about the use of per_cpu_ptr() on the variable. But The variable is
allocated with alloc_percpu() and is fine to use. But since the structure
that contains the data variable does not annotate it as such, sparse
gives out a lot of false warnings.
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The names used to display the field and type in the event format
files are copied, as well as the system name that is displayed.
All these names are created by constant values passed in.
If one of theses values were to be removed by a module, the module
would also be required to remove any event it created.
By using the strings directly, we can save over 100K of memory.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Add a method to the hijacked dentry descriptor of the
"instances" directory to allow for rmdir to remove an
instance of a multibuffer.
Example:
cd /debug/tracing/instances
mkdir hello
ls
hello/
rmdir hello
ls
Like the mkdir method, the i_mutex is dropped for the instances
directory. The instances directory is created at boot up and can
not be renamed or removed. The trace_types_lock mutex is used to
synchronize adding and removing of instances.
I've run several stress tests with different threads trying to
create and delete directories of the same name, and it has stood
up fine.
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Add the interface ("instances" directory) to add multiple buffers
to ftrace. To create a new instance, simply do a mkdir in the
instances directory:
This will create a directory with the following:
# cd instances
# mkdir foo
# ls foo
buffer_size_kb free_buffer trace_clock trace_pipe
buffer_total_size_kb set_event trace_marker tracing_enabled
events/ trace trace_options tracing_on
Currently only events are able to be set, and there isn't a way
to delete a buffer when one is created (yet).
Note, the i_mutex lock is dropped from the parent "instances"
directory during the mkdir operation. As the "instances" directory
can not be renamed or deleted (created on boot), I do not see
any harm in dropping the lock. The creation of the sub directories
is protected by trace_types_lock mutex, which only lets one
instance get into the code path at a time. If two tasks try to
create or delete directories of the same name, only one will occur
and the other will fail with -EEXIST.
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Currently the syscall events record into the global buffer. But if
multiple buffers are in place, then we need to have syscall events
record in the proper buffers.
By adding descriptors to pass to the syscall event functions, the
syscall events can now record into the buffers that have been assigned
to them (one event may be applied to mulitple buffers).
This will allow tracing high volume syscalls along with seldom occurring
syscalls without losing the seldom syscall events.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The global and max-tr currently use static per_cpu arrays for the CPU data
descriptors. But in order to get new allocated trace_arrays, they need to
be allocated per_cpu arrays. Instead of using the static arrays, switch
the global and max-tr to use allocated data.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The global_trace variable in kernel/trace/trace.c has been kept 'static' and
local to that file so that it would not be used too much outside of that
file. This has paid off, even though there were lots of changes to make
the trace_array structure more generic (not depending on global_trace).
Removal of a lot of direct usages of global_trace is needed to be able to
create more trace_arrays such that we can add multiple buffers.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Both RING_BUFFER_ALL_CPUS and TRACE_PIPE_ALL_CPU are defined as
-1 and used to say that all the ring buffers are to be modified
or read (instead of just a single cpu, which would be >= 0).
There's no reason to keep TRACE_PIPE_ALL_CPU as it is also started
to be used for more than what it was created for, and now that
the ring buffer code added a generic RING_BUFFER_ALL_CPUS define,
we can clean up the trace code to use that instead and remove
the TRACE_PIPE_ALL_CPU macro.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The trace events for ftrace are all defined via global variables.
The arrays of events and event systems are linked to a global list.
This prevents multiple users of the event system (what to enable and
what not to).
By adding descriptors to represent the event/file relation, as well
as to which trace_array descriptor they are associated with, allows
for more than one set of events to be defined. Once the trace events
files have a link between the trace event and the trace_array they
are associated with, we can create multiple trace_arrays that can
record separate events in separate buffers.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The latency tracers require the buffers to be in overwrite mode,
otherwise they get screwed up. Force the buffers to stay in overwrite
mode when latency tracers are enabled.
Added a flag_changed() method to the tracer structure to allow
the tracers to see what flags are being changed, and also be able
to prevent the change from happing.
Cc: stable@vger.kernel.org
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Ftrace has a snapshot feature available from kernel space and
latency tracers (e.g. irqsoff) are using it. This patch enables
user applictions to take a snapshot via debugfs.
Add "snapshot" debugfs file in "tracing" directory.
snapshot:
This is used to take a snapshot and to read the output of the
snapshot.
# echo 1 > snapshot
This will allocate the spare buffer for snapshot (if it is
not allocated), and take a snapshot.
# cat snapshot
This will show contents of the snapshot.
# echo 0 > snapshot
This will free the snapshot if it is allocated.
Any other positive values will clear the snapshot contents if
the snapshot is allocated, or return EINVAL if it is not allocated.
Link: http://lkml.kernel.org/r/20121226025300.3252.86850.stgit@liselsia
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: David Sharp <dhsharp@google.com>
Signed-off-by: Hiraku Toyooka <hiraku.toyooka.gu@hitachi.com>
[
Fixed irqsoff selftest and also a conflict with a change
that fixes the update_max_tr.
]
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Using context bit recursion checking, we can help increase the
performance of the ring buffer.
Before this patch:
# echo function > /debug/tracing/current_tracer
# for i in `seq 10`; do ./hackbench 50; done
Time: 10.285
Time: 10.407
Time: 10.243
Time: 10.372
Time: 10.380
Time: 10.198
Time: 10.272
Time: 10.354
Time: 10.248
Time: 10.253
(average: 10.3012)
Now we have:
# echo function > /debug/tracing/current_tracer
# for i in `seq 10`; do ./hackbench 50; done
Time: 9.712
Time: 9.824
Time: 9.861
Time: 9.827
Time: 9.962
Time: 9.905
Time: 9.886
Time: 10.088
Time: 9.861
Time: 9.834
(average: 9.876)
a 4% savings!
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
When function tracing occurs, the following steps are made:
If arch does not support a ftrace feature:
call internal function (uses INTERNAL bits) which calls...
If callback is registered to the "global" list, the list
function is called and recursion checks the GLOBAL bits.
then this function calls...
The function callback, which can use the FTRACE bits to
check for recursion.
Now if the arch does not suppport a feature, and it calls
the global list function which calls the ftrace callback
all three of these steps will do a recursion protection.
There's no reason to do one if the previous caller already
did. The recursion that we are protecting against will
go through the same steps again.
To prevent the multiple recursion checks, if a recursion
bit is set that is higher than the MAX bit of the current
check, then we know that the check was made by the previous
caller, and we can skip the current check.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Currently for recursion checking in the function tracer, ftrace
tests a task_struct bit to determine if the function tracer had
recursed or not. If it has, then it will will return without going
further.
But this leads to races. If an interrupt came in after the bit
was set, the functions being traced would see that bit set and
think that the function tracer recursed on itself, and would return.
Instead add a bit for each context (normal, softirq, irq and nmi).
A check of which context the task is in is made before testing the
associated bit. Now if an interrupt preempts the function tracer
after the previous context has been set, the interrupt functions
can still be traced.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Have the ring buffer commit function use the irq_work infrastructure to
wake up any waiters waiting on the ring buffer for new data. The irq_work
was created for such a purpose, where doing the actual wake up at the
time of adding data is too dangerous, as an event or function trace may
be in the midst of the work queue locks and cause deadlocks. The irq_work
will either delay the action to the next timer interrupt, or trigger an IPI
to itself forcing an interrupt to do the work (in a safe location).
With irq_work, all ring buffer commits can safely do wakeups, removing
the need for the ring buffer commit "nowake" variants, which were used
by events and function tracing. All commits can now safely use the
normal commit, and the "nowake" variants can be removed.
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The function register_tracer() is only used by kernel core code,
that never needs to remove the tracer. As trace_events have become
the main way to add new tracing to the kernel, the need to
unregister a tracer has diminished. Remove the unused function
unregister_tracer(). If a need arises where we need it, then we
can always add it back.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Whenever an event is registered, the comm of tasks are saved at
every task switch instead of saving them at every event. But if
an event isn't executed much, the comm cache will be filled up
by tasks that did not record the event and you lose out on the comms
that did.
Here's an example, if you enable the following events:
echo 1 > /debug/tracing/events/kvm/kvm_cr/enable
echo 1 > /debug/tracing/events/net/net_dev_xmit/enable
Note, there's no kvm running on this machine so the first event will
never be triggered, but because it is enabled, the storing of comms
will continue. If we now disable the network event:
echo 0 > /debug/tracing/events/net/net_dev_xmit/enable
and look at the trace:
cat /debug/tracing/trace
sshd-2672 [001] ..s2 375.731616: net_dev_xmit: dev=eth0 skbaddr=ffff88005cbb6de0 len=242 rc=0
sshd-2672 [001] ..s1 375.731617: net_dev_xmit: dev=br0 skbaddr=ffff88005cbb6de0 len=242 rc=0
sshd-2672 [001] ..s2 375.859356: net_dev_xmit: dev=eth0 skbaddr=ffff88005cbb6de0 len=242 rc=0
sshd-2672 [001] ..s1 375.859357: net_dev_xmit: dev=br0 skbaddr=ffff88005cbb6de0 len=242 rc=0
sshd-2672 [001] ..s2 375.947351: net_dev_xmit: dev=eth0 skbaddr=ffff88005cbb6de0 len=242 rc=0
sshd-2672 [001] ..s1 375.947352: net_dev_xmit: dev=br0 skbaddr=ffff88005cbb6de0 len=242 rc=0
sshd-2672 [001] ..s2 376.035383: net_dev_xmit: dev=eth0 skbaddr=ffff88005cbb6de0 len=242 rc=0
sshd-2672 [001] ..s1 376.035383: net_dev_xmit: dev=br0 skbaddr=ffff88005cbb6de0 len=242 rc=0
sshd-2672 [001] ..s2 377.563806: net_dev_xmit: dev=eth0 skbaddr=ffff88005cbb6de0 len=226 rc=0
sshd-2672 [001] ..s1 377.563807: net_dev_xmit: dev=br0 skbaddr=ffff88005cbb6de0 len=226 rc=0
sshd-2672 [001] ..s2 377.563834: net_dev_xmit: dev=eth0 skbaddr=ffff88005cbb6be0 len=114 rc=0
sshd-2672 [001] ..s1 377.563842: net_dev_xmit: dev=br0 skbaddr=ffff88005cbb6be0 len=114 rc=0
We see that process 2672 which triggered the events has the comm "sshd".
But if we run hackbench for a bit and look again:
cat /debug/tracing/trace
<...>-2672 [001] ..s2 375.731616: net_dev_xmit: dev=eth0 skbaddr=ffff88005cbb6de0 len=242 rc=0
<...>-2672 [001] ..s1 375.731617: net_dev_xmit: dev=br0 skbaddr=ffff88005cbb6de0 len=242 rc=0
<...>-2672 [001] ..s2 375.859356: net_dev_xmit: dev=eth0 skbaddr=ffff88005cbb6de0 len=242 rc=0
<...>-2672 [001] ..s1 375.859357: net_dev_xmit: dev=br0 skbaddr=ffff88005cbb6de0 len=242 rc=0
<...>-2672 [001] ..s2 375.947351: net_dev_xmit: dev=eth0 skbaddr=ffff88005cbb6de0 len=242 rc=0
<...>-2672 [001] ..s1 375.947352: net_dev_xmit: dev=br0 skbaddr=ffff88005cbb6de0 len=242 rc=0
<...>-2672 [001] ..s2 376.035383: net_dev_xmit: dev=eth0 skbaddr=ffff88005cbb6de0 len=242 rc=0
<...>-2672 [001] ..s1 376.035383: net_dev_xmit: dev=br0 skbaddr=ffff88005cbb6de0 len=242 rc=0
<...>-2672 [001] ..s2 377.563806: net_dev_xmit: dev=eth0 skbaddr=ffff88005cbb6de0 len=226 rc=0
<...>-2672 [001] ..s1 377.563807: net_dev_xmit: dev=br0 skbaddr=ffff88005cbb6de0 len=226 rc=0
<...>-2672 [001] ..s2 377.563834: net_dev_xmit: dev=eth0 skbaddr=ffff88005cbb6be0 len=114 rc=0
<...>-2672 [001] ..s1 377.563842: net_dev_xmit: dev=br0 skbaddr=ffff88005cbb6be0 len=114 rc=0
The stored "sshd" comm has been flushed out and we get a useless "<...>".
But by only storing comms after a trace event occurred, we can run
hackbench all day and still get the same output.
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
If comm recording is not enabled when trace_printk() is used then
you just get this type of output:
[ adding trace_printk("hello! %d", irq); in do_IRQ ]
<...>-2843 [001] d.h. 80.812300: do_IRQ: hello! 14
<...>-2734 [002] d.h2 80.824664: do_IRQ: hello! 14
<...>-2713 [003] d.h. 80.829971: do_IRQ: hello! 14
<...>-2814 [000] d.h. 80.833026: do_IRQ: hello! 14
By enabling the comm recorder when trace_printk is enabled:
hackbench-6715 [001] d.h. 193.233776: do_IRQ: hello! 21
sshd-2659 [001] d.h. 193.665862: do_IRQ: hello! 21
<idle>-0 [001] d.h1 193.665996: do_IRQ: hello! 21
Suggested-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
print_max and use_max_tr in struct tracer are "int" variables and
used like flags. This is wasteful, so change the type to "bool".
Link: http://lkml.kernel.org/r/20121002082710.9807.86393.stgit@falsita
Signed-off-by: Hiraku Toyooka <hiraku.toyooka.gu@hitachi.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Pull user namespace changes from Eric Biederman:
"This is a mostly modest set of changes to enable basic user namespace
support. This allows the code to code to compile with user namespaces
enabled and removes the assumption there is only the initial user
namespace. Everything is converted except for the most complex of the
filesystems: autofs4, 9p, afs, ceph, cifs, coda, fuse, gfs2, ncpfs,
nfs, ocfs2 and xfs as those patches need a bit more review.
The strategy is to push kuid_t and kgid_t values are far down into
subsystems and filesystems as reasonable. Leaving the make_kuid and
from_kuid operations to happen at the edge of userspace, as the values
come off the disk, and as the values come in from the network.
Letting compile type incompatible compile errors (present when user
namespaces are enabled) guide me to find the issues.
The most tricky areas have been the places where we had an implicit
union of uid and gid values and were storing them in an unsigned int.
Those places were converted into explicit unions. I made certain to
handle those places with simple trivial patches.
Out of that work I discovered we have generic interfaces for storing
quota by projid. I had never heard of the project identifiers before.
Adding full user namespace support for project identifiers accounts
for most of the code size growth in my git tree.
Ultimately there will be work to relax privlige checks from
"capable(FOO)" to "ns_capable(user_ns, FOO)" where it is safe allowing
root in a user names to do those things that today we only forbid to
non-root users because it will confuse suid root applications.
While I was pushing kuid_t and kgid_t changes deep into the audit code
I made a few other cleanups. I capitalized on the fact we process
netlink messages in the context of the message sender. I removed
usage of NETLINK_CRED, and started directly using current->tty.
Some of these patches have also made it into maintainer trees, with no
problems from identical code from different trees showing up in
linux-next.
After reading through all of this code I feel like I might be able to
win a game of kernel trivial pursuit."
Fix up some fairly trivial conflicts in netfilter uid/git logging code.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (107 commits)
userns: Convert the ufs filesystem to use kuid/kgid where appropriate
userns: Convert the udf filesystem to use kuid/kgid where appropriate
userns: Convert ubifs to use kuid/kgid
userns: Convert squashfs to use kuid/kgid where appropriate
userns: Convert reiserfs to use kuid and kgid where appropriate
userns: Convert jfs to use kuid/kgid where appropriate
userns: Convert jffs2 to use kuid and kgid where appropriate
userns: Convert hpfs to use kuid and kgid where appropriate
userns: Convert btrfs to use kuid/kgid where appropriate
userns: Convert bfs to use kuid/kgid where appropriate
userns: Convert affs to use kuid/kgid wherwe appropriate
userns: On alpha modify linux_to_osf_stat to use convert from kuids and kgids
userns: On ia64 deal with current_uid and current_gid being kuid and kgid
userns: On ppc convert current_uid from a kuid before printing.
userns: Convert s390 getting uid and gid system calls to use kuid and kgid
userns: Convert s390 hypfs to use kuid and kgid where appropriate
userns: Convert binder ipc to use kuids
userns: Teach security_path_chown to take kuids and kgids
userns: Add user namespace support to IMA
userns: Convert EVM to deal with kuids and kgids in it's hmac computation
...
In our application, we have trace markers spread through user-space.
We have markers in GL, X, etc. These are super handy for Chrome's
about:tracing feature (Chrome + system + kernel trace view), but
can be very distracting when you're trying to debug a kernel issue.
I normally, use "grep -v tracing_mark_write" but it would be nice
if I could just temporarily disable markers all together.
Link: http://lkml.kernel.org/r/1347066739-26285-1-git-send-email-msb@chromium.org
CC: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Mandeep Singh Baines <msb@chromium.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
- When tracing capture the kuid.
- When displaying the data to user space convert the kuid into the
user namespace of the process that opened the report file.
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Add selftests to test the save-regs functionality of ftrace.
If the arch supports saving regs, then it will make sure that regs is
at least not NULL in the callback.
If the arch does not support saving regs, it makes sure that the
registering of the ftrace_ops that requests saving regs fails.
It then tests the registering of the ftrace_ops succeeds if the
'IF_SUPPORTED' flag is set. Then it makes sure that the regs passed to
the function is NULL.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Replace the NR_CPUS array of buffer_iter from the trace_iterator
with an allocated array. This will just create an array of
possible CPUS instead of the max number specified.
The use of NR_CPUS in that array caused allocation failures for
machines that were tight on memory. This did not cause any failures
to the system itself (no crashes), but caused unnecessary failures
for reading the trace files.
Added a helper function called 'trace_buffer_iter()' that returns
the buffer_iter item or NULL if it is not defined or the array was
not allocated. Some routines do not require the array
(tracing_open_pipe() for one).
Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Pull user-space probe instrumentation from Ingo Molnar:
"The uprobes code originates from SystemTap and has been used for years
in Fedora and RHEL kernels. This version is much rewritten, reviews
from PeterZ, Oleg and myself shaped the end result.
This tree includes uprobes support in 'perf probe' - but SystemTap
(and other tools) can take advantage of user probe points as well.
Sample usage of uprobes via perf, for example to profile malloc()
calls without modifying user-space binaries.
First boot a new kernel with CONFIG_UPROBE_EVENT=y enabled.
If you don't know which function you want to probe you can pick one
from 'perf top' or can get a list all functions that can be probed
within libc (binaries can be specified as well):
$ perf probe -F -x /lib/libc.so.6
To probe libc's malloc():
$ perf probe -x /lib64/libc.so.6 malloc
Added new event:
probe_libc:malloc (on 0x7eac0)
You can now use it in all perf tools, such as:
perf record -e probe_libc:malloc -aR sleep 1
Make use of it to create a call graph (as the flat profile is going to
look very boring):
$ perf record -e probe_libc:malloc -gR make
[ perf record: Woken up 173 times to write data ]
[ perf record: Captured and wrote 44.190 MB perf.data (~1930712
$ perf report | less
32.03% git libc-2.15.so [.] malloc
|
--- malloc
29.49% cc1 libc-2.15.so [.] malloc
|
--- malloc
|
|--0.95%-- 0x208eb1000000000
|
|--0.63%-- htab_traverse_noresize
11.04% as libc-2.15.so [.] malloc
|
--- malloc
|
7.15% ld libc-2.15.so [.] malloc
|
--- malloc
|
5.07% sh libc-2.15.so [.] malloc
|
--- malloc
|
4.99% python-config libc-2.15.so [.] malloc
|
--- malloc
|
4.54% make libc-2.15.so [.] malloc
|
--- malloc
|
|--7.34%-- glob
| |
| |--93.18%-- 0x41588f
| |
| --6.82%-- glob
| 0x41588f
...
Or:
$ perf report -g flat | less
# Overhead Command Shared Object Symbol
# ........ ............. ............. ..........
#
32.03% git libc-2.15.so [.] malloc
27.19%
malloc
29.49% cc1 libc-2.15.so [.] malloc
24.77%
malloc
11.04% as libc-2.15.so [.] malloc
11.02%
malloc
7.15% ld libc-2.15.so [.] malloc
6.57%
malloc
...
The core uprobes design is fairly straightforward: uprobes probe
points register themselves at (inode:offset) addresses of
libraries/binaries, after which all existing (or new) vmas that map
that address will have a software breakpoint injected at that address.
vmas are COW-ed to preserve original content. The probe points are
kept in an rbtree.
If user-space executes the probed inode:offset instruction address
then an event is generated which can be recovered from the regular
perf event channels and mmap-ed ring-buffer.
Multiple probes at the same address are supported, they create a
dynamic callback list of event consumers.
The basic model is further complicated by the XOL speedup: the
original instruction that is probed is copied (in an architecture
specific fashion) and executed out of line when the probe triggers.
The XOL area is a single vma per process, with a fixed number of
entries (which limits probe execution parallelism).
The API: uprobes are installed/removed via
/sys/kernel/debug/tracing/uprobe_events, the API is integrated to
align with the kprobes interface as much as possible, but is separate
to it.
Injecting a probe point is privileged operation, which can be relaxed
by setting perf_paranoid to -1.
You can use multiple probes as well and mix them with kprobes and
regular PMU events or tracepoints, when instrumenting a task."
Fix up trivial conflicts in mm/memory.c due to previous cleanup of
unmap_single_vma().
* 'perf-uprobes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
perf probe: Detect probe target when m/x options are absent
perf probe: Provide perf interface for uprobes
tracing: Fix kconfig warning due to a typo
tracing: Provide trace events interface for uprobes
tracing: Extract out common code for kprobes/uprobes trace events
tracing: Modify is_delete, is_return from int to bool
uprobes/core: Decrement uprobe count before the pages are unmapped
uprobes/core: Make background page replacement logic account for rss_stat counters
uprobes/core: Optimize probe hits with the help of a counter
uprobes/core: Allocate XOL slots for uprobes use
uprobes/core: Handle breakpoint and singlestep exceptions
uprobes/core: Rename bkpt to swbp
uprobes/core: Make order of function parameters consistent across functions
uprobes/core: Make macro names consistent
uprobes: Update copyright notices
uprobes/core: Move insn to arch specific structure
uprobes/core: Remove uprobe_opcode_sz
uprobes/core: Make instruction tables volatile
uprobes: Move to kernel/events/
uprobes/core: Clean up, refactor and improve the code
...
Merge reason: We are going to queue up a dependent patch:
"perf tools: Move parse event automated tests to separated object"
That depends on:
commit e7c72d8
perf tools: Add 'G' and 'H' modifiers to event parsing
Conflicts:
tools/perf/builtin-stat.c
Conflicted with the recent 'perf_target' patches when checking the
result of perf_evsel open routines to see if a retry is needed to cope
with older kernels where the exclude guest/host perf_event_attr bits
were not used.
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Implements trace_event support for uprobes. In its current form
it can be used to put probes at a specified offset in a file and
dump the required registers when the code flow reaches the
probed address.
The following example shows how to dump the instruction pointer
and %ax a register at the probed text address. Here we are
trying to probe zfree in /bin/zsh:
# cd /sys/kernel/debug/tracing/
# cat /proc/`pgrep zsh`/maps | grep /bin/zsh | grep r-xp
00400000-0048a000 r-xp 00000000 08:03 130904 /bin/zsh
# objdump -T /bin/zsh | grep -w zfree
0000000000446420 g DF .text 0000000000000012 Base
zfree # echo 'p /bin/zsh:0x46420 %ip %ax' > uprobe_events
# cat uprobe_events
p:uprobes/p_zsh_0x46420 /bin/zsh:0x0000000000046420
# echo 1 > events/uprobes/enable
# sleep 20
# echo 0 > events/uprobes/enable
# cat trace
# tracer: nop
#
# TASK-PID CPU# TIMESTAMP FUNCTION
# | | | | |
zsh-24842 [006] 258544.995456: p_zsh_0x46420: (0x446420) arg1=446421 arg2=79
zsh-24842 [007] 258545.000270: p_zsh_0x46420: (0x446420) arg1=446421 arg2=79
zsh-24842 [002] 258545.043929: p_zsh_0x46420: (0x446420) arg1=446421 arg2=79
zsh-24842 [004] 258547.046129: p_zsh_0x46420: (0x446420) arg1=446421 arg2=79
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Jim Keniston <jkenisto@linux.vnet.ibm.com>
Cc: Linux-mm <linux-mm@kvack.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Anton Arapov <anton@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20120411103043.GB29437@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a debugfs entry under per_cpu/ folder for each cpu called
buffer_size_kb to control the ring buffer size for each CPU
independently.
If the global file buffer_size_kb is used to set size, the individual
ring buffers will be adjusted to the given size. The buffer_size_kb will
report the common size to maintain backward compatibility.
If the buffer_size_kb file under the per_cpu/ directory is used to
change buffer size for a specific CPU, only the size of the respective
ring buffer is updated. When tracing/buffer_size_kb is read, it reports
'X' to indicate that sizes of per_cpu ring buffers are not equivalent.
Link: http://lkml.kernel.org/r/1328212844-11889-1-git-send-email-vnagarnaik@google.com
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Michael Rubin <mrubin@google.com>
Cc: David Sharp <dhsharp@google.com>
Cc: Justin Teravest <teravest@google.com>
Signed-off-by: Vaibhav Nagarnaik <vnagarnaik@google.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Currently, trace_printk() uses a single buffer to write into
to calculate the size and format needed to save the trace. To
do this safely in an SMP environment, a spin_lock() is taken
to only allow one writer at a time to the buffer. But this could
also affect what is being traced, and add synchronization that
would not be there otherwise.
Ideally, using percpu buffers would be useful, but since trace_printk()
is only used in development, having per cpu buffers for something
never used is a waste of space. Thus, the use of the trace_bprintk()
format section is changed to be used for static fmts as well as dynamic ones.
Then at boot up, we can check if the section that holds the trace_printk
formats is non-empty, and if it does contain something, then we
know a trace_printk() has been added to the kernel. At this time
the trace_printk per cpu buffers are allocated. A check is also
done at module load time in case a module is added that contains a
trace_printk().
Once the buffers are allocated, they are never freed. If you use
a trace_printk() then you should know what you are doing.
A buffer is made for each type of context:
normal
softirq
irq
nmi
The context is checked and the appropriate buffer is used.
This allows for totally lockless usage of trace_printk(),
and they no longer even disable interrupts.
Requested-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Today's -next fails to link for me:
kernel/built-in.o:(.data+0x178e50): undefined reference to `perf_ftrace_event_register'
It looks like multiple fixes have been merged for the issue fixed by
commit fa73dc9 (tracing: Fix build breakage without CONFIG_PERF_EVENTS)
though I can't identify the other changes that have gone in at the
minute, it's possible that the changes which caused the breakage fixed
by the previous commit got dropped but the fix made it in.
Link: http://lkml.kernel.org/r/1334307179-21255-1-git-send-email-broonie@opensource.wolfsonmicro.com
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Today's -next fails to build for me:
CC kernel/trace/trace_export.o
In file included from kernel/trace/trace_export.c:197: kernel/trace/trace_entries.h:58: error: 'perf_ftrace_event_register' undeclared here (not in a function)
make[2]: *** [kernel/trace/trace_export.o] Error 1
make[1]: *** [kernel/trace] Error 2
make: *** [kernel] Error 2
because as of ced390 (ftrace, perf: Add support to use function
tracepoint in perf) perf_trace_event_register() is declared in trace.h
only if CONFIG_PERF_EVENTS is enabled but I don't have that set.
Ensure that we always have a definition of perf_trace_event_register()
by making the definition unconditional.
Link: http://lkml.kernel.org/r/1330426967-17067-1-git-send-email-broonie@opensource.wolfsonmicro.com
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
As the ring-buffer code is being used by other facilities in the
kernel, having tracing_on file disable *all* buffers is not a desired
affect. It should only disable the ftrace buffers that are being used.
Move the code into the trace.c file and use the buffer disabling
for tracing_on() and tracing_off(). This way only the ftrace buffers
will be affected by them and other kernel utilities will not be
confused to why their output suddenly stopped.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Adding support to filter function trace event via perf
interface. It is now possible to use filter interface
in the perf tool like:
perf record -e ftrace:function --filter="(ip == mm_*)" ls
The filter syntax is restricted to the the 'ip' field only,
and following operators are accepted '==' '!=' '||', ending
up with the filter strings like:
ip == f1[, ]f2 ... || ip != f3[, ]f4 ...
with comma ',' or space ' ' as a function separator. If the
space ' ' is used as a separator, the right side of the
assignment needs to be enclosed in double quotes '"', e.g.:
perf record -e ftrace:function --filter '(ip == do_execve,sys_*,ext*)' ls
perf record -e ftrace:function --filter '(ip == "do_execve,sys_*,ext*")' ls
perf record -e ftrace:function --filter '(ip == "do_execve sys_* ext*")' ls
The '==' operator adds trace filter with same effect as would
be added via set_ftrace_filter file.
The '!=' operator adds trace filter with same effect as would
be added via set_ftrace_notrace file.
The right side of the '!=', '==' operators is list of functions
or regexp. to be added to filter separated by space.
The '||' operator is used for connecting multiple filter definitions
together. It is possible to have more than one '==' and '!='
operators within one filter string.
Link: http://lkml.kernel.org/r/1329317514-8131-8-git-send-email-jolsa@redhat.com
Signed-off-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>