commit b17c2baa305cccbd16bafa289fd743cc2db77966 upstream.
Replace all ret/retq instructions with ASM_RET in preparation of
making it more than a single instruction.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211204134907.964635458@infradead.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[bwh: Backported to 5.10: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f94909ceb1ed4bfdb2ada72f93236305e6d6951f upstream.
Replace all ret/retq instructions with RET in preparation of making
RET a macro. Since AS is case insensitive it's a big no-op without
RET defined.
find arch/x86/ -name \*.S | while read file
do
sed -i 's/\<ret[q]*\>/RET/' $file
done
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211204134907.905503893@infradead.org
[bwh: Backported to 5.10: ran the above command]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 22da5a07c75e1104caf6a42f189c97b83d070073 upstream.
Principally, in order to get rid of #define RET in this code to make
place for a new RET, but also to clarify the code, rename a bunch of
things:
s/UNLOCK/IRQ_RESTORE/
s/LOCK/IRQ_SAVE/
s/BEGIN/BEGIN_IRQ_SAVE/
s/\<RET\>/RET_IRQ_RESTORE/
s/RET_ENDP/\tRET_IRQ_RESTORE\rENDP/
which then leaves RET unused so it can be removed.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211204134907.841623970@infradead.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 87c87ecd00c54ecd677798cb49ef27329e0fab41 upstream.
Current BPF codegen doesn't respect X86_FEATURE_RETPOLINE* flags and
unconditionally emits a thunk call, this is sub-optimal and doesn't
match the regular, compiler generated, code.
Update the i386 JIT to emit code equal to what the compiler emits for
the regular kernel text (IOW. a plain THUNK call).
Update the x86_64 JIT to emit code similar to the result of compiler
and kernel rewrites as according to X86_FEATURE_RETPOLINE* flags.
Inlining RETPOLINE_AMD (lfence; jmp *%reg) and !RETPOLINE (jmp *%reg),
while doing a THUNK call for RETPOLINE.
This removes the hard-coded retpoline thunks and shrinks the generated
code. Leaving a single retpoline thunk definition in the kernel.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Tested-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20211026120310.614772675@infradead.org
[cascardo: RETPOLINE_AMD was renamed to RETPOLINE_LFENCE]
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
[bwh: Backported to 5.10: add the necessary cnt variable to
emit_indirect_jump()]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit dceba0817ca329868a15e2e1dd46eb6340b69206 upstream.
Take an idea from the 32bit JIT, which uses the multi-pass nature of
the JIT to compute the instruction offsets on a prior pass in order to
compute the relative jump offsets on a later pass.
Application to the x86_64 JIT is slightly more involved because the
offsets depend on program variables (such as callee_regs_used and
stack_depth) and hence the computed offsets need to be kept in the
context of the JIT.
This removes, IMO quite fragile, code that hard-codes the offsets and
tries to compute the length of variable parts of it.
Convert both emit_bpf_tail_call_*() functions which have an out: label
at the end. Additionally emit_bpt_tail_call_direct() also has a poke
table entry, for which it computes the offset from the end (and thus
already relies on the previous pass to have computed addrs[i]), also
convert this to be a forward based offset.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Tested-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20211026120310.552304864@infradead.org
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
[bwh: Backported to 5.10: keep the cnt variable in
emit_bpf_tail_call_{,in}direct()]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bbe2df3f6b6da7848398d55b1311d58a16ec21e4 upstream.
Try and replace retpoline thunk calls with:
LFENCE
CALL *%\reg
for spectre_v2=retpoline,amd.
Specifically, the sequence above is 5 bytes for the low 8 registers,
but 6 bytes for the high 8 registers. This means that unless the
compilers prefix stuff the call with higher registers this replacement
will fail.
Luckily GCC strongly favours RAX for the indirect calls and most (95%+
for defconfig-x86_64) will be converted. OTOH clang strongly favours
R11 and almost nothing gets converted.
Note: it will also generate a correct replacement for the Jcc.d32
case, except unless the compilers start to prefix stuff that, it'll
never fit. Specifically:
Jncc.d8 1f
LFENCE
JMP *%\reg
1:
is 7-8 bytes long, where the original instruction in unpadded form is
only 6 bytes.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Tested-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20211026120310.359986601@infradead.org
[cascardo: RETPOLINE_AMD was renamed to RETPOLINE_LFENCE]
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2f0cbb2a8e5bbf101e9de118fc0eb168111a5e1e upstream.
Handle the rare cases where the compiler (clang) does an indirect
conditional tail-call using:
Jcc __x86_indirect_thunk_\reg
For the !RETPOLINE case this can be rewritten to fit the original (6
byte) instruction like:
Jncc.d8 1f
JMP *%\reg
NOP
1:
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Tested-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20211026120310.296470217@infradead.org
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7508500900814d14e2e085cdc4e28142721abbdf upstream.
Rewrite retpoline thunk call sites to be indirect calls for
spectre_v2=off. This ensures spectre_v2=off is as near to a
RETPOLINE=n build as possible.
This is the replacement for objtool writing alternative entries to
ensure the same and achieves feature-parity with the previous
approach.
One noteworthy feature is that it relies on the thunks to be in
machine order to compute the register index.
Specifically, this does not yet address the Jcc __x86_indirect_thunk_*
calls generated by clang, a future patch will add this.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Tested-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20211026120310.232495794@infradead.org
[cascardo: small conflict fixup at arch/x86/kernel/module.c]
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
[bwh: Backported to 5.10:
- Use hex literal instead of BYTES_NOP1
- Adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1a6f74429c42a3854980359a758e222005712aee upstream.
Stick all the retpolines in a single symbol and have the individual
thunks as inner labels, this should guarantee thunk order and layout.
Previously there were 16 (or rather 15 without rsp) separate symbols and
a toolchain might reasonably expect it could displace them however it
liked, with disregard for their relative position.
However, now they're part of a larger symbol. Any change to their
relative position would disrupt this larger _array symbol and thus not
be sound.
This is the same reasoning used for data symbols. On their own there
is no guarantee about their relative position wrt to one aonther, but
we're still able to do arrays because an array as a whole is a single
larger symbol.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Tested-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20211026120310.169659320@infradead.org
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6fda8a38865607db739be3e567a2387376222dbd upstream.
Because it makes no sense to split the retpoline gunk over multiple
headers.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Tested-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20211026120310.106290934@infradead.org
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b6d3d9944bd7c9e8c06994ead3c9952f673f2a66 upstream.
Currently GEN-for-each-reg.h usage leaves GEN defined, relying on any
subsequent usage to start with #undef, which is rude.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Tested-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20211026120310.041792350@infradead.org
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a92ede2d584a2e070def59c7e47e6b6f6341c55c upstream.
Ensure the register order is correct; this allows for easy translation
between register number and trampoline and vice-versa.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Tested-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20211026120309.978573921@infradead.org
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 134ab5bd1883312d7a4b3033b05c6b5a1bb8889b upstream.
Instead of writing complete alternatives, simply provide a list of all
the retpoline thunk calls. Then the kernel is free to do with them as
it pleases. Simpler code all-round.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Tested-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20211026120309.850007165@infradead.org
[cascardo: fixed conflict because of missing
8b946cc38e063f0f7bb67789478c38f6d7d457c9]
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
[bwh: Backported to 5.10: deleted functions had slightly different code]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 31197d3a0f1caeb60fb01f6755e28347e4f44037 upstream.
Because the __x86_indirect_alt* symbols are just that, objtool will
try and validate them as regular symbols, instead of the alternative
replacements that they are.
This goes sideways for FRAME_POINTER=y builds; which generate a fair
amount of warnings.
Fixes: 9bc0bb50727c ("objtool/x86: Rewrite retpoline thunk calls")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/YNCgxwLBiK9wclYJ@hirez.programming.kicks-ass.net
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2b31e8ed96b260ce2c22bd62ecbb9458399e3b62 upstream.
Up until now the assumption was that an alternative patching site would
have some instructions at the beginning and trailing single-byte NOPs
(0x90) padding. Therefore, the patching machinery would go and optimize
those single-byte NOPs into longer ones.
However, this assumption is broken on 32-bit when code like
hv_do_hypercall() in hyperv_init() would use the ratpoline speculation
killer CALL_NOSPEC. The 32-bit version of that macro would align certain
insns to 16 bytes, leading to the compiler issuing a one or more
single-byte NOPs, depending on the holes it needs to fill for alignment.
That would lead to the warning in optimize_nops() to fire:
------------[ cut here ]------------
Not a NOP at 0xc27fb598
WARNING: CPU: 0 PID: 0 at arch/x86/kernel/alternative.c:211 optimize_nops.isra.13
due to that function verifying whether all of the following bytes really
are single-byte NOPs.
Therefore, carve out the NOP padding into a separate function and call
it for each NOP range beginning with a single-byte NOP.
Fixes: 23c1ad538f4f ("x86/alternatives: Optimize optimize_nops()")
Reported-by: Richard Narron <richard@aaazen.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=213301
Link: https://lkml.kernel.org/r/20210601212125.17145-1-bp@alien8.de
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9bc0bb50727c8ac69fbb33fb937431cf3518ff37 upstream.
When the compiler emits: "CALL __x86_indirect_thunk_\reg" for an
indirect call, have objtool rewrite it to:
ALTERNATIVE "call __x86_indirect_thunk_\reg",
"call *%reg", ALT_NOT(X86_FEATURE_RETPOLINE)
Additionally, in order to not emit endless identical
.altinst_replacement chunks, use a global symbol for them, see
__x86_indirect_alt_*.
This also avoids objtool from having to do code generation.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Link: https://lkml.kernel.org/r/20210326151300.320177914@infradead.org
[bwh: Backported to 5.10: include "arch_elf.h" instead of "arch/elf.h"]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 119251855f9adf9421cb5eb409933092141ab2c7 upstream.
Due to:
c9c324dc22aa ("objtool: Support stack layout changes in alternatives")
it is now possible to simplify the retpolines.
Currently our retpolines consist of 2 symbols:
- __x86_indirect_thunk_\reg: the compiler target
- __x86_retpoline_\reg: the actual retpoline.
Both are consecutive in code and aligned such that for any one register
they both live in the same cacheline:
0000000000000000 <__x86_indirect_thunk_rax>:
0: ff e0 jmpq *%rax
2: 90 nop
3: 90 nop
4: 90 nop
0000000000000005 <__x86_retpoline_rax>:
5: e8 07 00 00 00 callq 11 <__x86_retpoline_rax+0xc>
a: f3 90 pause
c: 0f ae e8 lfence
f: eb f9 jmp a <__x86_retpoline_rax+0x5>
11: 48 89 04 24 mov %rax,(%rsp)
15: c3 retq
16: 66 2e 0f 1f 84 00 00 00 00 00 nopw %cs:0x0(%rax,%rax,1)
The thunk is an alternative_2, where one option is a JMP to the
retpoline. This was done so that objtool didn't need to deal with
alternatives with stack ops. But that problem has been solved, so now
it is possible to fold the entire retpoline into the alternative to
simplify and consolidate unused bytes:
0000000000000000 <__x86_indirect_thunk_rax>:
0: ff e0 jmpq *%rax
2: 90 nop
3: 90 nop
4: 90 nop
5: 90 nop
6: 90 nop
7: 90 nop
8: 90 nop
9: 90 nop
a: 90 nop
b: 90 nop
c: 90 nop
d: 90 nop
e: 90 nop
f: 90 nop
10: 90 nop
11: 66 66 2e 0f 1f 84 00 00 00 00 00 data16 nopw %cs:0x0(%rax,%rax,1)
1c: 0f 1f 40 00 nopl 0x0(%rax)
Notice that since the longest alternative sequence is now:
0: e8 07 00 00 00 callq c <.altinstr_replacement+0xc>
5: f3 90 pause
7: 0f ae e8 lfence
a: eb f9 jmp 5 <.altinstr_replacement+0x5>
c: 48 89 04 24 mov %rax,(%rsp)
10: c3 retq
17 bytes, we have 15 bytes NOP at the end of our 32 byte slot. (IOW, if
we can shrink the retpoline by 1 byte we can pack it more densely).
[ bp: Massage commit message. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20210326151259.506071949@infradead.org
[bwh: Backported to 5.10:
- Use X86_FEATRURE_RETPOLINE_LFENCE flag instead of
X86_FEATURE_RETPOLINE_AMD, since the later renaming of this flag
has already been applied
- Adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 23c1ad538f4f371bdb67d8a112314842d5db7e5a upstream.
Currently, optimize_nops() scans to see if the alternative starts with
NOPs. However, the emit pattern is:
141: \oldinstr
142: .skip (len-(142b-141b)), 0x90
That is, when 'oldinstr' is short, the tail is padded with NOPs. This case
never gets optimized.
Rewrite optimize_nops() to replace any trailing string of NOPs inside
the alternative to larger NOPs. Also run it irrespective of patching,
replacing NOPs in both the original and replaced code.
A direct consequence is that 'padlen' becomes superfluous, so remove it.
[ bp:
- Adjust commit message
- remove a stale comment about needing to pad
- add a comment in optimize_nops()
- exit early if the NOP verif. loop catches a mismatch - function
should not not add NOPs in that case
- fix the "optimized NOPs" offsets output ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20210326151259.442992235@infradead.org
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This was done by commit 52fa82c21f64e900a72437269a5cc9e0034b424e
upstream, but this backport avoids changing all callers of the
old decoder API.
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6e8c83d2a3afbfd5ee019ec720b75a42df515caa upstream.
Now that the different instruction-inspecting functions return a value,
test that and return early from callers if error has been encountered.
While at it, do not call insn_get_modrm() when calling
insn_get_displacement() because latter will make sure to call
insn_get_modrm() if ModRM hasn't been parsed yet.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210304174237.31945-6-bp@alien8.de
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 93281c4a96572a34504244969b938e035204778d upstream.
Users of the instruction decoder should use this to decode instruction
bytes. For that, have insn*() helpers return an int value to denote
success/failure. When there's an error fetching the next insn byte and
the insn falls short, return -ENODATA to denote that.
While at it, make insn_get_opcode() more stricter as to whether what has
seen so far is a valid insn and if not.
Copy linux/kconfig.h for the tools-version of the decoder so that it can
use IS_ENABLED().
Also, cast the INSN_MODE_KERN dummy define value to (enum insn_mode)
for tools use of the decoder because perf tool builds with -Werror and
errors out with -Werror=sign-compare otherwise.
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Link: https://lkml.kernel.org/r/20210304174237.31945-5-bp@alien8.de
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d30c7b820be5c4777fe6c3b0c21f9d0064251e51 upstream.
Add an explicit __ignore_sync_check__ marker which will be used to mark
lines which are supposed to be ignored by file synchronization check
scripts, its advantage being that it explicitly denotes such lines in
the code.
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Link: https://lkml.kernel.org/r/20210304174237.31945-4-bp@alien8.de
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9e761296c52dcdb1aaa151b65bd39accb05740d9 upstream.
Rename insn_decode() to insn_decode_from_regs() to denote that it
receives regs as param and uses registers from there during decoding.
Free the former name for a more generic version of the function.
No functional changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210304174237.31945-2-bp@alien8.de
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2fe2a2c7a97c9bc32acc79154b75e754280f7867 upstream.
_static_cpu_has() contains a completely open coded version of
ALTERNATIVE_TERNARY(). Replace that with the macro instead.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210311142319.4723-8-jgross@suse.com
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e208b3c4a9748b2c17aa09ba663b5096ccf82dce upstream.
Add ALTERNATIVE_TERNARY support for replacing an initial instruction
with either of two instructions depending on a feature:
ALTERNATIVE_TERNARY "default_instr", FEATURE_NR,
"feature_on_instr", "feature_off_instr"
which will start with "default_instr" and at patch time will,
depending on FEATURE_NR being set or not, patch that with either
"feature_on_instr" or "feature_off_instr".
[ bp: Add comment ontop. ]
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210311142319.4723-7-jgross@suse.com
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit dda7bb76484978316bb412a353789ebc5901de36 upstream.
Add support for alternative patching for the case a feature is not
present on the current CPU. For users of ALTERNATIVE() and friends, an
inverted feature is specified by applying the ALT_NOT() macro to it,
e.g.:
ALTERNATIVE(old, new, ALT_NOT(feature));
Committer note:
The decision to encode the NOT-bit in the feature bit itself is because
a future change which would make objtool generate such alternative
calls, would keep the code in objtool itself fairly simple.
Also, this allows for the alternative macros to support the NOT feature
without having to change them.
Finally, the u16 cpuid member encoding the X86_FEATURE_ flags is not an
ABI so if more bits are needed, cpuid itself can be enlarged or a flags
field can be added to struct alt_instr after having considered the size
growth in either cases.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210311142319.4723-6-jgross@suse.com
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5e21a3ecad1500e35b46701e7f3f232e15d78e69 upstream.
Merge arch/x86/include/asm/alternative-asm.h into
arch/x86/include/asm/alternative.h in order to make it easier to use
common definitions later.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210311142319.4723-2-jgross@suse.com
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f4b4bc10b0b85ec66f1a9bf5dddf475e6695b6d2 upstream.
The Xen hypercall page is filled with zeros, causing objtool to fall
through all the empty hypercall functions until it reaches a real
function, resulting in a stack state mismatch.
The build-time contents of the hypercall page don't matter because the
page gets rewritten by the hypervisor. Make it more palatable to
objtool by making each hypervisor function a true empty function, with
nops and a return.
Cc: Juergen Gross <jgross@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/0883bde1d7a1fb3b6a4c952bc0200e873752f609.1611263462.git.jpoimboe@redhat.com
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit cde07a4e4434ddfb9b1616ac971edf6d66329804 upstream.
The OBJECT_FILES_NON_STANDARD annotation is used to tell objtool to
ignore a file. File-level ignores won't work when validating vmlinux.o.
Tweak the ELF metadata and unwind hints to allow objtool to follow the
code.
Cc: Juergen Gross <jgross@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/8b042a09c69e8645f3b133ef6653ba28f896807d.1611263462.git.jpoimboe@redhat.com
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b735bd3e68824316655252a931a3353a6ebc036f upstream.
The ORC metadata generated for UNWIND_HINT_FUNC isn't actually very
func-like. With certain usages it can cause stack state mismatches
because it doesn't set the return address (CFI_RA).
Also, users of UNWIND_HINT_RET_OFFSET no longer need to set a custom
return stack offset. Instead they just need to specify a func-like
situation, so the current ret_offset code is hacky for no good reason.
Solve both problems by simplifying the RET_OFFSET handling and
converting it into a more useful UNWIND_HINT_FUNC.
If we end up needing the old 'ret_offset' functionality again in the
future, we should be able to support it pretty easily with the addition
of a custom 'sp_offset' in UNWIND_HINT_FUNC.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/db9d1f5d79dddfbb3725ef6d8ec3477ad199948d.1611263462.git.jpoimboe@redhat.com
[bwh: Backported to 5.10:
- Don't use bswap_if_needed() since we don't have any of the other fixes
for mixed-endian cross-compilation
- Adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 150f17bfab37e981ba03b37440638138ff2aa9ec upstream.
Replace inline assembly in nested_vmx_check_vmentry_hw
with a call to __vmx_vcpu_run. The function is not
performance critical, so (double) GPR save/restore
in __vmx_vcpu_run can be tolerated, as far as performance
effects are concerned.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Reviewed-and-tested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
[sean: dropped versioning info from changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20201231002702.2223707-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6c44221b05236cc65d76cb5dc2463f738edff39d upstream.
Saves one byte in __vmx_vcpu_run for the same functionality.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Message-Id: <20201029140457.126965-1-ubizjak@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 230ec83d4299b30c51a1c133b4f2a669972cc08a upstream.
x86_has_pat_wp() is using a wrong test, as it relies on the normal
PAT configuration used by the kernel. In case the PAT MSR has been
setup by another entity (e.g. Xen hypervisor) it might return false
even if the PAT configuration is allowing WP mappings. This due to the
fact that when running as Xen PV guest the PAT MSR is setup by the
hypervisor and cannot be changed by the guest. This results in the WP
related entry to be at a different position when running as Xen PV
guest compared to the bare metal or fully virtualized case.
The correct way to test for WP support is:
1. Get the PTE protection bits needed to select WP mode by reading
__cachemode2pte_tbl[_PAGE_CACHE_MODE_WP] (depending on the PAT MSR
setting this might return protection bits for a stronger mode, e.g.
UC-)
2. Translate those bits back into the real cache mode selected by those
PTE bits by reading __pte2cachemode_tbl[__pte2cm_idx(prot)]
3. Test for the cache mode to be _PAGE_CACHE_MODE_WP
Fixes: f88a68facd ("x86/mm: Extend early_memremap() support with additional attrs")
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org> # 4.14
Link: https://lore.kernel.org/r/20220503132207.17234-1-jgross@suse.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 38fa5479b41376dc9d7f57e71c83514285a25ca0 ]
The .brk section has the same properties as .bss: it is an alloc-only
section and should be cleared before being used.
Not doing so is especially a problem for Xen PV guests, as the
hypervisor will validate page tables (check for writable page tables
and hypervisor private bits) before accepting them to be used.
Make sure .brk is initially zero by letting clear_bss() clear the brk
area, too.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220630071441.28576-3-jgross@suse.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8a414f943f8b5f94bbaafdec863d6f3dbef33f8a ]
'vector' and 'trig_mode' fields of 'struct kvm_lapic_irq' are left
uninitialized in kvm_pv_kick_cpu_op(). While these fields are normally
not needed for APIC_DM_REMRD, they're still referenced by
__apic_accept_irq() for trace_kvm_apic_accept_irq(). Fully initialize
the structure to avoid consuming random stack memory.
Fixes: a183b638b6 ("KVM: x86: make apic_accept_irq tracepoint more generic")
Reported-by: syzbot+d6caa905917d353f0d07@syzkaller.appspotmail.com
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220708125147.593975-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit af16df54b89dee72df253abc5e7b5e8a6d16c11c ]
Currently, an unsigned kernel could be kexec'ed when IMA arch specific
policy is configured unless lockdown is enabled. Enforce kernel
signature verification check in the kexec_file_load syscall when IMA
arch specific policy is configured.
Fixes: 99d5cadfde ("kexec_file: split KEXEC_VERIFY_SIG into KEXEC_SIG and KEXEC_SIG_FORCE")
Reported-and-suggested-by: Mimi Zohar <zohar@linux.ibm.com>
Signed-off-by: Coiby Xu <coxu@redhat.com>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ff672c67ee7635ca1e28fb13729e8ef0d1f08ce5 ]
On x86-64 the tail call count is passed from one BPF function to another
through %rax. Additionally, on function entry, the tail call count value
is stored on stack right after the BPF program stack, due to register
shortage.
The stored count is later loaded from stack either when performing a tail
call - to check if we have not reached the tail call limit - or before
calling another BPF function call in order to pass it via %rax.
In the latter case, we miscalculate the offset at which the tail call count
was stored on function entry. The JIT does not take into account that the
allocated BPF program stack is always a multiple of 8 on x86, while the
actual stack depth does not have to be.
This leads to a load from an offset that belongs to the BPF stack, as shown
in the example below:
SEC("tc")
int entry(struct __sk_buff *skb)
{
/* Have data on stack which size is not a multiple of 8 */
volatile char arr[1] = {};
return subprog_tail(skb);
}
int entry(struct __sk_buff * skb):
0: (b4) w2 = 0
1: (73) *(u8 *)(r10 -1) = r2
2: (85) call pc+1#bpf_prog_ce2f79bb5f3e06dd_F
3: (95) exit
int entry(struct __sk_buff * skb):
0xffffffffa0201788: nop DWORD PTR [rax+rax*1+0x0]
0xffffffffa020178d: xor eax,eax
0xffffffffa020178f: push rbp
0xffffffffa0201790: mov rbp,rsp
0xffffffffa0201793: sub rsp,0x8
0xffffffffa020179a: push rax
0xffffffffa020179b: xor esi,esi
0xffffffffa020179d: mov BYTE PTR [rbp-0x1],sil
0xffffffffa02017a1: mov rax,QWORD PTR [rbp-0x9] !!! tail call count
0xffffffffa02017a8: call 0xffffffffa02017d8 !!! is at rbp-0x10
0xffffffffa02017ad: leave
0xffffffffa02017ae: ret
Fix it by rounding up the BPF stack depth to a multiple of 8, when
calculating the tail call count offset on stack.
Fixes: ebf7d1f508 ("bpf, x64: rework pro/epilogue and tailcall handling in JIT")
Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20220616162037.535469-2-jakub@cloudflare.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit d22d2474e3953996f03528b84b7f52cc26a39403 upstream.
For some sev ioctl interfaces, the length parameter that is passed maybe
less than or equal to SEV_FW_BLOB_MAX_SIZE, but larger than the data
that PSP firmware returns. In this case, kmalloc will allocate memory
that is the size of the input rather than the size of the data.
Since PSP firmware doesn't fully overwrite the allocated buffer, these
sev ioctl interface may return uninitialized kernel slab memory.
Reported-by: Andy Nguyen <theflow@google.com>
Suggested-by: David Rientjes <rientjes@google.com>
Suggested-by: Peter Gonda <pgonda@google.com>
Cc: kvm@vger.kernel.org
Cc: stable@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Fixes: eaf78265a4 ("KVM: SVM: Move SEV code to separate file")
Fixes: 2c07ded06427d ("KVM: SVM: add support for SEV attestation command")
Fixes: 4cfdd47d6d95a ("KVM: SVM: Add KVM_SEV SEND_START command")
Fixes: d3d1af85e2c75 ("KVM: SVM: Add KVM_SEND_UPDATE_DATA command")
Fixes: eba04b20e4861 ("KVM: x86: Account a variety of miscellaneous allocations")
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Reviewed-by: Peter Gonda <pgonda@google.com>
Message-Id: <20220516154310.3685678-1-Ashish.Kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[sudip: adjust context]
Signed-off-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit eba04b20e4861d9bdbd8470a13c0c6e824521a36 upstream.
Switch to GFP_KERNEL_ACCOUNT for a handful of allocations that are
clearly associated with a single task/VM.
Note, there are a several SEV allocations that aren't accounted, but
those can (hopefully) be fixed by using the local stack for memory.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210331023025.2485960-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[sudip: adjust context]
Signed-off-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1dc6ff02c8bf77d71b9b5d11cbc9df77cfb28626 upstream
Similar to MDS and TAA, print a warning if SMT is enabled for the MMIO
Stale Data vulnerability.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 027bbb884be006b05d9c577d6401686053aa789e upstream
The enumeration of MD_CLEAR in CPUID(EAX=7,ECX=0).EDX{bit 10} is not an
accurate indicator on all CPUs of whether the VERW instruction will
overwrite fill buffers. FB_CLEAR enumeration in
IA32_ARCH_CAPABILITIES{bit 17} covers the case of CPUs that are not
vulnerable to MDS/TAA, indicating that microcode does overwrite fill
buffers.
Guests running in VMM environments may not be aware of all the
capabilities/vulnerabilities of the host CPU. Specifically, a guest may
apply MDS/TAA mitigations when a virtual CPU is enumerated as vulnerable
to MDS/TAA even when the physical CPU is not. On CPUs that enumerate
FB_CLEAR_CTRL the VMM may set FB_CLEAR_DIS to skip overwriting of fill
buffers by the VERW instruction. This is done by setting FB_CLEAR_DIS
during VMENTER and resetting on VMEXIT. For guests that enumerate
FB_CLEAR (explicitly asking for fill buffer clear capability) the VMM
will not use FB_CLEAR_DIS.
Irrespective of guest state, host overwrites CPU buffers before VMENTER
to protect itself from an MMIO capable guest, as part of mitigation for
MMIO Stale Data vulnerabilities.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a992b8a4682f119ae035a01b40d4d0665c4a2875 upstream
The Shared Buffers Data Sampling (SBDS) variant of Processor MMIO Stale
Data vulnerabilities may expose RDRAND, RDSEED and SGX EGETKEY data.
Mitigation for this is added by a microcode update.
As some of the implications of SBDS are similar to SRBDS, SRBDS mitigation
infrastructure can be leveraged by SBDS. Set X86_BUG_SRBDS and use SRBDS
mitigation.
Mitigation is enabled by default; use srbds=off to opt-out. Mitigation
status can be checked from below file:
/sys/devices/system/cpu/vulnerabilities/srbds
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 22cac9c677c95f3ac5c9244f8ca0afdc7c8afb19 upstream
Currently, Linux disables SRBDS mitigation on CPUs not affected by
MDS and have the TSX feature disabled. On such CPUs, secrets cannot
be extracted from CPU fill buffers using MDS or TAA. Without SRBDS
mitigation, Processor MMIO Stale Data vulnerabilities can be used to
extract RDRAND, RDSEED, and EGETKEY data.
Do not disable SRBDS mitigation by default when CPU is also affected by
Processor MMIO Stale Data vulnerabilities.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8d50cdf8b8341770bc6367bce40c0c1bb0e1d5b3 upstream
Add the sysfs reporting file for Processor MMIO Stale Data
vulnerability. It exposes the vulnerability and mitigation state similar
to the existing files for the other hardware vulnerabilities.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 99a83db5a605137424e1efe29dc0573d6a5b6316 upstream
When the CPU is affected by Processor MMIO Stale Data vulnerabilities,
Fill Buffer Stale Data Propagator (FBSDP) can propagate stale data out
of Fill buffer to uncore buffer when CPU goes idle. Stale data can then
be exploited with other variants using MMIO operations.
Mitigate it by clearing the Fill buffer before entering idle state.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Co-developed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e5925fb867290ee924fcf2fe3ca887b792714366 upstream
MDS, TAA and Processor MMIO Stale Data mitigations rely on clearing CPU
buffers. Moreover, status of these mitigations affects each other.
During boot, it is important to maintain the order in which these
mitigations are selected. This is especially true for
md_clear_update_mitigation() that needs to be called after MDS, TAA and
Processor MMIO Stale Data mitigation selection is done.
Introduce md_clear_select_mitigation(), and select all these mitigations
from there. This reflects relationships between these mitigations and
ensures proper ordering.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8cb861e9e3c9a55099ad3d08e1a3b653d29c33ca upstream
Processor MMIO Stale Data is a class of vulnerabilities that may
expose data after an MMIO operation. For details please refer to
Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst.
These vulnerabilities are broadly categorized as:
Device Register Partial Write (DRPW):
Some endpoint MMIO registers incorrectly handle writes that are
smaller than the register size. Instead of aborting the write or only
copying the correct subset of bytes (for example, 2 bytes for a 2-byte
write), more bytes than specified by the write transaction may be
written to the register. On some processors, this may expose stale
data from the fill buffers of the core that created the write
transaction.
Shared Buffers Data Sampling (SBDS):
After propagators may have moved data around the uncore and copied
stale data into client core fill buffers, processors affected by MFBDS
can leak data from the fill buffer.
Shared Buffers Data Read (SBDR):
It is similar to Shared Buffer Data Sampling (SBDS) except that the
data is directly read into the architectural software-visible state.
An attacker can use these vulnerabilities to extract data from CPU fill
buffers using MDS and TAA methods. Mitigate it by clearing the CPU fill
buffers using the VERW instruction before returning to a user or a
guest.
On CPUs not affected by MDS and TAA, user application cannot sample data
from CPU fill buffers using MDS or TAA. A guest with MMIO access can
still use DRPW or SBDR to extract data architecturally. Mitigate it with
VERW instruction to clear fill buffers before VMENTER for MMIO capable
guests.
Add a kernel parameter mmio_stale_data={off|full|full,nosmt} to control
the mitigation.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>