CC arch/x86/xen/setup.o
arch/x86/xen/setup.c: In function 'xen_memory_setup':
arch/x86/xen/setup.c:161: error: implicit declaration of function 'xen_initial_domain'
Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
When running as initial domain, get the real physical memory map from
xen using the XENMEM_machine_memory_map hypercall and use it to setup
the e820 regions.
Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Otherwise the second migration attempt fails because the mfn_list_list
still refers to all the old mfns.
We need to update the entires in both p2m_top_mfn and the mid_mfn
pages which p2m_top_mfn refers to.
In order to do this we need to keep track of the virtual addresses
mapping the p2m_mid_mfn pages since we cannot rely on
mfn_to_virt(p2m_top_mfn[idx]) since p2m_top_mfn[idx] will still
contain the old MFN after a migration, which may now belong to another
domain and hence have a different mapping in the m2p.
Therefore add and maintain a third top level page, p2m_top_mfn_p[],
which tracks the virtual addresses of the mfns contained in
p2m_top_mfn[].
We also need to update the content of the p2m_mid_missing_mfn page on
resume to refer to the page's new mfn.
p2m_missing does not need updating since the migration process takes
care of the leaf p2m pages for us.
Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
If an E820 region is entirely beyond mem_end, don't attempt to truncate
it and add the truncated pages to extra_pages, as they will be negative.
Also, make sure the extra memory region starts after all BIOS provided
E820 regions (and in the case of RAM regions, post-clipping).
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Convert Linux PAT entries into Xen ones when constructing ptes. Linux
doesn't use _PAGE_PAT for ptes, so the only difference in the first 4
entries is that Linux uses _PAGE_PWT for WC, whereas Xen (and default)
use it for WT.
xen_pte_val does the inverse conversion.
We hard-code assumptions about Linux's current PAT layout, but a
warning on the wrmsr to MSR_IA32_CR_PAT should point out any problems.
If necessary we could go to a more general table-based conversion between
Linux and Xen PAT entries.
hugetlbfs poses a problem at the moment, the x86 architecture uses the
same flag for _PAGE_PAT and _PAGE_PSE, which changes meaning depending
on which pagetable level we're using. At the moment this should be OK
so long as nobody tries to do a pte_val on a hugetlbfs pte.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Keep xen_max_p2m_pfn up to date with the end of the extra memory
we're adding. It is possible that it will be too high since memory
may be truncated by a "mem=" option on the kernel command line, but
that won't matter.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
If extra memory is very much larger than the base memory size
then all of the base memory can be filled with structures reserved to
describe the extra memory, leaving no space for anything else.
Even at the maximum ratio there will be little space for anything else,
but this change is intended to at least allow the system to boot rather
than crash mysteriously.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
If an entire E820 RAM region is beyond mem_end, still add its
pages to the extra area so that space can be used by the kernel.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
If Xen gives us non-RAM E820 entries (dom0 only, typically), then
make sure the extra RAM region is beyond them. It's OK for
the extra space to grow into E820 regions, however.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
When using the e820 map to get the initial pseudo-physical address space,
look for either Xen-provided memory which doesn't lie within an E820
region, or an E820 RAM region which extends beyond the Xen-provided
memory range.
Count these pages, and add them to a new "extra memory" range. This range
has an E820 RAM range to describe it - so the kernel will allocate page
structures for it - but it is also marked reserved so that the kernel
will not attempt to use it.
The balloon driver can then add this range as a set of currently
ballooned-out pages, which can be used to extend the domain beyond its
original size.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Rather than simply using a flat memory map from Xen, use its provided
E820 map. This allows the domain builder to tell the domain to reserve
space for more pages than those initially provided at domain-build time.
It also allows the host to specify holes in the address space (for
PCI-passthrough, for example).
Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
When setting up a pte for a missing pfn (no matching mfn), just create
an empty pte rather than a junk mapping.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
When building mfn parts of p2m structure, we rely on being able to
use mfn_to_virt, which in turn requires kernel to be mapped into
the linear area (which is distinct from the kernel image mapping
on 64-bit). Defer calling xen_build_mfn_list_list() until after
xen_setup_kernel_pagetable();
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
set_phys_to_machine() can return false on failure, which means a memory
allocation failure for the p2m structure. It can only fail if setting
the mfn for a pfn in previously unused address space. It is guaranteed
to succeed if you're setting a mapping to INVALID_P2M_ENTRY or updating
the mfn for an existing pfn.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Make the p2m structure a 3 level tree which covers the full possible
physical space.
The p2m structure contains mappings from the domain's pfns to system-wide
mfns. The structure has 3 levels and two roots. The first root is for
the domain's own use, and is linked with virtual addresses. The second
is all mfn references, and is used by Xen on save/restore to allow it to
update the p2m mapping for the domain.
At boot, the domain builder provides a simple flat p2m array for all the
initially present pages. We construct the two levels above that using
the early_brk allocator. After early boot time, set_phys_to_machine()
will allocate any missing levels using the normal kernel allocator
(at GFP_KERNEL, so it must be called in a normal blocking context).
Because the early_brk() API requires us to pre-reserve the maximum amount
of memory we could allocate, there is still a CONFIG_XEN_MAX_DOMAIN_MEMORY
config option, but its only negative side-effect is to increase the
kernel's apparent bss size. However, since all unused brk memory is
returned to the heap, there's no real downside to making it large.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Allocate p2m tables based on the actual runtime maximum pfn rather than
the static config-time limit.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Use early brk mechanism to allocate p2m tables, to save memory when
booting non-Xen.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
akiphie points out that a.out core-dumps have that odd task struct
dumping that was never used and was never really a good idea (it goes
back into the mists of history, probably the original core-dumping
code). Just remove it.
Also do the access_ok() check on dump_write(). It probably doesn't
matter (since normal filesystems all seem to do it anyway), but he
points out that it's normally done by the VFS layer, so ...
[ I suspect that we should possibly do "vfs_write()" instead of
calling ->write directly. That also does the whole fsnotify and write
statistics thing, which may or may not be a good idea. ]
And just to be anal, do this all for the x86-64 32-bit a.out emulation
code too, even though it's not enabled (and won't currently even
compile)
Reported-by: akiphie <akiphie@lavabit.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, numa: For each node, register the memory blocks actually used
x86, AMD, MCE thresholding: Fix the MCi_MISCj iteration order
x86, mce, therm_throt.c: Fix missing curly braces in error handling logic
Russ reported SGI UV is broken recently. He said:
| The SRAT table shows that memory range is spread over two nodes.
|
| SRAT: Node 0 PXM 0 100000000-800000000
| SRAT: Node 1 PXM 1 800000000-1000000000
| SRAT: Node 0 PXM 0 1000000000-1080000000
|
|Previously, the kernel early_node_map[] would show three entries
|with the proper node.
|
|[ 0.000000] 0: 0x00100000 -> 0x00800000
|[ 0.000000] 1: 0x00800000 -> 0x01000000
|[ 0.000000] 0: 0x01000000 -> 0x01080000
|
|The problem is recent community kernel early_node_map[] shows
|only two entries with the node 0 entry overlapping the node 1
|entry.
|
| 0: 0x00100000 -> 0x01080000
| 1: 0x00800000 -> 0x01000000
After looking at the changelog, Found out that it has been broken for a while by
following commit
|commit 8716273cae
|Author: David Rientjes <rientjes@google.com>
|Date: Fri Sep 25 15:20:04 2009 -0700
|
| x86: Export srat physical topology
Before that commit, register_active_regions() is called for every SRAT memory
entry right away.
Use nodememblk_range[] instead of nodes[] in order to make sure we
capture the actual memory blocks registered with each node. nodes[]
contains an extended range which spans all memory regions associated
with a node, but that does not mean that all the memory in between are
included.
Reported-by: Russ Anderson <rja@sgi.com>
Tested-by: Russ Anderson <rja@sgi.com>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
LKML-Reference: <4CB27BDF.5000800@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: <stable@kernel.org> 2.6.33 .34 .35 .36
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
The VMCB is reset whenever we receive a startup IPI, so Linux is setting
TSC back to zero happens very late in the boot process and destabilizing
the TSC. Instead, just set TSC to zero once at VCPU creation time.
Why the separate patch? So git-bisect is your friend.
Signed-off-by: Zachary Amsden <zamsden@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
On reset, VMCB TSC should be set to zero. Instead, code was setting
tsc_offset to zero, which passes through the underlying TSC.
Signed-off-by: Zachary Amsden <zamsden@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This fixes possible cases of not collecting valid error info in
the MCE error thresholding groups on F10h hardware.
The current code contains a subtle problem of checking only the
Valid bit of MSR0000_0413 (which is MC4_MISC0 - DRAM
thresholding group) in its first iteration and breaking out if
the bit is cleared.
But (!), this MSR contains an offset value, BlkPtr[31:24], which
points to the remaining MSRs in this thresholding group which
might contain valid information too. But if we bail out only
after we checked the valid bit in the first MSR and not the
block pointer too, we miss that other information.
The thing is, MC4_MISC0[BlkPtr] is not predicated on
MCi_STATUS[MiscV] or MC4_MISC0[Valid] and should be checked
prior to iterating over the MCI_MISCj thresholding group,
irrespective of the MC4_MISC0[Valid] setting.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When the feature PTS is not supported by CPU, the sysfile
package_power_limit_count for package should not be
generated.
This patch is used for fixing missing { and }.
The patch is not complete as there are other error handling
problems in this function - but that can wait until the
merge window.
Signed-off-by: Jin Dongming <jin.dongming@np.css.fujitsu.com>
Reviewed-by: Fenghua Yu <fenghua.yu@initel.com>
Acked-by: Jean Delvare <khali@linux-fr.org>
Cc: Brown Len <len.brown@intel.com>
Cc: Guenter Roeck <guenter.roeck@ericsson.com>
Cc: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Cc: lm-sensors@lm-sensors.org <lm-sensors@lm-sensors.org>
LKML-Reference: <4C7625D1.4060201@np.css.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'v2.6.36-rc6-urgent-fixes' of git://xenbits.xen.org/people/sstabellini/linux-pvhvm:
xen: do not initialize PV timers on HVM if !xen_have_vector_callback
xen: do not set xenstored_ready before xenbus_probe on hvm
* 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
perf trace scripting: Fix extern struct definitions
perf ui hist browser: Fix segfault on 'a' for annotate
perf tools: Fix build breakage
perf, x86: Handle in flight NMIs on P4 platform
oprofile, ARM: Release resources on failure
oprofile: Add Support for Intel CPU Family 6 / Model 29
With all the recent module loading cleanups, we've minimized the code
that sits under module_mutex, fixing various deadlocks and making it
possible to do most of the module loading in parallel.
However, that whole conversion totally missed the rather obscure code
that adds a new module to the list for BUG() handling. That code was
doubly obscure because (a) the code itself lives in lib/bugs.c (for
dubious reasons) and (b) it gets called from the architecture-specific
"module_finalize()" rather than from generic code.
Calling it from arch-specific code makes no sense what-so-ever to begin
with, and is now actively wrong since that code isn't protected by the
module loading lock any more.
So this commit moves the "module_bug_{finalize,cleanup}()" calls away
from the arch-specific code, and into the generic code - and in the
process protects it with the module_mutex so that the list operations
are now safe.
Future fixups:
- move the module list handling code into kernel/module.c where it
belongs.
- get rid of 'module_bug_list' and just use the regular list of modules
(called 'modules' - imagine that) that we already create and maintain
for other reasons.
Reported-and-tested-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Adrian Bunk <bunk@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
if !xen_have_vector_callback do not initialize PV timer unconditionally
because we still don't know how many cpus are available and if there is
more than one we won't be able to receive the timer interrupts on
cpu > 0.
This patch fixes an hang at boot when Xen does not support vector
callbacks and the guest has multiple vcpus.
Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Acked-by: Jeremy Fitzhardinge <jeremy@goop.org>
create_irq() returns -1 if the interrupt allocation failed, but the
code checks for irq == 0.
Use create_irq_nr() instead.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Venkatesh Pallipadi <venki@google.com>
LKML-Reference: <alpine.LFD.2.00.1009282310360.2416@localhost6.localdomain6>
Cc: stable@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
free_irq_cfg() is not freeing the cpumask_vars in irq_cfg. Fixing this
triggers a use after free caused by the fact that copying struct
irq_cfg is done with memcpy, which copies the pointer not the cpumask.
Fix both places.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yhlu.kernel@gmail.com>
LKML-Reference: <alpine.LFD.2.00.1009282052570.2416@localhost6.localdomain6>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
If acpi_evaluate_object() function call doesn't fail, we must kfree()
output.buffer before returning from pcc_cpufreq_do_osc().
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Dave Jones <davej@redhat.com>
acpi_perf_data is a percpu pointer but was missing __percpu markup.
Add it.
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Dave Jones <davej@redhat.com>
cpu_cstate_entry is a percpu pointer
but was missing __percpu markup.
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Len Brown <len.brown@intel.com>
After uncapping the CPUID level, we need to also re-run the CPU
feature detection code.
This resolves kernel bugzilla 16322.
Reported-by: boris64 <bugzilla.kernel.org@boris64.net>
Cc: <stable@kernel.org> v2.6.29..2.6.35
LKML-Reference: <tip-@git.kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
* 'x86/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Avoid 'constant_test_bit()' misoptimization due to cast to non-volatile
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86/amd-iommu: Fix rounding-bug in __unmap_single
x86/amd-iommu: Work around S3 BIOS bug
x86/amd-iommu: Set iommu configuration flags in enable-loop
x86, setup: Fix earlyprintk=serial,0x3f8,115200
x86, setup: Fix earlyprintk=serial,ttyS0,115200
* 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
perf, x86: Catch spurious interrupts after disabling counters
tracing/x86: Don't use mcount in kvmclock.c
tracing/x86: Don't use mcount in pvclock.c
While debugging bit_spin_lock() hang, it was tracked down to gcc-4.4
misoptimization of non-inlined constant_test_bit() due to non-volatile
addr when 'const volatile unsigned long *addr' cast to 'unsigned long *'
with subsequent unconditional jump to pause (and not to the test) leading
to hang.
Compiling with gcc-4.3 or disabling CONFIG_OPTIMIZE_INLINING yields inlined
constant_test_bit() and correct jump, thus working around the kernel bug.
Other arches than asm-x86 may implement this slightly differently;
2.6.29 mitigates the misoptimization by changing the function prototype
(commit c4295fbb60) but probably fixing the issue
itself is better.
Signed-off-by: Alexander Chumachenko <ledest@gmail.com>
Signed-off-by: Michael Shigorin <mike@osdn.org.ua>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Using cpuid_eax() to determine feature availability on other than
the current CPU is invalid. And feature availability should also be
checked in the hotplug code path.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Cc: Rudolf Marek <r.marek@assembler.cz>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Guenter Roeck <guenter.roeck@ericsson.com>