A micro-optimization. Avoid additional branching and reduce (a bit)
registry pressure (f.e. s_off += size; d_off += size; may be calculated
twise: first for >= PAGE_SIZE check and later for offset update in "else"
clause).
scripts/bloat-o-meter shows some improvement
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-10 (-10)
function old new delta
zs_object_copy 550 540 -10
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Do not synchronize rcu in zs_compact(). Neither zsmalloc not
zram use rcu.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During investigating compaction, fullness information of each class is
helpful for investigating how the compaction works well. With that, we
could know how compaction works well more clear on each size class.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Juneho Choi <juno.choi@lge.com>
Cc: Gunho Lee <gunho.lee@lge.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We store handle on header of each allocated object so it increases the
size of each object by sizeof(unsigned long).
If zram stores 4096 bytes to zsmalloc(ie, bad compression), zsmalloc needs
4104B-class to add handle.
However, 4104B-class has 1-pages_per_zspage so wasted size by internal
fragment is 8192 - 4104, which is terrible.
So this patch records the handle in page->private on such huge object(ie,
pages_per_zspage == 1 && maxobj_per_zspage == 1) instead of header of each
object so we could use 4096B-class, not 4104B-class.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Juneho Choi <juno.choi@lge.com>
Cc: Gunho Lee <gunho.lee@lge.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Curretly, zsmalloc regards a zspage as ZS_ALMOST_EMPTY if the zspage has
under 1/4 used objects(ie, fullness_threshold_frac). It could make result
in loose packing since zsmalloc migrates only ZS_ALMOST_EMPTY zspage out.
This patch changes the rule so that zsmalloc makes zspage which has above
3/4 used object ZS_ALMOST_FULL so it could make tight packing.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Juneho Choi <juno.choi@lge.com>
Cc: Gunho Lee <gunho.lee@lge.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch provides core functions for migration of zsmalloc. Migraion
policy is simple as follows.
for each size class {
while {
src_page = get zs_page from ZS_ALMOST_EMPTY
if (!src_page)
break;
dst_page = get zs_page from ZS_ALMOST_FULL
if (!dst_page)
dst_page = get zs_page from ZS_ALMOST_EMPTY
if (!dst_page)
break;
migrate(from src_page, to dst_page);
}
}
For migration, we need to identify which objects in zspage are allocated
to migrate them out. We could know it by iterating of freed objects in a
zspage because first_page of zspage keeps free objects singly-linked list
but it's not efficient. Instead, this patch adds a tag(ie,
OBJ_ALLOCATED_TAG) in header of each object(ie, handle) so we could check
whether the object is allocated easily.
This patch adds another status bit in handle to synchronize between user
access through zs_map_object and migration. During migration, we cannot
move objects user are using due to data coherency between old object and
new object.
[akpm@linux-foundation.org: zsmalloc.c needs sched.h for cond_resched()]
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Juneho Choi <juno.choi@lge.com>
Cc: Gunho Lee <gunho.lee@lge.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In later patch, migration needs some part of functions in zs_malloc and
zs_free so this patch factor out them.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Juneho Choi <juno.choi@lge.com>
Cc: Gunho Lee <gunho.lee@lge.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Recently, we started to use zram heavily and some of issues
popped.
1) external fragmentation
I got a report from Juneho Choi that fork failed although there are plenty
of free pages in the system. His investigation revealed zram is one of
the culprit to make heavy fragmentation so there was no more contiguous
16K page for pgd to fork in the ARM.
2) non-movable pages
Other problem of zram now is that inherently, user want to use zram as
swap in small memory system so they use zRAM with CMA to use memory
efficiently. However, unfortunately, it doesn't work well because zRAM
cannot use CMA's movable pages unless it doesn't support compaction. I
got several reports about that OOM happened with zram although there are
lots of swap space and free space in CMA area.
3) internal fragmentation
zRAM has started support memory limitation feature to limit memory usage
and I sent a patchset(https://lkml.org/lkml/2014/9/21/148) for VM to be
harmonized with zram-swap to stop anonymous page reclaim if zram consumed
memory up to the limit although there are free space on the swap. One
problem for that direction is zram has no way to know any hole in memory
space zsmalloc allocated by internal fragmentation so zram would regard
swap is full although there are free space in zsmalloc. For solving the
issue, zram want to trigger compaction of zsmalloc before it decides full
or not.
This patchset is first step to support above issues. For that, it adds
indirect layer between handle and object location and supports manual
compaction to solve 3th problem first of all.
After this patchset got merged, next step is to make VM aware of zsmalloc
compaction so that generic compaction will move zsmalloced-pages
automatically in runtime.
In my imaginary experiment(ie, high compress ratio data with heavy swap
in/out on 8G zram-swap), data is as follows,
Before =
zram allocated object : 60212066 bytes
zram total used: 140103680 bytes
ratio: 42.98 percent
MemFree: 840192 kB
Compaction
After =
frag ratio after compaction
zram allocated object : 60212066 bytes
zram total used: 76185600 bytes
ratio: 79.03 percent
MemFree: 901932 kB
Juneho reported below in his real platform with small aging.
So, I think the benefit would be bigger in real aging system
for a long time.
- frag_ratio increased 3% (ie, higher is better)
- memfree increased about 6MB
- In buddy info, Normal 2^3: 4, 2^2: 1: 2^1 increased, Highmem: 2^1 21 increased
frag ratio after swap fragment
used : 156677 kbytes
total: 166092 kbytes
frag_ratio : 94
meminfo before compaction
MemFree: 83724 kB
Node 0, zone Normal 13642 1364 57 10 61 17 9 5 4 0 0
Node 0, zone HighMem 425 29 1 0 0 0 0 0 0 0 0
num_migrated : 23630
compaction done
frag ratio after compaction
used : 156673 kbytes
total: 160564 kbytes
frag_ratio : 97
meminfo after compaction
MemFree: 89060 kB
Node 0, zone Normal 14076 1544 67 14 61 17 9 5 4 0 0
Node 0, zone HighMem 863 50 1 0 0 0 0 0 0 0 0
This patchset adds more logics(about 480 lines) in zsmalloc but when I
tested heavy swapin/out program, the regression for swapin/out speed is
marginal because most of overheads were caused by compress/decompress and
other MM reclaim stuff.
This patch (of 7):
Currently, handle of zsmalloc encodes object's location directly so it
makes support of migration hard.
This patch decouples handle and object via adding indirect layer. For
that, it allocates handle dynamically and returns it to user. The handle
is the address allocated by slab allocation so it's unique and we could
keep object's location in the memory space allocated for handle.
With it, we can change object's position without changing handle itself.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Juneho Choi <juno.choi@lge.com>
Cc: Gunho Lee <gunho.lee@lge.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mm/compaction.c:250:13: warning: 'suitable_migration_target' defined but not used [-Wunused-function]
Reported-by: Fengguang Wu <fengguang.wu@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This will allow FS that uses VM_PFNMAP | VM_MIXEDMAP (no page structs) to
get notified when access is a write to a read-only PFN.
This can happen if we mmap() a file then first mmap-read from it to
page-in a read-only PFN, than we mmap-write to the same page.
We need this functionality to fix a DAX bug, where in the scenario above
we fail to set ctime/mtime though we modified the file. An xfstest is
attached to this patchset that shows the failure and the fix. (A DAX
patch will follow)
This functionality is extra important for us, because upon dirtying of a
pmem page we also want to RDMA the page to a remote cluster node.
We define a new pfn_mkwrite and do not reuse page_mkwrite because
1 - The name ;-)
2 - But mainly because it would take a very long and tedious
audit of all page_mkwrite functions of VM_MIXEDMAP/VM_PFNMAP
users. To make sure they do not now CRASH. For example current
DAX code (which this is for) would crash.
If we would want to reuse page_mkwrite, We will need to first
patch all users, so to not-crash-on-no-page. Then enable this
patch. But even if I did that I would not sleep so well at night.
Adding a new vector is the safest thing to do, and is not that
expensive. an extra pointer at a static function vector per driver.
Also the new vector is better for performance, because else we
Will call all current Kernel vectors, so to:
check-ha-no-page-do-nothing and return.
No need to call it from do_shared_fault because do_wp_page is called to
change pte permissions anyway.
Signed-off-by: Yigal Korman <yigal@plexistor.com>
Signed-off-by: Boaz Harrosh <boaz@plexistor.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A lot of filesystems use generic_file_mmap() and filemap_fault(),
f_op->mmap and vm_ops->fault aren't enough to identify filesystem.
This prints file name, vm_ops->fault, f_op->mmap and a_ops->readpage
(which is almost always implemented and filesystem-specific).
Example:
[ 23.676410] BUG: Bad page map in process sh pte:1b7e6025 pmd:19bbd067
[ 23.676887] page:ffffea00006df980 count:4 mapcount:1 mapping:ffff8800196426c0 index:0x97
[ 23.677481] flags: 0x10000000000000c(referenced|uptodate)
[ 23.677896] page dumped because: bad pte
[ 23.678205] addr:00007f52fcb17000 vm_flags:00000075 anon_vma: (null) mapping:ffff8800196426c0 index:97
[ 23.678922] file:libc-2.19.so fault:filemap_fault mmap:generic_file_readonly_mmap readpage:v9fs_vfs_readpage
[akpm@linux-foundation.org: use pr_alert, per Kirill]
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Sasha Levin <sasha.levin@oracle.com>
Acked-by: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mempools keep allocated objects in reserved for situations when ordinary
allocation may not be possible to satisfy. These objects shouldn't be
accessed before they leave the pool.
This patch poison elements when get into the pool and unpoison when they
leave it. This will let KASan to detect use-after-free of mempool's
elements.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Tested-by: David Rientjes <rientjes@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Chernenkov <drcheren@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Like EXPORT_SYMBOL(): the positioning communicates that the macro pertains
to the immediately preceding function.
Cc: Dmitry Safonov <d.safonov@partner.samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Stefan Strogin <stefan.strogin@gmail.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pintu Kumar <pintu.k@samsung.com>
Cc: Weijie Yang <weijie.yang@samsung.com>
Cc: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Cc: Vyacheslav Tyrtov <v.tyrtov@samsung.com>
Cc: Aleksei Mateosian <a.mateosian@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Here are two functions that provide interface to compute/get used size and
size of biggest free chunk in cma region. Add that information to
debugfs.
[akpm@linux-foundation.org: move debug code from cma.c into cma_debug.c]
[stefan.strogin@gmail.com: move code from cma_get_used() and cma_get_maxchunk() to cma_used_get() and cma_maxchunk_get()]
Signed-off-by: Dmitry Safonov <d.safonov@partner.samsung.com>
Signed-off-by: Stefan Strogin <stefan.strogin@gmail.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pintu Kumar <pintu.k@samsung.com>
Cc: Weijie Yang <weijie.yang@samsung.com>
Cc: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Cc: Vyacheslav Tyrtov <v.tyrtov@samsung.com>
Cc: Aleksei Mateosian <a.mateosian@samsung.com>
Signed-off-by: Stefan Strogin <stefan.strogin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Few trivial cleanups:
- no need to call set_recommended_min_free_kbytes() from
late_initcall() -- start_khugepaged() calls it;
- no need to call set_recommended_min_free_kbytes() from
start_khugepaged() if khugepaged is not started;
- there isn't much point in running start_khugepaged() if we've just
set transparent_hugepage_flags to zero;
- start_khugepaged() is misnamed -- it also used to stop the thread;
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Most-used page->mapping helper -- page_mapping() -- has already uninlined.
Let's uninline also page_rmapping() and page_anon_vma(). It saves us
depending on configuration around 400 bytes in text:
text data bss dec hex filename
660318 99254 410000 1169572 11d8a4 mm/built-in.o-before
659854 99254 410000 1169108 11d6d4 mm/built-in.o
I also tried to make code a bit more clean.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add trace events for cma_alloc() and cma_release().
The cma_alloc tracepoint is used both for successful and failed allocations,
in case of allocation failure pfn=-1UL is stored and printed.
Signed-off-by: Stefan Strogin <stefan.strogin@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mpn@google.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Cc: Thierry Reding <treding@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memblock_reserve() calls memblock_reserve_region() which prints debugging
information if 'memblock=debug' was passed on the command line. This
patch adds the same behaviour, but for memblock_add function().
[akpm@linux-foundation.org: s/memblock_memory/memblock_add/ in message]
Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Philipp Hachtmann <phacht@linux.vnet.ibm.com>
Cc: Fabian Frederick <fabf@skynet.be>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Emil Medve <Emilian.Medve@freescale.com>
Cc: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now we have an easy access to hugepages' activeness, so existing helpers to
get the information can be cleaned up.
[akpm@linux-foundation.org: s/PageHugeActive/page_huge_active/]
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hugh Dickins <hughd@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We are not safe from calling isolate_huge_page() on a hugepage
concurrently, which can make the victim hugepage in invalid state and
results in BUG_ON().
The root problem of this is that we don't have any information on struct
page (so easily accessible) about hugepages' activeness. Note that
hugepages' activeness means just being linked to
hstate->hugepage_activelist, which is not the same as normal pages'
activeness represented by PageActive flag.
Normal pages are isolated by isolate_lru_page() which prechecks PageLRU
before isolation, so let's do similarly for hugetlb with a new
paeg_huge_active().
set/clear_page_huge_active() should be called within hugetlb_lock. But
hugetlb_cow() and hugetlb_no_page() don't do this, being justified because
in these functions set_page_huge_active() is called right after the
hugepage is allocated and no other thread tries to isolate it.
[akpm@linux-foundation.org: s/PageHugeActive/page_huge_active/, make it return bool]
[fengguang.wu@intel.com: set_page_huge_active() can be static]
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hugh Dickins <hughd@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__put_compound_page() calls __page_cache_release() to do some freeing
work, but it's obviously for thps, not for hugetlb. We don't care because
PageLRU is always cleared and page->mem_cgroup is always NULL for hugetlb.
But it's not correct and has potential risks, so let's make it
conditional.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hugh Dickins <hughd@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The creators of the C language gave us the while keyword. Let's use
that instead of synthesizing it from if+goto.
Made possible by 6597d78339 ("mm/mmap.c: replace find_vma_prepare()
with clearer find_vma_links()").
[akpm@linux-foundation.org: fix 80-col overflows]
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Roman Gushchin <klamm@yandex-team.ru>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
set_recommended_min_free_kbytes() adjusts zone water marks to be suitable
for khugepaged. We avoid doing this if khugepaged is disabled, but don't
catch the case when khugepaged is failed to start.
Let's address this by checking khugepaged_thread instead of
khugepaged_enabled() in set_recommended_min_free_kbytes().
It's NULL if the kernel thread is stopped or failed to start.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We miss error-handling in few cases hugepage_init(). Let's fix that.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mempools keep elements in a reserved pool for contexts in which allocation
may not be possible. When an element is allocated from the reserved pool,
its memory contents is the same as when it was added to the reserved pool.
Because of this, elements lack any free poisoning to detect use-after-free
errors.
This patch adds free poisoning for elements backed by the slab allocator.
This is possible because the mempool layer knows the object size of each
element.
When an element is added to the reserved pool, it is poisoned with
POISON_FREE. When it is removed from the reserved pool, the contents are
checked for POISON_FREE. If there is a mismatch, a warning is emitted to
the kernel log.
This is only effective for configs with CONFIG_DEBUG_SLAB or
CONFIG_SLUB_DEBUG_ON.
[fabio.estevam@freescale.com: use '%zu' for printing 'size_t' variable]
[arnd@arndb.de: add missing include]
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Dave Kleikamp <shaggy@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Sebastian Ott <sebott@linux.vnet.ibm.com>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Fabio Estevam <fabio.estevam@freescale.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All occurrences of mempools based on slab caches with object constructors
have been removed from the tree, so disallow creating them.
We can only dereference mem->ctor in mm/mempool.c without including
mm/slab.h in include/linux/mempool.h. So simply note the restriction,
just like the comment restricting usage of __GFP_ZERO, and warn on kernels
with CONFIG_DEBUG_VM() if such a mempool is allocated from.
We don't want to incur this check on every element allocation, so use
VM_BUG_ON().
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Dave Kleikamp <shaggy@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Sebastian Ott <sebott@linux.vnet.ibm.com>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We converted some of the usages of ACCESS_ONCE to READ_ONCE in the mm/
tree since it doesn't work reliably on non-scalar types.
This patch removes the rest of the usages of ACCESS_ONCE, and use the new
READ_ONCE API for the read accesses. This makes things cleaner, instead
of using separate/multiple sets of APIs.
Signed-off-by: Jason Low <jason.low2@hp.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 38c5ce936a ("mm/gup: Replace ACCESS_ONCE with READ_ONCE")
converted ACCESS_ONCE usage in gup_pmd_range() to READ_ONCE, since
ACCESS_ONCE doesn't work reliably on non-scalar types.
This patch also fixes the other ACCESS_ONCE usages in gup_pte_range()
and __get_user_pages_fast() in mm/gup.c
Signed-off-by: Jason Low <jason.low2@hp.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As suggested by Kirill the "goto"s in vma_to_resize aren't necessary, just
change them to explicit return.
Signed-off-by: Derek Che <crquan@ymail.com>
Suggested-by: "Kirill A. Shutemov" <kirill@shutemov.name>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Recently I straced bash behavior in this dd zero pipe to read test, in
part of testing under vm.overcommit_memory=2 (OVERCOMMIT_NEVER mode):
# dd if=/dev/zero | read x
The bash sub shell is calling mremap to reallocate more and more memory
untill it finally failed -ENOMEM (I expect), or to be killed by system OOM
killer (which should not happen under OVERCOMMIT_NEVER mode); But the
mremap system call actually failed of -EFAULT, which is a surprise to me,
I think it's supposed to be -ENOMEM? then I wrote this piece of C code
testing confirmed it: https://gist.github.com/crquan/326bde37e1ddda8effe5
$ ./remap
allocated one page @0x7f686bf71000, (PAGE_SIZE: 4096)
grabbed 7680512000 bytes of memory (1875125 pages) @ 00007f6690993000.
mremap failed Bad address (14).
The -EFAULT comes from the branch of security_vm_enough_memory_mm failure,
underlyingly it calls __vm_enough_memory which returns only 0 for success
or -ENOMEM; So why vma_to_resize needs to return -EFAULT in this case?
this sounds like a mistake to me.
Some more digging into git history:
1) Before commit 119f657c7 ("RLIMIT_AS checking fix") in May 1 2005
(pre 2.6.12 days) it was returning -ENOMEM for this failure;
2) but commit 119f657c7 ("untangling do_mremap(), part 1") changed it
accidentally, to what ever is preserved in local ret, which happened to
be -EFAULT, in a previous assignment;
3) then in commit 54f5de709 code refactoring, it's explicitly returning
-EFAULT, should be wrong.
Signed-off-by: Derek Che <crquan@ymail.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In original implementation of vm_map_ram made by Nick Piggin there were
two bitmaps: alloc_map and dirty_map. None of them were used as supposed
to be: finding a suitable free hole for next allocation in block.
vm_map_ram allocates space sequentially in block and on free call marks
pages as dirty, so freed space can't be reused anymore.
Actually it would be very interesting to know the real meaning of those
bitmaps, maybe implementation was incomplete, etc.
But long time ago Zhang Yanfei removed alloc_map by these two commits:
mm/vmalloc.c: remove dead code in vb_alloc
3fcd76e802
mm/vmalloc.c: remove alloc_map from vmap_block
b8e748b6c3
In this patch I replaced dirty_map with two range variables: dirty min and
max. These variables store minimum and maximum position of dirty space in
a block, since we need only to know the dirty range, not exact position of
dirty pages.
Why it was made? Several reasons: at first glance it seems that
vm_map_ram allocator concerns about fragmentation thus it uses bitmaps for
finding free hole, but it is not true. To avoid complexity seems it is
better to use something simple, like min or max range values. Secondly,
code also becomes simpler, without iteration over bitmap, just comparing
values in min and max macros. Thirdly, bitmap occupies up to 1024 bits
(4MB is a max size of a block). Here I replaced the whole bitmap with two
longs.
Finally vm_unmap_aliases should be slightly faster and the whole
vmap_block structure occupies less memory.
Signed-off-by: Roman Pen <r.peniaev@gmail.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Eric Dumazet <edumazet@google.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: WANG Chao <chaowang@redhat.com>
Cc: Fabian Frederick <fabf@skynet.be>
Cc: Christoph Lameter <cl@linux.com>
Cc: Gioh Kim <gioh.kim@lge.com>
Cc: Rob Jones <rob.jones@codethink.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Previous implementation allocates new vmap block and repeats search of a
free block from the very beginning, iterating over the CPU free list.
Why it can be better??
1. Allocation can happen on one CPU, but search can be done on another CPU.
In worst case we preallocate amount of vmap blocks which is equal to
CPU number on the system.
2. In previous patch I added newly allocated block to the tail of free list
to avoid soon exhaustion of virtual space and give a chance to occupy
blocks which were allocated long time ago. Thus to find newly allocated
block all the search sequence should be repeated, seems it is not efficient.
In this patch newly allocated block is occupied right away, address of
virtual space is returned to the caller, so there is no any need to repeat
the search sequence, allocation job is done.
Signed-off-by: Roman Pen <r.peniaev@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Eric Dumazet <edumazet@google.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: WANG Chao <chaowang@redhat.com>
Cc: Fabian Frederick <fabf@skynet.be>
Cc: Christoph Lameter <cl@linux.com>
Cc: Gioh Kim <gioh.kim@lge.com>
Cc: Rob Jones <rob.jones@codethink.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Recently I came across high fragmentation of vm_map_ram allocator:
vmap_block has free space, but still new blocks continue to appear.
Further investigation showed that certain mapping/unmapping sequences
can exhaust vmalloc space. On small 32bit systems that's not a big
problem, cause purging will be called soon on a first allocation failure
(alloc_vmap_area), but on 64bit machines, e.g. x86_64 has 45 bits of
vmalloc space, that can be a disaster.
1) I came up with a simple allocation sequence, which exhausts virtual
space very quickly:
while (iters) {
/* Map/unmap big chunk */
vaddr = vm_map_ram(pages, 16, -1, PAGE_KERNEL);
vm_unmap_ram(vaddr, 16);
/* Map/unmap small chunks.
*
* -1 for hole, which should be left at the end of each block
* to keep it partially used, with some free space available */
for (i = 0; i < (VMAP_BBMAP_BITS - 16) / 8 - 1; i++) {
vaddr = vm_map_ram(pages, 8, -1, PAGE_KERNEL);
vm_unmap_ram(vaddr, 8);
}
}
The idea behind is simple:
1. We have to map a big chunk, e.g. 16 pages.
2. Then we have to occupy the remaining space with smaller chunks, i.e.
8 pages. At the end small hole should remain to keep block in free list,
but do not let big chunk to occupy remaining space.
3. Goto 1 - allocation request of 16 pages can't be completed (only 8 slots
are left free in the block in the #2 step), new block will be allocated,
all further requests will lay into newly allocated block.
To have some measurement numbers for all further tests I setup ftrace and
enabled 4 basic calls in a function profile:
echo vm_map_ram > /sys/kernel/debug/tracing/set_ftrace_filter;
echo alloc_vmap_area >> /sys/kernel/debug/tracing/set_ftrace_filter;
echo vm_unmap_ram >> /sys/kernel/debug/tracing/set_ftrace_filter;
echo free_vmap_block >> /sys/kernel/debug/tracing/set_ftrace_filter;
So for this scenario I got these results:
BEFORE (all new blocks are put to the head of a free list)
# cat /sys/kernel/debug/tracing/trace_stat/function0
Function Hit Time Avg s^2
-------- --- ---- --- ---
vm_map_ram 126000 30683.30 us 0.243 us 30819.36 us
vm_unmap_ram 126000 22003.24 us 0.174 us 340.886 us
alloc_vmap_area 1000 4132.065 us 4.132 us 0.903 us
AFTER (all new blocks are put to the tail of a free list)
# cat /sys/kernel/debug/tracing/trace_stat/function0
Function Hit Time Avg s^2
-------- --- ---- --- ---
vm_map_ram 126000 28713.13 us 0.227 us 24944.70 us
vm_unmap_ram 126000 20403.96 us 0.161 us 1429.872 us
alloc_vmap_area 993 3916.795 us 3.944 us 29.370 us
free_vmap_block 992 654.157 us 0.659 us 1.273 us
SUMMARY:
The most interesting numbers in those tables are numbers of block
allocations and deallocations: alloc_vmap_area and free_vmap_block
calls, which show that before the change blocks were not freed, and
virtual space and physical memory (vmap_block structure allocations,
etc) were consumed.
Average time which were spent in vm_map_ram/vm_unmap_ram became slightly
better. That can be explained with a reasonable amount of blocks in a
free list, which we need to iterate to find a suitable free block.
2) Another scenario is a random allocation:
while (iters) {
/* Randomly take number from a range [1..32/64] */
nr = rand(1, VMAP_MAX_ALLOC);
vaddr = vm_map_ram(pages, nr, -1, PAGE_KERNEL);
vm_unmap_ram(vaddr, nr);
}
I chose mersenne twister PRNG to generate persistent random state to
guarantee that both runs have the same random sequence. For each
vm_map_ram call random number from [1..32/64] was taken to represent
amount of pages which I do map.
I did 10'000 vm_map_ram calls and got these two tables:
BEFORE (all new blocks are put to the head of a free list)
# cat /sys/kernel/debug/tracing/trace_stat/function0
Function Hit Time Avg s^2
-------- --- ---- --- ---
vm_map_ram 10000 10170.01 us 1.017 us 993.609 us
vm_unmap_ram 10000 5321.823 us 0.532 us 59.789 us
alloc_vmap_area 420 2150.239 us 5.119 us 3.307 us
free_vmap_block 37 159.587 us 4.313 us 134.344 us
AFTER (all new blocks are put to the tail of a free list)
# cat /sys/kernel/debug/tracing/trace_stat/function0
Function Hit Time Avg s^2
-------- --- ---- --- ---
vm_map_ram 10000 7745.637 us 0.774 us 395.229 us
vm_unmap_ram 10000 5460.573 us 0.546 us 67.187 us
alloc_vmap_area 414 2201.650 us 5.317 us 5.591 us
free_vmap_block 412 574.421 us 1.394 us 15.138 us
SUMMARY:
'BEFORE' table shows, that 420 blocks were allocated and only 37 were
freed. Remained 383 blocks are still in a free list, consuming virtual
space and physical memory.
'AFTER' table shows, that 414 blocks were allocated and 412 were really
freed. 2 blocks remained in a free list.
So fragmentation was dramatically reduced. Why? Because when we put
newly allocated block to the head, all further requests will occupy new
block, regardless remained space in other blocks. In this scenario all
requests come randomly. Eventually remained free space will be less
than requested size, free list will be iterated and it is possible that
nothing will be found there - finally new block will be created. So
exhaustion in random scenario happens for the maximum possible
allocation size: 32 pages for 32-bit system and 64 pages for 64-bit
system.
Also average cost of vm_map_ram was reduced from 1.017 us to 0.774 us.
Again this can be explained by iteration through smaller list of free
blocks.
3) Next simple scenario is a sequential allocation, when the allocation
order is increased for each block. This scenario forces allocator to
reach maximum amount of partially free blocks in a free list:
while (iters) {
/* Populate free list with blocks with remaining space */
for (order = 0; order <= ilog2(VMAP_MAX_ALLOC); order++) {
nr = VMAP_BBMAP_BITS / (1 << order);
/* Leave a hole */
nr -= 1;
for (i = 0; i < nr; i++) {
vaddr = vm_map_ram(pages, (1 << order), -1, PAGE_KERNEL);
vm_unmap_ram(vaddr, (1 << order));
}
/* Completely occupy blocks from a free list */
for (order = 0; order <= ilog2(VMAP_MAX_ALLOC); order++) {
vaddr = vm_map_ram(pages, (1 << order), -1, PAGE_KERNEL);
vm_unmap_ram(vaddr, (1 << order));
}
}
Results which I got:
BEFORE (all new blocks are put to the head of a free list)
# cat /sys/kernel/debug/tracing/trace_stat/function0
Function Hit Time Avg s^2
-------- --- ---- --- ---
vm_map_ram 2032000 399545.2 us 0.196 us 467123.7 us
vm_unmap_ram 2032000 363225.7 us 0.178 us 111405.9 us
alloc_vmap_area 7001 30627.76 us 4.374 us 495.755 us
free_vmap_block 6993 7011.685 us 1.002 us 159.090 us
AFTER (all new blocks are put to the tail of a free list)
# cat /sys/kernel/debug/tracing/trace_stat/function0
Function Hit Time Avg s^2
-------- --- ---- --- ---
vm_map_ram 2032000 394259.7 us 0.194 us 589395.9 us
vm_unmap_ram 2032000 292500.7 us 0.143 us 94181.08 us
alloc_vmap_area 7000 31103.11 us 4.443 us 703.225 us
free_vmap_block 7000 6750.844 us 0.964 us 119.112 us
SUMMARY:
No surprises here, almost all numbers are the same.
Fixing this fragmentation problem I also did some improvements in a
allocation logic of a new vmap block: occupy block immediately and get
rid of extra search in a free list.
Also I replaced dirty bitmap with min/max dirty range values to make the
logic simpler and slightly faster, since two longs comparison costs
less, than loop thru bitmap.
This patchset raises several questions:
Q: Think the problem you comments is already known so that I wrote comments
about it as "it could consume lots of address space through fragmentation".
Could you tell me about your situation and reason why it should be avoided?
Gioh Kim
A: Indeed, there was a commit 364376383 which adds explicit comment about
fragmentation. But fragmentation which is described in this comment caused
by mixing of long-lived and short-lived objects, when a whole block is pinned
in memory because some page slots are still in use. But here I am talking
about blocks which are free, nobody uses them, and allocator keeps them alive
forever, continuously allocating new blocks.
Q: I think that if you put newly allocated block to the tail of a free
list, below example would results in enormous performance degradation.
new block: 1MB (256 pages)
while (iters--) {
vm_map_ram(3 or something else not dividable for 256) * 85
vm_unmap_ram(3) * 85
}
On every iteration, it needs newly allocated block and it is put to the
tail of a free list so finding it consumes large amount of time.
Joonsoo Kim
A: Second patch in current patchset gets rid of extra search in a free list,
so new block will be immediately occupied..
Also, the scenario above is impossible, cause vm_map_ram allocates virtual
range in orders, i.e. 2^n. I.e. passing 3 to vm_map_ram you will allocate
4 slots in a block and 256 slots (capacity of a block) of course dividable
on 4, so block will be completely occupied.
But there is a worst case which we can achieve: each free block has a hole
equal to order size.
The maximum size of allocation is 64 pages for 64-bit system
(if you try to map more, original alloc_vmap_area will be called).
So the maximum order is 6. That means that worst case, before allocator
makes a decision to allocate a new block, is to iterate 7 blocks:
HEAD
1st block - has 1 page slot free (order 0)
2nd block - has 2 page slots free (order 1)
3rd block - has 4 page slots free (order 2)
4th block - has 8 page slots free (order 3)
5th block - has 16 page slots free (order 4)
6th block - has 32 page slots free (order 5)
7th block - has 64 page slots free (order 6)
TAIL
So the worst scenario on 64-bit system is that each CPU queue can have 7
blocks in a free list.
This can happen only and only if you allocate blocks increasing the order.
(as I did in the function written in the comment of the first patch)
This is weird and rare case, but still it is possible. Afterwards you will
get 7 blocks in a list.
All further requests should be placed in a newly allocated block or some
free slots should be found in a free list.
Seems it does not look dramatically awful.
This patch (of 3):
If suitable block can't be found, new block is allocated and put into a
head of a free list, so on next iteration this new block will be found
first.
That's bad, because old blocks in a free list will not get a chance to be
fully used, thus fragmentation will grow.
Let's consider this simple example:
#1 We have one block in a free list which is partially used, and where only
one page is free:
HEAD |xxxxxxxxx-| TAIL
^
free space for 1 page, order 0
#2 New allocation request of order 1 (2 pages) comes, new block is allocated
since we do not have free space to complete this request. New block is put
into a head of a free list:
HEAD |----------|xxxxxxxxx-| TAIL
#3 Two pages were occupied in a new found block:
HEAD |xx--------|xxxxxxxxx-| TAIL
^
two pages mapped here
#4 New allocation request of order 0 (1 page) comes. Block, which was created
on #2 step, is located at the beginning of a free list, so it will be found
first:
HEAD |xxX-------|xxxxxxxxx-| TAIL
^ ^
page mapped here, but better to use this hole
It is obvious, that it is better to complete request of #4 step using the
old block, where free space is left, because in other case fragmentation
will be highly increased.
But fragmentation is not only the case. The worst thing is that I can
easily create scenario, when the whole vmalloc space is exhausted by
blocks, which are not used, but already dirty and have several free pages.
Let's consider this function which execution should be pinned to one CPU:
static void exhaust_virtual_space(struct page *pages[16], int iters)
{
/* Firstly we have to map a big chunk, e.g. 16 pages.
* Then we have to occupy the remaining space with smaller
* chunks, i.e. 8 pages. At the end small hole should remain.
* So at the end of our allocation sequence block looks like
* this:
* XX big chunk
* |XXxxxxxxx-| x small chunk
* - hole, which is enough for a small chunk,
* but is not enough for a big chunk
*/
while (iters--) {
int i;
void *vaddr;
/* Map/unmap big chunk */
vaddr = vm_map_ram(pages, 16, -1, PAGE_KERNEL);
vm_unmap_ram(vaddr, 16);
/* Map/unmap small chunks.
*
* -1 for hole, which should be left at the end of each block
* to keep it partially used, with some free space available */
for (i = 0; i < (VMAP_BBMAP_BITS - 16) / 8 - 1; i++) {
vaddr = vm_map_ram(pages, 8, -1, PAGE_KERNEL);
vm_unmap_ram(vaddr, 8);
}
}
}
On every iteration new block (1MB of vm area in my case) will be
allocated and then will be occupied, without attempt to resolve small
allocation request using previously allocated blocks in a free list.
In case of random allocation (size should be randomly taken from the
range [1..64] in 64-bit case or [1..32] in 32-bit case) situation is the
same: new blocks continue to appear if maximum possible allocation size
(32 or 64) passed to the allocator, because all remaining blocks in a
free list do not have enough free space to complete this allocation
request.
In summary if new blocks are put into the head of a free list eventually
virtual space will be exhausted.
In current patch I simply put newly allocated block to the tail of a
free list, thus reduce fragmentation, giving a chance to resolve
allocation request using older blocks with possible holes left.
Signed-off-by: Roman Pen <r.peniaev@gmail.com>
Cc: Eric Dumazet <edumazet@google.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: WANG Chao <chaowang@redhat.com>
Cc: Fabian Frederick <fabf@skynet.be>
Cc: Christoph Lameter <cl@linux.com>
Cc: Gioh Kim <gioh.kim@lge.com>
Cc: Rob Jones <rob.jones@codethink.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make 'min_size=<value>' be an option when mounting a hugetlbfs. This
option takes the same value as the 'size' option. min_size can be
specified without specifying size. If both are specified, min_size must
be less that or equal to size else the mount will fail. If min_size is
specified, then at mount time an attempt is made to reserve min_size
pages. If the reservation fails, the mount fails. At umount time, the
reserved pages are released.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The same routines that perform subpool maximum size accounting
hugepage_subpool_get/put_pages() are modified to also perform minimum size
accounting. When a delta value is passed to these routines, calculate how
global reservations must be adjusted to maintain the subpool minimum size.
The routines now return this global reserve count adjustment. This
global reserve count adjustment is then passed to the global accounting
routine hugetlb_acct_memory().
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hugetlbfs allocates huge pages from the global pool as needed. Even if
the global pool contains a sufficient number pages for the filesystem size
at mount time, those global pages could be grabbed for some other use. As
a result, filesystem huge page allocations may fail due to lack of pages.
Applications such as a database want to use huge pages for performance
reasons. hugetlbfs filesystem semantics with ownership and modes work
well to manage access to a pool of huge pages. However, the application
would like some reasonable assurance that allocations will not fail due to
a lack of huge pages. At application startup time, the application would
like to configure itself to use a specific number of huge pages. Before
starting, the application can check to make sure that enough huge pages
exist in the system global pools. However, there are no guarantees that
those pages will be available when needed by the application. What the
application wants is exclusive use of a subset of huge pages.
Add a new hugetlbfs mount option 'min_size=<value>' to indicate that the
specified number of pages will be available for use by the filesystem. At
mount time, this number of huge pages will be reserved for exclusive use
of the filesystem. If there is not a sufficient number of free pages, the
mount will fail. As pages are allocated to and freeed from the
filesystem, the number of reserved pages is adjusted so that the specified
minimum is maintained.
This patch (of 4):
Add a field to the subpool structure to indicate the minimimum number of
huge pages to always be used by this subpool. This minimum count includes
allocated pages as well as reserved pages. If the minimum number of pages
for the subpool have not been allocated, pages are reserved up to this
minimum. An additional field (rsv_hpages) is used to track the number of
pages reserved to meet this minimum size. The hstate pointer in the
subpool is convenient to have when reserving and unreserving the pages.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the compaction is activated via /proc/sys/vm/compact_memory it would
better scan the whole zone. And some platforms, for instance ARM, have
the start_pfn of a zone at zero. Therefore the first try to compact via
/proc doesn't work. It needs to reset the compaction scanner position
first.
Signed-off-by: Gioh Kim <gioh.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memcg currently uses hardcoded GFP_TRANSHUGE gfp flags for all THP
charges. THP allocations, however, might be using different flags
depending on /sys/kernel/mm/transparent_hugepage/{,khugepaged/}defrag and
the current allocation context.
The primary difference is that defrag configured to "madvise" value will
clear __GFP_WAIT flag from the core gfp mask to make the allocation
lighter for all mappings which are not backed by VM_HUGEPAGE vmas. If
memcg charge path ignores this fact we will get light allocation but the a
potential memcg reclaim would kill the whole point of the configuration.
Fix the mismatch by providing the same gfp mask used for the allocation to
the charge functions. This is quite easy for all paths except for
hugepaged kernel thread with !CONFIG_NUMA which is doing a pre-allocation
long before the allocated page is used in collapse_huge_page via
khugepaged_alloc_page. To prevent from cluttering the whole code path
from khugepaged_do_scan we simply return the current flags as per
khugepaged_defrag() value which might have changed since the
preallocation. If somebody changed the value of the knob we would charge
differently but this shouldn't happen often and it is definitely not
critical because it would only lead to a reduced success rate of one-off
THP promotion.
[akpm@linux-foundation.org: fix weird code layout while we're there]
[rientjes@google.com: clean up around alloc_hugepage_gfpmask()]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
"deactivate_page" was created for file invalidation so it has too
specific logic for file-backed pages. So, let's change the name of the
function and date to a file-specific one and yield the generic name.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Wang, Yalin <Yalin.Wang@sonymobile.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, pages which are marked as unevictable are protected from
compaction, but not from other types of migration. The POSIX real time
extension explicitly states that mlock() will prevent a major page
fault, but the spirit of this is that mlock() should give a process the
ability to control sources of latency, including minor page faults.
However, the mlock manpage only explicitly says that a locked page will
not be written to swap and this can cause some confusion. The
compaction code today does not give a developer who wants to avoid swap
but wants to have large contiguous areas available any method to achieve
this state. This patch introduces a sysctl for controlling compaction
behavior with respect to the unevictable lru. Users who demand no page
faults after a page is present can set compact_unevictable_allowed to 0
and users who need the large contiguous areas can enable compaction on
locked memory by leaving the default value of 1.
To illustrate this problem I wrote a quick test program that mmaps a
large number of 1MB files filled with random data. These maps are
created locked and read only. Then every other mmap is unmapped and I
attempt to allocate huge pages to the static huge page pool. When the
compact_unevictable_allowed sysctl is 0, I cannot allocate hugepages
after fragmenting memory. When the value is set to 1, allocations
succeed.
Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With the page flag sanitization patchset, an invalid usage of
ClearPageReclaim() is detected in set_page_dirty(). This can be called
from __unmap_hugepage_range(), so let's check PageReclaim() before trying
to clear it to avoid the misuse.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With the page flag sanitization patchset, an invalid usage of
ClearPageSwapCache() is detected in migration_page_copy().
migrate_page_copy() is shared by both normal and hugepage (both thp and
hugetlb) code path, so let's check PageSwapCache() and clear it if it's
set to avoid misuse of the invalid clear operation.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This cleanup patch moves all strings passed to action_result() into a
singl= e array action_page_type so that a reader can easily find which
kind of actio= n results are possible. And this patch also fixes the
odd lines to be printed out, like "unknown page state page" or "free
buddy, 2nd try page".
[akpm@linux-foundation.org: rename messages, per David]
[akpm@linux-foundation.org: s/DIRTY_UNEVICTABLE_LRU/CLEAN_UNEVICTABLE_LRU', per Andi]
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "Xie XiuQi" <xiexiuqi@huawei.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Chen Gong <gong.chen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Low and high watermarks, as they defined in the TODO to the mem_cgroup
struct, have already been implemented by Johannes, so remove the stale
comment.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_lookup() is a wrapper around mem_cgroup_from_id(), which
checks that id != 0 before issuing the function call. Today, there is
no point in this additional check apart from optimization, because there
is no css with id <= 0, so that css_from_id, called by
mem_cgroup_from_id, will return NULL for any id <= 0.
Since mem_cgroup_from_id is only called from mem_cgroup_lookup, let us
zap mem_cgroup_lookup, substituting calls to it with mem_cgroup_from_id
and moving the check if id > 0 to css_from_id.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge first patchbomb from Andrew Morton:
- arch/sh updates
- ocfs2 updates
- kernel/watchdog feature
- about half of mm/
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (122 commits)
Documentation: update arch list in the 'memtest' entry
Kconfig: memtest: update number of test patterns up to 17
arm: add support for memtest
arm64: add support for memtest
memtest: use phys_addr_t for physical addresses
mm: move memtest under mm
mm, hugetlb: abort __get_user_pages if current has been oom killed
mm, mempool: do not allow atomic resizing
memcg: print cgroup information when system panics due to panic_on_oom
mm: numa: remove migrate_ratelimited
mm: fold arch_randomize_brk into ARCH_HAS_ELF_RANDOMIZE
mm: split ET_DYN ASLR from mmap ASLR
s390: redefine randomize_et_dyn for ELF_ET_DYN_BASE
mm: expose arch_mmap_rnd when available
s390: standardize mmap_rnd() usage
powerpc: standardize mmap_rnd() usage
mips: extract logic for mmap_rnd()
arm64: standardize mmap_rnd() usage
x86: standardize mmap_rnd() usage
arm: factor out mmap ASLR into mmap_rnd
...
Since memtest might be used by other architectures pass input parameters
as phys_addr_t instead of long to prevent overflow.
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>