Upon return of debugfs_remove()/debugfs_remove_recursive(), it might
still be attempted to access associated private file data through
previously opened struct file objects. If that data has been freed by
the caller of debugfs_remove*() in the meanwhile, the reading/writing
process would either encounter a fault or, if the memory address in
question has been reassigned again, unrelated data structures could get
overwritten.
However, since debugfs files are seldomly removed, usually from module
exit handlers only, the impact is very low.
Currently, there are ~1000 call sites of debugfs_create_file() spread
throughout the whole tree and touching all of those struct file_operations
in order to make them file removal aware by means of checking the result of
debugfs_use_file_start() from within their methods is unfeasible.
Instead, wrap the struct file_operations by a lifetime managing proxy at
file open:
- In debugfs_create_file(), the original fops handed in has got stashed
away in ->d_fsdata already.
- In debugfs_create_file(), install a proxy file_operations factory,
debugfs_full_proxy_file_operations, at ->i_fop.
This proxy factory has got an ->open() method only. It carries out some
lifetime checks and if successful, dynamically allocates and sets up a new
struct file_operations proxy at ->f_op. Afterwards, it forwards to the
->open() of the original struct file_operations in ->d_fsdata, if any.
The dynamically set up proxy at ->f_op has got a lifetime managing wrapper
set for each of the methods defined in the original struct file_operations
in ->d_fsdata.
Its ->release()er frees the proxy again and forwards to the original
->release(), if any.
In order not to mislead the VFS layer, it is strictly necessary to leave
those fields blank in the proxy that have been NULL in the original
struct file_operations also, i.e. aren't supported. This is why there is a
need for dynamically allocated proxies. The choice made not to allocate a
proxy instance for every dentry at file creation, but for every
struct file object instantiated thereof is justified by the expected usage
pattern of debugfs, namely that in general very few files get opened more
than once at a time.
The wrapper methods set in the struct file_operations implement lifetime
managing by means of the SRCU protection facilities already in place for
debugfs:
They set up a SRCU read side critical section and check whether the dentry
is still alive by means of debugfs_use_file_start(). If so, they forward
the call to the original struct file_operation stored in ->d_fsdata, still
under the protection of the SRCU read side critical section.
This SRCU read side critical section prevents any pending debugfs_remove()
and friends to return to their callers. Since a file's private data must
only be freed after the return of debugfs_remove(), the ongoing proxied
call is guarded against any file removal race.
If, on the other hand, the initial call to debugfs_use_file_start() detects
that the dentry is dead, the wrapper simply returns -EIO and does not
forward the call. Note that the ->poll() wrapper is special in that its
signature does not allow for the return of arbitrary -EXXX values and thus,
POLLHUP is returned here.
In order not to pollute debugfs with wrapper definitions that aren't ever
needed, I chose not to define a wrapper for every struct file_operations
method possible. Instead, a wrapper is defined only for the subset of
methods which are actually set by any debugfs users.
Currently, these are:
->llseek()
->read()
->write()
->unlocked_ioctl()
->poll()
The ->release() wrapper is special in that it does not protect the original
->release() in any way from dead files in order not to leak resources.
Thus, any ->release() handed to debugfs must implement file lifetime
management manually, if needed.
For only 33 out of a total of 434 releasers handed in to debugfs, it could
not be verified immediately whether they access data structures that might
have been freed upon a debugfs_remove() return in the meanwhile.
Export debugfs_use_file_start() and debugfs_use_file_finish() in order to
allow any ->release() to manually implement file lifetime management.
For a set of common cases of struct file_operations implemented by the
debugfs_core itself, future patches will incorporate file lifetime
management directly within those in order to allow for their unproxied
operation. Rename the original, non-proxying "debugfs_create_file()" to
"debugfs_create_file_unsafe()" and keep it for future internal use by
debugfs itself. Factor out code common to both into the new
__debugfs_create_file().
Signed-off-by: Nicolai Stange <nicstange@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Nothing prevents a dentry found by path lookup before a return of
__debugfs_remove() to actually get opened after that return. Now, after
the return of __debugfs_remove(), there are no guarantees whatsoever
regarding the memory the corresponding inode's file_operations object
had been kept in.
Since __debugfs_remove() is seldomly invoked, usually from module exit
handlers only, the race is hard to trigger and the impact is very low.
A discussion of the problem outlined above as well as a suggested
solution can be found in the (sub-)thread rooted at
http://lkml.kernel.org/g/20130401203445.GA20862@ZenIV.linux.org.uk
("Yet another pipe related oops.")
Basically, Greg KH suggests to introduce an intermediate fops and
Al Viro points out that a pointer to the original ones may be stored in
->d_fsdata.
Follow this line of reasoning:
- Add SRCU as a reverse dependency of DEBUG_FS.
- Introduce a srcu_struct object for the debugfs subsystem.
- In debugfs_create_file(), store a pointer to the original
file_operations object in ->d_fsdata.
- Make debugfs_remove() and debugfs_remove_recursive() wait for a
SRCU grace period after the dentry has been delete()'d and before they
return to their callers.
- Introduce an intermediate file_operations object named
"debugfs_open_proxy_file_operations". It's ->open() functions checks,
under the protection of a SRCU read lock, whether the dentry is still
alive, i.e. has not been d_delete()'d and if so, tries to acquire a
reference on the owning module.
On success, it sets the file object's ->f_op to the original
file_operations and forwards the ongoing open() call to the original
->open().
- For clarity, rename the former debugfs_file_operations to
debugfs_noop_file_operations -- they are in no way canonical.
The choice of SRCU over "normal" RCU is justified by the fact, that the
former may also be used to protect ->i_private data from going away
during the execution of a file's readers and writers which may (and do)
sleep.
Finally, introduce the fs/debugfs/internal.h header containing some
declarations internal to the debugfs implementation.
Signed-off-by: Nicolai Stange <nicstange@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
CURRENT_TIME macro is not appropriate for filesystems as it
doesn't use the right granularity for filesystem timestamps.
Use current_fs_time() instead.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
parallel to mutex_{lock,unlock,trylock,is_locked,lock_nested},
inode_foo(inode) being mutex_foo(&inode->i_mutex).
Please, use those for access to ->i_mutex; over the coming cycle
->i_mutex will become rwsem, with ->lookup() done with it held
only shared.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
In debugfs' start_creating(), we pin the file system to safely access
its root. When we failed to create a file, we unpin the file system via
failed_creating() to release the mount count and eventually the reference
of the vfsmount.
However, when we run into an error during lookup_one_len() when still
in start_creating(), we only release the parent's mutex but not so the
reference on the mount. Looks like it was done in the past, but after
splitting portions of __create_file() into start_creating() and
end_creating() via 190afd81e4 ("debugfs: split the beginning and the
end of __create_file() off"), this seemed missed. Noticed during code
review.
Fixes: 190afd81e4 ("debugfs: split the beginning and the end of __create_file() off")
Cc: stable@vger.kernel.org # v4.0+
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add debugfs_create_ulong() for the users of type 'unsigned long'. These
will be 32 bits long on a 32 bit machine and 64 bits long on a 64 bit
machine.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
There aren't any read-only or write-only bool file ops, but there
is a caller of debugfs_create_bool() that calls it with mode
equal to 0400. This leads to the possibility of userspace
modifying the file, so let's use the newly created
debugfs_create_mode() helper here to fix this.
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
There aren't any read-only or write-only size_t file ops, but there
is a caller of debugfs_create_size_t() that calls it with mode
equal to 0400. This leads to the possibility of userspace
modifying the file, so let's use the newly created
debugfs_create_mode() helper here to fix this.
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
There aren't any read-only or write-only x64 file ops, but there
is a caller of debugfs_create_x64() that calls it with mode equal
to S_IRUGO. This leads to the possibility of userspace modifying
the file, so let's use the newly created debugfs_create_mode()
helper here to fix this.
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The code that creates debugfs file with different file ops based
on the file mode is duplicated in each debugfs_create_*() API.
Consolidate that code into debugfs_create_mode(), that takes
three file ops structures so that we don't have to keep
copy/pasting that logic.
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
According to commit a59d6293e5 ("debugfs: change parameter check in
debugfs_remove() functions"), this is meant to make cleanup easier for
callers. In that case it ought to be documented.
Signed-off-by: Ulf Magnusson <ulfalizer@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Its a bit odd that debugfs_create_bool() takes 'u32 *' as an argument,
when all it needs is a boolean pointer.
It would be better to update this API to make it accept 'bool *'
instead, as that will make it more consistent and often more convenient.
Over that bool takes just a byte.
That required updates to all user sites as well, in the same commit
updating the API. regmap core was also using
debugfs_{read|write}_file_bool(), directly and variable types were
updated for that to be bool as well.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Mark Brown <broonie@kernel.org>
Acked-by: Charles Keepax <ckeepax@opensource.wolfsonmicro.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The file read/write functions for bools have no special dependencies
on debugfs internals and are sufficiently non-trivial to be worth
exporting so clients can re-use the implementation.
Signed-off-by: Richard Fitzgerald <rf@opensource.wolfsonmicro.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
Pull more vfs updates from Al Viro:
"Assorted VFS fixes and related cleanups (IMO the most interesting in
that part are f_path-related things and Eric's descriptor-related
stuff). UFS regression fixes (it got broken last cycle). 9P fixes.
fs-cache series, DAX patches, Jan's file_remove_suid() work"
[ I'd say this is much more than "fixes and related cleanups". The
file_table locking rule change by Eric Dumazet is a rather big and
fundamental update even if the patch isn't huge. - Linus ]
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (49 commits)
9p: cope with bogus responses from server in p9_client_{read,write}
p9_client_write(): avoid double p9_free_req()
9p: forgetting to cancel request on interrupted zero-copy RPC
dax: bdev_direct_access() may sleep
block: Add support for DAX reads/writes to block devices
dax: Use copy_from_iter_nocache
dax: Add block size note to documentation
fs/file.c: __fget() and dup2() atomicity rules
fs/file.c: don't acquire files->file_lock in fd_install()
fs:super:get_anon_bdev: fix race condition could cause dev exceed its upper limitation
vfs: avoid creation of inode number 0 in get_next_ino
namei: make set_root_rcu() return void
make simple_positive() public
ufs: use dir_pages instead of ufs_dir_pages()
pagemap.h: move dir_pages() over there
remove the pointless include of lglock.h
fs: cleanup slight list_entry abuse
xfs: Correctly lock inode when removing suid and file capabilities
fs: Call security_ops->inode_killpriv on truncate
fs: Provide function telling whether file_remove_privs() will do anything
...
Pull user namespace updates from Eric Biederman:
"Long ago and far away when user namespaces where young it was realized
that allowing fresh mounts of proc and sysfs with only user namespace
permissions could violate the basic rule that only root gets to decide
if proc or sysfs should be mounted at all.
Some hacks were put in place to reduce the worst of the damage could
be done, and the common sense rule was adopted that fresh mounts of
proc and sysfs should allow no more than bind mounts of proc and
sysfs. Unfortunately that rule has not been fully enforced.
There are two kinds of gaps in that enforcement. Only filesystems
mounted on empty directories of proc and sysfs should be ignored but
the test for empty directories was insufficient. So in my tree
directories on proc, sysctl and sysfs that will always be empty are
created specially. Every other technique is imperfect as an ordinary
directory can have entries added even after a readdir returns and
shows that the directory is empty. Special creation of directories
for mount points makes the code in the kernel a smidge clearer about
it's purpose. I asked container developers from the various container
projects to help test this and no holes were found in the set of mount
points on proc and sysfs that are created specially.
This set of changes also starts enforcing the mount flags of fresh
mounts of proc and sysfs are consistent with the existing mount of
proc and sysfs. I expected this to be the boring part of the work but
unfortunately unprivileged userspace winds up mounting fresh copies of
proc and sysfs with noexec and nosuid clear when root set those flags
on the previous mount of proc and sysfs. So for now only the atime,
read-only and nodev attributes which userspace happens to keep
consistent are enforced. Dealing with the noexec and nosuid
attributes remains for another time.
This set of changes also addresses an issue with how open file
descriptors from /proc/<pid>/ns/* are displayed. Recently readlink of
/proc/<pid>/fd has been triggering a WARN_ON that has not been
meaningful since it was added (as all of the code in the kernel was
converted) and is not now actively wrong.
There is also a short list of issues that have not been fixed yet that
I will mention briefly.
It is possible to rename a directory from below to above a bind mount.
At which point any directory pointers below the renamed directory can
be walked up to the root directory of the filesystem. With user
namespaces enabled a bind mount of the bind mount can be created
allowing the user to pick a directory whose children they can rename
to outside of the bind mount. This is challenging to fix and doubly
so because all obvious solutions must touch code that is in the
performance part of pathname resolution.
As mentioned above there is also a question of how to ensure that
developers by accident or with purpose do not introduce exectuable
files on sysfs and proc and in doing so introduce security regressions
in the current userspace that will not be immediately obvious and as
such are likely to require breaking userspace in painful ways once
they are recognized"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
vfs: Remove incorrect debugging WARN in prepend_path
mnt: Update fs_fully_visible to test for permanently empty directories
sysfs: Create mountpoints with sysfs_create_mount_point
sysfs: Add support for permanently empty directories to serve as mount points.
kernfs: Add support for always empty directories.
proc: Allow creating permanently empty directories that serve as mount points
sysctl: Allow creating permanently empty directories that serve as mountpoints.
fs: Add helper functions for permanently empty directories.
vfs: Ignore unlocked mounts in fs_fully_visible
mnt: Modify fs_fully_visible to deal with locked ro nodev and atime
mnt: Refactor the logic for mounting sysfs and proc in a user namespace
This allows for better documentation in the code and
it allows for a simpler and fully correct version of
fs_fully_visible to be written.
The mount points converted and their filesystems are:
/sys/hypervisor/s390/ s390_hypfs
/sys/kernel/config/ configfs
/sys/kernel/debug/ debugfs
/sys/firmware/efi/efivars/ efivarfs
/sys/fs/fuse/connections/ fusectl
/sys/fs/pstore/ pstore
/sys/kernel/tracing/ tracefs
/sys/fs/cgroup/ cgroup
/sys/kernel/security/ securityfs
/sys/fs/selinux/ selinuxfs
/sys/fs/smackfs/ smackfs
Cc: stable@vger.kernel.org
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Pull fourth vfs update from Al Viro:
"d_inode() annotations from David Howells (sat in for-next since before
the beginning of merge window) + four assorted fixes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
RCU pathwalk breakage when running into a symlink overmounting something
fix I_DIO_WAKEUP definition
direct-io: only inc/dec inode->i_dio_count for file systems
fs/9p: fix readdir()
VFS: assorted d_backing_inode() annotations
VFS: fs/inode.c helpers: d_inode() annotations
VFS: fs/cachefiles: d_backing_inode() annotations
VFS: fs library helpers: d_inode() annotations
VFS: assorted weird filesystems: d_inode() annotations
VFS: normal filesystems (and lustre): d_inode() annotations
VFS: security/: d_inode() annotations
VFS: security/: d_backing_inode() annotations
VFS: net/: d_inode() annotations
VFS: net/unix: d_backing_inode() annotations
VFS: kernel/: d_inode() annotations
VFS: audit: d_backing_inode() annotations
VFS: Fix up some ->d_inode accesses in the chelsio driver
VFS: Cachefiles should perform fs modifications on the top layer only
VFS: AF_UNIX sockets should call mknod on the top layer only
Pull third hunk of vfs changes from Al Viro:
"This contains the ->direct_IO() changes from Omar + saner
generic_write_checks() + dealing with fcntl()/{read,write}() races
(mirroring O_APPEND/O_DIRECT into iocb->ki_flags and instead of
repeatedly looking at ->f_flags, which can be changed by fcntl(2),
check ->ki_flags - which cannot) + infrastructure bits for dhowells'
d_inode annotations + Christophs switch of /dev/loop to
vfs_iter_write()"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (30 commits)
block: loop: switch to VFS ITER_BVEC
configfs: Fix inconsistent use of file_inode() vs file->f_path.dentry->d_inode
VFS: Make pathwalk use d_is_reg() rather than S_ISREG()
VFS: Fix up debugfs to use d_is_dir() in place of S_ISDIR()
VFS: Combine inode checks with d_is_negative() and d_is_positive() in pathwalk
NFS: Don't use d_inode as a variable name
VFS: Impose ordering on accesses of d_inode and d_flags
VFS: Add owner-filesystem positive/negative dentry checks
nfs: generic_write_checks() shouldn't be done on swapout...
ocfs2: use __generic_file_write_iter()
mirror O_APPEND and O_DIRECT into iocb->ki_flags
switch generic_write_checks() to iocb and iter
ocfs2: move generic_write_checks() before the alignment checks
ocfs2_file_write_iter: stop messing with ppos
udf_file_write_iter: reorder and simplify
fuse: ->direct_IO() doesn't need generic_write_checks()
ext4_file_write_iter: move generic_write_checks() up
xfs_file_aio_write_checks: switch to iocb/iov_iter
generic_write_checks(): drop isblk argument
blkdev_write_iter: expand generic_file_checks() call in there
...
that's the bulk of filesystem drivers dealing with inodes of their own
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Fix up debugfs to use d_is_dir(dentry) in place of
S_ISDIR(dentry->d_inode->i_mode).
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
If something went wrong with creating a debugfs file/symlink/directory,
that value could be passed down into debugfs again as a parent dentry.
To make caller code simpler, just error out if this happens, and don't
crash the kernel.
Reported-by: Alex Elder <elder@linaro.org>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Alex Elder <elder@linaro.org>
As it is, we have debugfs_remove() racing with symlink traversals.
Supply ->evict_inode() and do freeing there - inode will remain
pinned until we are done with the symlink body.
And rip the idiocy with checking if dentry is positive right after
we'd verified debugfs_positive(), which is a stronger check...
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Convert the following where appropriate:
(1) S_ISLNK(dentry->d_inode) to d_is_symlink(dentry).
(2) S_ISREG(dentry->d_inode) to d_is_reg(dentry).
(3) S_ISDIR(dentry->d_inode) to d_is_dir(dentry). This is actually more
complicated than it appears as some calls should be converted to
d_can_lookup() instead. The difference is whether the directory in
question is a real dir with a ->lookup op or whether it's a fake dir with
a ->d_automount op.
In some circumstances, we can subsume checks for dentry->d_inode not being
NULL into this, provided we the code isn't in a filesystem that expects
d_inode to be NULL if the dirent really *is* negative (ie. if we're going to
use d_inode() rather than d_backing_inode() to get the inode pointer).
Note that the dentry type field may be set to something other than
DCACHE_MISS_TYPE when d_inode is NULL in the case of unionmount, where the VFS
manages the fall-through from a negative dentry to a lower layer. In such a
case, the dentry type of the negative union dentry is set to the same as the
type of the lower dentry.
However, if you know d_inode is not NULL at the call site, then you can use
the d_is_xxx() functions even in a filesystem.
There is one further complication: a 0,0 chardev dentry may be labelled
DCACHE_WHITEOUT_TYPE rather than DCACHE_SPECIAL_TYPE. Strictly, this was
intended for special directory entry types that don't have attached inodes.
The following perl+coccinelle script was used:
use strict;
my @callers;
open($fd, 'git grep -l \'S_IS[A-Z].*->d_inode\' |') ||
die "Can't grep for S_ISDIR and co. callers";
@callers = <$fd>;
close($fd);
unless (@callers) {
print "No matches\n";
exit(0);
}
my @cocci = (
'@@',
'expression E;',
'@@',
'',
'- S_ISLNK(E->d_inode->i_mode)',
'+ d_is_symlink(E)',
'',
'@@',
'expression E;',
'@@',
'',
'- S_ISDIR(E->d_inode->i_mode)',
'+ d_is_dir(E)',
'',
'@@',
'expression E;',
'@@',
'',
'- S_ISREG(E->d_inode->i_mode)',
'+ d_is_reg(E)' );
my $coccifile = "tmp.sp.cocci";
open($fd, ">$coccifile") || die $coccifile;
print($fd "$_\n") || die $coccifile foreach (@cocci);
close($fd);
foreach my $file (@callers) {
chomp $file;
print "Processing ", $file, "\n";
system("spatch", "--sp-file", $coccifile, $file, "--in-place", "--no-show-diff") == 0 ||
die "spatch failed";
}
[AV: overlayfs parts skipped]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Provide a file creation function that also takes an initial size so that the
caller doesn't have to set i_size, thus meaning that we don't have to call
deal with ->d_inode in the callers.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Here's the set of driver core patches for 3.19-rc1.
They are dominated by the removal of the .owner field in platform
drivers. They touch a lot of files, but they are "simple" changes, just
removing a line in a structure.
Other than that, a few minor driver core and debugfs changes. There are
some ath9k patches coming in through this tree that have been acked by
the wireless maintainers as they relied on the debugfs changes.
Everything has been in linux-next for a while.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iEYEABECAAYFAlSOD20ACgkQMUfUDdst+ylLPACg2QrW1oHhdTMT9WI8jihlHVRM
53kAoLeteByQ3iVwWurwwseRPiWa8+MI
=OVRS
-----END PGP SIGNATURE-----
Merge tag 'driver-core-3.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core update from Greg KH:
"Here's the set of driver core patches for 3.19-rc1.
They are dominated by the removal of the .owner field in platform
drivers. They touch a lot of files, but they are "simple" changes,
just removing a line in a structure.
Other than that, a few minor driver core and debugfs changes. There
are some ath9k patches coming in through this tree that have been
acked by the wireless maintainers as they relied on the debugfs
changes.
Everything has been in linux-next for a while"
* tag 'driver-core-3.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (324 commits)
Revert "ath: ath9k: use debugfs_create_devm_seqfile() helper for seq_file entries"
fs: debugfs: add forward declaration for struct device type
firmware class: Deletion of an unnecessary check before the function call "vunmap"
firmware loader: fix hung task warning dump
devcoredump: provide a one-way disable function
device: Add dev_<level>_once variants
ath: ath9k: use debugfs_create_devm_seqfile() helper for seq_file entries
ath: use seq_file api for ath9k debugfs files
debugfs: add helper function to create device related seq_file
drivers/base: cacheinfo: remove noisy error boot message
Revert "core: platform: add warning if driver has no owner"
drivers: base: support cpu cache information interface to userspace via sysfs
drivers: base: add cpu_device_create to support per-cpu devices
topology: replace custom attribute macros with standard DEVICE_ATTR*
cpumask: factor out show_cpumap into separate helper function
driver core: Fix unbalanced device reference in drivers_probe
driver core: fix race with userland in device_add()
sysfs/kernfs: make read requests on pre-alloc files use the buffer.
sysfs/kernfs: allow attributes to request write buffer be pre-allocated.
fs: sysfs: return EGBIG on write if offset is larger than file size
...
This patch adds a helper function that simplifies adding a
so-called single_open sequence file for device drivers. The
calling device driver needs to provide a read function and
a device pointer. The field struct seq_file::private will
reference the device pointer upon call to the read function
so the driver can obtain his data from it and do its task
of providing the file content using seq_printf() calls and
alike. Using this helper function also gets rid of the need
to specify file operations per debugfs file.
Signed-off-by: Arend van Spriel <arend@broadcom.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pull the beginning of seq_file cleanup from Steven:
"I'm looking to clean up the seq_file code and to eventually merge the
trace_seq code with seq_file as well, since they basically do the same thing.
Part of this process is to remove the return code of seq_printf() and friends
as they are rather inconsistent. It is better to use the new function
seq_has_overflowed() if you want to stop processing when the buffer
is full. Note, if the buffer is full, the seq_file code will throw away
the contents, allocate a bigger buffer, and then call your code again
to fill in the data. The only thing that breaking out of the function
early does is to save a little time which is probably never noticed.
I started with patches from Joe Perches and modified them as well.
There's many more places that need to be updated before we can convert
seq_printf() and friends to return void. But this patch set introduces
the seq_has_overflowed() and does some initial updates."
The seq_printf() will soon just return void, and seq_has_overflowed()
should be used instead to see if the seq can no longer accept input.
As the return value of debugfs_print_regs32() has no users and
the seq_file descriptor should be checked with seq_has_overflowed()
instead of return values of functions, it is better to just have
debugfs_print_regs32() also return void.
Link: http://lkml.kernel.org/p/2634b19eb1c04a9d31148c1fe6f1f3819be95349.1412031505.git.joe@perches.com
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Joe Perches <joe@perches.com>
[ original change only updated seq_printf() return, added return of
void to debugfs_print_regs32() as well ]
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
[ I'm currently running my tests on it now, and so far, after a few
hours it has yet to blow up. I'll run it for 24 hours which it never
succeeded in the past. ]
The tracing code has a way to make directories within the debugfs file
system as well as deleting them using mkdir/rmdir in the instance
directory. This is very limited in functionality, such as there is
no renames, and the parent directory "instance" can not be modified.
The tracing code creates the instance directory from the debugfs code
and then replaces the dentry->d_inode->i_op with its own to allow
for mkdir/rmdir to work.
When these are called, the d_entry and inode locks need to be released
to call the instance creation and deletion code. That code has its own
accounting and locking to serialize everything to prevent multiple
users from causing harm. As the parent "instance" directory can not
be modified this simplifies things.
I created a stress test that creates several threads that randomly
creates and deletes directories thousands of times a second. The code
stood up to this test and I submitted it a while ago.
Recently I added a new test that adds readers to the mix. While the
instance directories were being added and deleted, readers would read
from these directories and even enable tracing within them. This test
was able to trigger a bug:
general protection fault: 0000 [#1] PREEMPT SMP
Modules linked in: ...
CPU: 3 PID: 17789 Comm: rmdir Tainted: G W 3.15.0-rc2-test+ #41
Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./To be filled by O.E.M., BIOS SDBLI944.86P 05/08/2007
task: ffff88003786ca60 ti: ffff880077018000 task.ti: ffff880077018000
RIP: 0010:[<ffffffff811ed5eb>] [<ffffffff811ed5eb>] debugfs_remove_recursive+0x1bd/0x367
RSP: 0018:ffff880077019df8 EFLAGS: 00010246
RAX: 0000000000000002 RBX: ffff88006f0fe490 RCX: 0000000000000000
RDX: dead000000100058 RSI: 0000000000000246 RDI: ffff88003786d454
RBP: ffff88006f0fe640 R08: 0000000000000628 R09: 0000000000000000
R10: 0000000000000628 R11: ffff8800795110a0 R12: ffff88006f0fe640
R13: ffff88006f0fe640 R14: ffffffff81817d0b R15: ffffffff818188b7
FS: 00007ff13ae24700(0000) GS:ffff88007d580000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
CR2: 0000003054ec7be0 CR3: 0000000076d51000 CR4: 00000000000007e0
Stack:
ffff88007a41ebe0 dead000000100058 00000000fffffffe ffff88006f0fe640
0000000000000000 ffff88006f0fe678 ffff88007a41ebe0 ffff88003793a000
00000000fffffffe ffffffff810bde82 ffff88006f0fe640 ffff88007a41eb28
Call Trace:
[<ffffffff810bde82>] ? instance_rmdir+0x15b/0x1de
[<ffffffff81132e2d>] ? vfs_rmdir+0x80/0xd3
[<ffffffff81132f51>] ? do_rmdir+0xd1/0x139
[<ffffffff8124ad9e>] ? trace_hardirqs_on_thunk+0x3a/0x3c
[<ffffffff814fea62>] ? system_call_fastpath+0x16/0x1b
Code: fe ff ff 48 8d 75 30 48 89 df e8 c9 fd ff ff 85 c0 75 13 48 c7 c6 b8 cc d2 81 48 c7 c7 b0 cc d2 81 e8 8c 7a f5 ff 48 8b 54 24 08 <48> 8b 82 a8 00 00 00 48 89 d3 48 2d a8 00 00 00 48 89 44 24 08
RIP [<ffffffff811ed5eb>] debugfs_remove_recursive+0x1bd/0x367
RSP <ffff880077019df8>
It took a while, but every time it triggered, it was always in the
same place:
list_for_each_entry_safe(child, next, &parent->d_subdirs, d_u.d_child) {
Where the child->d_u.d_child seemed to be corrupted. I added lots of
trace_printk()s to see what was wrong, and sure enough, it was always
the child's d_u.d_child field. I looked around to see what touches
it and noticed that in __dentry_kill() which calls dentry_free():
static void dentry_free(struct dentry *dentry)
{
/* if dentry was never visible to RCU, immediate free is OK */
if (!(dentry->d_flags & DCACHE_RCUACCESS))
__d_free(&dentry->d_u.d_rcu);
else
call_rcu(&dentry->d_u.d_rcu, __d_free);
}
I also noticed that __dentry_kill() unlinks the child->d_u.child
under the parent->d_lock spin_lock.
Looking back at the loop in debugfs_remove_recursive() it never takes the
parent->d_lock to do the list walk. Adding more tracing, I was able to
prove this was the issue:
ftrace-t-15385 1.... 246662024us : dentry_kill <ffffffff81138b91>: free ffff88006d573600
rmdir-15409 2.... 246662024us : debugfs_remove_recursive <ffffffff811ec7e5>: child=ffff88006d573600 next=dead000000100058
The dentry_kill freed ffff88006d573600 just as the remove recursive was walking
it.
In order to fix this, the list walk needs to be modified a bit to take
the parent->d_lock. The safe version is no longer necessary, as every
time we remove a child, the parent->d_lock must be released and the
list walk must start over. Each time a child is removed, even though it
may still be on the list, it should be skipped by the first check
in the loop:
if (!debugfs_positive(child))
continue;
Cc: stable@vger.kernel.org
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
and COLLAPSE_RANGE fallocate operations, and scalability improvements
in the jbd2 layer and in xattr handling when the extended attributes
spill over into an external block.
Other than that, the usual clean ups and minor bug fixes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJTPbD2AAoJENNvdpvBGATwDmUQANSfGYIQazB8XKKgtNTMiG/Y
Ky7n1JzN9lTX/6nMsqQnbfCweLRmxqpWUBuyKDRHUi8IG0/voXSTFsAOOgz0R15A
ERRRWkVvHixLpohuL/iBdEMFHwNZYPGr3jkm0EIgzhtXNgk5DNmiuMwvHmCY27kI
kdNZIw9fip/WRNoFLDBGnLGC37aanoHhCIbVlySy5o9LN1pkC8BgXAYV0Rk19SVd
bWCudSJEirFEqWS5H8vsBAEm/ioxTjwnNL8tX8qms6orZ6h8yMLFkHoIGWPw3Q15
a0TSUoMyav50Yr59QaDeWx9uaPQVeK41wiYFI2rZOnyG2ts0u0YXs/nLwJqTovgs
rzvbdl6cd3Nj++rPi97MTA7iXK96WQPjsDJoeeEgnB0d/qPyTk6mLKgftzLTNgSa
ZmWjrB19kr6CMbebMC4L6eqJ8Fr66pCT8c/iue8wc4MUHi7FwHKH64fqWvzp2YT/
+165dqqo2JnUv7tIp6sUi1geun+bmDHLZFXgFa7fNYFtcU3I+uY1mRr3eMVAJndA
2d6ASe/KhQbpVnjKJdQ8/b833ZS3p+zkgVPrd68bBr3t7gUmX91wk+p1ct6rUPLr
700F+q/pQWL8ap0pU9Ht/h3gEJIfmRzTwxlOeYyOwDseqKuS87PSB3BzV3dDunSU
DrPKlXwIgva7zq5/S0Vr
=4s1Z
-----END PGP SIGNATURE-----
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
Pull ext4 updates from Ted Ts'o:
"Major changes for 3.14 include support for the newly added ZERO_RANGE
and COLLAPSE_RANGE fallocate operations, and scalability improvements
in the jbd2 layer and in xattr handling when the extended attributes
spill over into an external block.
Other than that, the usual clean ups and minor bug fixes"
* tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: (42 commits)
ext4: fix premature freeing of partial clusters split across leaf blocks
ext4: remove unneeded test of ret variable
ext4: fix comment typo
ext4: make ext4_block_zero_page_range static
ext4: atomically set inode->i_flags in ext4_set_inode_flags()
ext4: optimize Hurd tests when reading/writing inodes
ext4: kill i_version support for Hurd-castrated file systems
ext4: each filesystem creates and uses its own mb_cache
fs/mbcache.c: doucple the locking of local from global data
fs/mbcache.c: change block and index hash chain to hlist_bl_node
ext4: Introduce FALLOC_FL_ZERO_RANGE flag for fallocate
ext4: refactor ext4_fallocate code
ext4: Update inode i_size after the preallocation
ext4: fix partial cluster handling for bigalloc file systems
ext4: delete path dealloc code in ext4_ext_handle_uninitialized_extents
ext4: only call sync_filesystm() when remounting read-only
fs: push sync_filesystem() down to the file system's remount_fs()
jbd2: improve error messages for inconsistent journal heads
jbd2: minimize region locked by j_list_lock in jbd2_journal_forget()
jbd2: minimize region locked by j_list_lock in journal_get_create_access()
...
This patch fix spelling typo in Documentation/DocBook.
It is because .html and .xml files are generated by make htmldocs,
I have to fix a typo within the source files.
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
debugfs_remove_recursive() is wrong,
1. it wrongly assumes that !list_empty(d_subdirs) means that this
dir should be removed.
This is not that bad by itself, but:
2. if d_subdirs does not becomes empty after __debugfs_remove()
it gives up and silently fails, it doesn't even try to remove
other entries.
However ->d_subdirs can be non-empty because it still has the
already deleted !debugfs_positive() entries.
3. simple_release_fs() is called even if __debugfs_remove() fails.
Suppose we have
dir1/
dir2/
file2
file1
and someone opens dir1/dir2/file2.
Now, debugfs_remove_recursive(dir1/dir2) succeeds, and dir1/dir2 goes
away.
But debugfs_remove_recursive(dir1) silently fails and doesn't remove
this directory. Because it tries to delete (the already deleted)
dir1/dir2/file2 again and then fails due to "Avoid infinite loop"
logic.
Test-case:
#!/bin/sh
cd /sys/kernel/debug/tracing
echo 'p:probe/sigprocmask sigprocmask' >> kprobe_events
sleep 1000 < events/probe/sigprocmask/id &
echo -n >| kprobe_events
[ -d events/probe ] && echo "ERR!! failed to rm probe"
And after that it is not possible to create another probe entry.
With this patch debugfs_remove_recursive() skips !debugfs_positive()
files although this is not strictly needed. The most important change
is that it does not try to make ->d_subdirs empty, it simply scans
the whole list(s) recursively and removes as much as possible.
Link: http://lkml.kernel.org/r/20130726151256.GC19472@redhat.com
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>