Add sha256 to the list of possible checksumming algorithms used by BTRFS.
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add xxhash64 to the list of possible checksumming algorithms used by
BTRFS.
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
To remove use of extent_map::bdev we need to find a replacement, and the
latest_bdev is the only one we can use here, because inode::i_bdev and
superblock::s_bdev are NULL.
The DIO code uses bdev in two places:
* to read blocksize to perform alignment checks in
do_blockdev_direct_IO, but we do them in btrfs code before any call to
DIO
* in the following call chain:
do_direct_IO
get_more_blocks
sdio->get_block() <-- this is btrfs_get_blocks_direct
subsequently the map_bh->b_dev member is used in clean_bdev_aliases
and dio_new_bio to set the bio's bdev to that of the buffer_head.
However, because we have provided a submit function dio_bio_submit
calls our submission function and ignores the bdev.
So it's safe to pass any valid bdev that's used within the filesystem.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is a preparatory patch for removing extent_map::bdev. There's some
history behind the code so this is only precaution to catch if things
break before the actual removal happens.
Logically, comparing a raw low-level block device (bdev) does not make
sense for extent maps (high-level objects). This had no effect in
practice but was quite confusing in the code. The lookup_map is set iff
EXTENT_FLAG_FS_MAPPING is set.
The two pointers were stored in the same bytes and used potentially in
two meanings. Now they're split, so the asserts are in place to check
that the condition will not change.
The lookup map pointer misused bdev, this has been changed in commit
95617d6932 ("btrfs: cleanup, stop casting for extent_map->lookup
everywhere") to the explicit type. But the semantics hasn't changed and
bdev was not actually used to decide if maps are mergeable.
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of checking if we've read a BTRFS_CHUNK_ITEM_KEY from disk and
then process it we could just bail out early if the read disk key wasn't
a BTRFS_CHUNK_ITEM_KEY.
This removes a level of indentation and makes the code nicer to read.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_may_alloc_data_chunk() we're checking if the chunk type is of
type BTRFS_BLOCK_GROUP_DATA and if it is we process it.
Instead of checking if the chunk type is a BTRFS_BLOCK_GROUP_DATA chunk
we can negate the check and bail out early if it isn't.
This makes the code a bit more readable.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In lock_stripe_add() we're caching the bucket for the stripe hash table
just for a single call to dereference the stripe hash.
If we just directly call rbio_bucket() we can safe the pointless local
variable.
Also move the dereferencing of the stripe hash outside of the variable
declaration block to not break over the 80 characters limit.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In lock_stripe_add() we're traversing the stripe hash list and check if
the current list element's raid_map equals is equal to the raid bio's
raid_map. If both are equal we continue processing.
If we'd check for inequality instead of equality we can reduce one level
of indentation.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of using an input pointer parameter as the return value and have
an int as the return type of find_desired_extent, rework the function to
directly return the found offset. Doing that the 'ret' variable in
btrfs_llseek_file can be removed. Additional (subjective) benefit is
that btrfs' llseek function now resemebles those of the other major
filesystems.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Handle SEEK_END/SEEK_CUR in a single 'default' case by directly
returning from generic_file_llseek. This makes the 'out' label
redundant. Finally return directly the vale from vfs_setpos. No
semantic changes.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Modifying the file position is done on a per-file basis. This renders
holding the inode lock for writing useless and makes the performance of
concurrent llseek's abysmal.
Fix this by holding the inode for read. This provides protection against
concurrent truncates and find_desired_extent already includes proper
extent locking for the range which ensures proper locking against
concurrent writes. SEEK_CUR and SEEK_END can be done lockessly.
The former is synchronized by file::f_lock spinlock. SEEK_END is not
synchronized but atomic, but that's OK since there is not guarantee that
SEEK_END will always be at the end of the file in the face of tail
modifications.
This change brings ~82% performance improvement when doing a lot of
parallel fseeks. The workload essentially does:
for (d=0; d<num_seek_read; d++)
{
/* offset %= 16777216; */
fseek (f, 256 * d % 16777216, SEEK_SET);
fread (buffer, 64, 1, f);
}
Without patch:
num workprocesses = 16
num fseek/fread = 8000000
step = 256
fork 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
real 0m41.412s
user 0m28.777s
sys 2m16.510s
With patch:
num workprocesses = 16
num fseek/fread = 8000000
step = 256
fork 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
real 0m11.479s
user 0m27.629s
sys 0m21.040s
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can infer the ops from the type that is now passed to all functions
that would need it, this makes workspace_manager::ops redundant and can
be removed.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Replace indirect calls to free_workspace by switch and calls to the
specific callbacks. This is mainly to get rid of the indirection due to
spectre vulnerability mitigations.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can infer the workspace_manager from type and the type will be used
in the following patch to call a common helper for free_workspace.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Replace indirect calls to alloc_workspace by switch and calls to the
specific callbacks. This is mainly to get rid of the indirection due to
spectre vulnerability mitigations.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can infer the workspace_manager from type and the type will be used
in the following patch to call a common helper for alloc_workspace.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Similar to get_workspace, majority of the callbacks is trivial, we don't
gain anything by the indirection, so replace them by a switch function.
Trivial callback implementations use the helper.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Majority of the callbacks is trivial, we don't gain anything by the
indirection, so replace them by a switch function.
ZLIB needs to adjust level in the callback and ZSTD workspace management
is complex, the rest is call to the helper.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The indirect calls will be replaced by a switch in compression.c.
(Switch is faster than indirect calls with when Spectre mitigations are
enabled).
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Replace loop calling to all algos with a list of direct calls to the
cleanup manager callback. When that becomes trivial it is replaced by
direct call to the helper.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With the access to the workspace structures, we can look it up together
with the compression ops inside the workspace manager cleanup helper.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Replace loop calling to all algos with a list of direct calls to the
init manager callback. When that becomes trivial it is replaced by
direct call to the helper.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With the access to the workspace structures, we can look it up together
with the compression ops inside the workspace manager init helper.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's a lot of indirection when the generic code calls into
algo-specific callbacks to reach the private workspace manager structure
and back to the generic code.
To simplify that, export the workspace manager for heuristic, LZO and
ZLIB, while ZSTD is going to use it's own manager.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The indirect calls bring some overhead due to spectre vulnerability
mitigations. The number of cases is small and below the threshold
(10-20) where indirect call would be better.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Export compress_pages, decompress_bio and decompress callbacks for all
compression algos. The indirect calls will be replaced by a switch.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When free'ing extents in a block group we check to see if the block
group is not cached, and then cache it if we need to. However we'll
just carry on as long as we're loading the cache. This is problematic
because we are dirtying the block group here. If we are fast enough we
could do a transaction commit and clear the free space cache while we're
still loading the space cache in another thread. This truncates the
free space inode, which will keep it from loading the space cache.
Fix this by using the btrfs_block_group_cache_done helper so that we try
to load the space cache unconditionally here, which will result in the
caller waiting for the fast caching to complete and keep us from
truncating the free space inode.
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While testing 5.2 we ran into the following panic
[52238.017028] BUG: kernel NULL pointer dereference, address: 0000000000000001
[52238.105608] RIP: 0010:drop_buffers+0x3d/0x150
[52238.304051] Call Trace:
[52238.308958] try_to_free_buffers+0x15b/0x1b0
[52238.317503] shrink_page_list+0x1164/0x1780
[52238.325877] shrink_inactive_list+0x18f/0x3b0
[52238.334596] shrink_node_memcg+0x23e/0x7d0
[52238.342790] ? do_shrink_slab+0x4f/0x290
[52238.350648] shrink_node+0xce/0x4a0
[52238.357628] balance_pgdat+0x2c7/0x510
[52238.365135] kswapd+0x216/0x3e0
[52238.371425] ? wait_woken+0x80/0x80
[52238.378412] ? balance_pgdat+0x510/0x510
[52238.386265] kthread+0x111/0x130
[52238.392727] ? kthread_create_on_node+0x60/0x60
[52238.401782] ret_from_fork+0x1f/0x30
The page we were trying to drop had a page->private, but had no
page->mapping and so called drop_buffers, assuming that we had a
buffer_head on the page, and then panic'ed trying to deref 1, which is
our page->private for data pages.
This is happening because we're truncating the free space cache while
we're trying to load the free space cache. This isn't supposed to
happen, and I'll fix that in a followup patch. However we still
shouldn't allow those sort of mistakes to result in messing with pages
that do not belong to us. So add the page->mapping check to verify that
we still own this page after dropping and re-acquiring the page lock.
This page being unlocked as:
btrfs_readpage
extent_read_full_page
__extent_read_full_page
__do_readpage
if (!nr)
unlock_page <-- nr can be 0 only if submit_extent_page
returns an error
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
[ add callchain ]
Signed-off-by: David Sterba <dsterba@suse.com>
In the fixup worker, if we fail to mark the range as delalloc in the io
tree, we must release the previously reserved metadata, as well as update
the outstanding extents counter for the inode, otherwise we leak metadata
space.
In pratice we can't return an error from btrfs_set_extent_delalloc(),
which is just a wrapper around __set_extent_bit(), as for most errors
__set_extent_bit() does a BUG_ON() (or panics which hits a BUG_ON() as
well) and returning an -EEXIST error doesn't happen in this case since
the exclusive bits parameter always has a value of 0 through this code
path. Nevertheless, just fix the error handling in the fixup worker,
in case one day __set_extent_bit() can return an error to this code
path.
Fixes: f3038ee3a3 ("btrfs: Handle btrfs_set_extent_delalloc failure in fixup worker")
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing a buffered write it's possible to leave the subv_writers
counter of the root, used for synchronization between buffered nocow
writers and snapshotting. This happens in an exceptional case like the
following:
1) We fail to allocate data space for the write, since there's not
enough available data space nor enough unallocated space for allocating
a new data block group;
2) Because of that failure, we try to go to NOCOW mode, which succeeds
and therefore we set the local variable 'only_release_metadata' to true
and set the root's sub_writers counter to 1 through the call to
btrfs_start_write_no_snapshotting() made by check_can_nocow();
3) The call to btrfs_copy_from_user() returns zero, which is very unlikely
to happen but not impossible;
4) No pages are copied because btrfs_copy_from_user() returned zero;
5) We call btrfs_end_write_no_snapshotting() which decrements the root's
subv_writers counter to 0;
6) We don't set 'only_release_metadata' back to 'false' because we do
it only if 'copied', the value returned by btrfs_copy_from_user(), is
greater than zero;
7) On the next iteration of the while loop, which processes the same
page range, we are now able to allocate data space for the write (we
got enough data space released in the meanwhile);
8) After this if we fail at btrfs_delalloc_reserve_metadata(), because
now there isn't enough free metadata space, or in some other place
further below (prepare_pages(), lock_and_cleanup_extent_if_need(),
btrfs_dirty_pages()), we break out of the while loop with
'only_release_metadata' having a value of 'true';
9) Because 'only_release_metadata' is 'true' we end up decrementing the
root's subv_writers counter to -1 (through a call to
btrfs_end_write_no_snapshotting()), and we also end up not releasing the
data space previously reserved through btrfs_check_data_free_space().
As a consequence the mechanism for synchronizing NOCOW buffered writes
with snapshotting gets broken.
Fix this by always setting 'only_release_metadata' to false at the start
of each iteration.
Fixes: 8257b2dc3c ("Btrfs: introduce btrfs_{start, end}_nocow_write() for each subvolume")
Fixes: 7ee9e4405f ("Btrfs: check if we can nocow if we don't have data space")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Some functions are doing some unnecessary indirection to reach the
btrfs_fs_info struct. Change these functions to receive a btrfs_fs_info
struct instead of a *file.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We don't need int argument bool shall do in free_root_pointers(). And
rename the argument as it confused two people.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The compression type upper limit constant is the same as the last value
and this is confusing. In order to keep coding style consistent, use
BTRFS_NR_COMPRESS_TYPES as the total number that follows the idom of
'NR' being one more than the last value.
Signed-off-by: Chengguang Xu <cgxu519@mykernel.net>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use enum to replace macro definitions of extent types.
Signed-off-by: Chengguang Xu <cgxu519@mykernel.net>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
DEFINE_HASHTABLE itself has already included initialization code,
we don't have to call hash_init() again, so remove it.
Signed-off-by: Chengguang Xu <cgxu519@mykernel.net>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function is used only during the final phase of freespace cache
writeout. This is necessary since using the plain btrfs_join_transaction
api is deadlock prone. The deadlock looks like:
T1:
btrfs_commit_transaction
commit_cowonly_roots
btrfs_write_dirty_block_groups
btrfs_wait_cache_io
__btrfs_wait_cache_io
btrfs_wait_ordered_range <-- Triggers ordered IO for freespace
inode and blocks transaction commit
until freespace cache writeout
T2: <-- after T1 has triggered the writeout
finish_ordered_fn
btrfs_finish_ordered_io
btrfs_join_transaction <--- this would block waiting for current
transaction to commit, but since trans
commit is waiting for this writeout to
finish
The special purpose functions prevents it by simply skipping the "wait
for writeout" since it's guaranteed the transaction won't proceed until
we are done.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Using an ASSERT in btrfs_pin_extent allows to more stringently observe
whether the function is called under a transaction or not.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The helper is trivial and we can understand what the atomic_inc on
something named refs does.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During a cyclic writeback, extent_write_cache_pages() uses done_index
to update the writeback_index after the current run is over. However,
instead of current index + 1, it gets to to the current index itself.
Unfortunately, this, combined with returning on EOF instead of looping
back, can lead to the following pathlogical behavior.
1. There is a single file which has accumulated enough dirty pages to
trigger balance_dirty_pages() and the writer appending to the file
with a series of short writes.
2. balance_dirty_pages kicks in, wakes up background writeback and sleeps.
3. Writeback kicks in and the cursor is on the last page of the dirty
file. Writeback is started or skipped if already in progress. As
it's EOF, extent_write_cache_pages() returns and the cursor is set
to done_index which is pointing to the last page.
4. Writeback is done. Nothing happens till balance_dirty_pages
finishes, at which point we go back to #1.
This can almost completely stall out writing back of the file and keep
the system over dirty threshold for a long time which can mess up the
whole system. We encountered this issue in production with a package
handling application which can reliably reproduce the issue when
running under tight memory limits.
Reading the comment in the error handling section, this seems to be to
avoid accidentally skipping a page in case the write attempt on the
page doesn't succeed. However, this concern seems bogus.
On each page, the code either:
* Skips and moves onto the next page.
* Fails issue and sets done_index to index + 1.
* Successfully issues and continue to the next page if budget allows
and not EOF.
IOW, as long as it's not EOF and there's budget, the code never
retries writing back the same page. Only when a page happens to be
the last page of a particular run, we end up retrying the page, which
can't possibly guarantee anything data integrity related. Besides,
cyclic writes are only used for non-syncing writebacks meaning that
there's no data integrity implication to begin with.
Fix it by always setting done_index past the current page being
processed.
Note that this problem exists in other writepages too.
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 4617ea3a52 (" Btrfs: fix necessary chunk tree space calculation
when allocating a chunk") removed the is_allocation argument from
check_system_chunk, since the formula for reserving the necessary space
for allocation or removing a chunk would be the same.
So, rework the comment by removing the mention of is_allocation
argument.
Signed-off-by: Marcos Paulo de Souza <marcos.souza.org@gmail.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Unlike read time tree checker errors, write time error can't be
inspected by "btrfs inspect dump-tree", so we need extra information to
determine what's going wrong.
The patch will add the following output for write time tree checker
error:
- The content of the offending tree block
To help determining if it's a false alert.
- Kernel WARN_ON() for debug build
This is helpful for us to detect unexpected write time tree checker
error, especially fstests could catch the dmesg.
Since the WARN_ON() is only triggered for write time tree checker,
test cases utilizing dm-error won't trigger this WARN_ON(), thus no
extra noise.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Refactor the check for prev_key->objectid of the following key types
into one function, check_prev_ino():
- EXTENT_DATA
- INODE_REF
- DIR_INDEX
- DIR_ITEM
- XATTR_ITEM
Also add the check of prev_key for INODE_REF.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
extent_write_locked_range() is used when we're falling back to buffered
IO from inside of compression. It allocates its own wbc and should
associate it with the inode's i_wb to make sure the IO goes down from
the correct cgroup.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Async CRCs and compression submit IO through helper threads, which means
they have IO priority inversions when cgroup IO controllers are in use.
This flags all of the writes submitted by btrfs helper threads as
REQ_CGROUP_PUNT. submit_bio() will punt these to dedicated per-blkcg
work items to avoid the priority inversion.
For the compression code, we take a reference on the wbc's blkg css and
pass it down to the async workers.
For the async CRCs, the bio already has the correct css, we just need to
tell the block layer to use REQ_CGROUP_PUNT.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Chris Mason <clm@fb.com>
Modified-and-reviewed-by: Tejun Heo <tj@kernel.org>
Signed-off-by: David Sterba <dsterba@suse.com>
The btrfs writepages function collects a large range of pages flagged
for delayed allocation, and then sends them down through the COW code
for processing. When compression is on, we allocate one async_chunk
structure for every 512K, and then run those pages through the
compression code for IO submission.
writepages starts all of this off with a single page, locked by the
original call to extent_write_cache_pages(), and it's important to keep
track of this page because it has already been through
clear_page_dirty_for_io().
The btrfs async_chunk struct has a pointer to the locked_page, and when
we're redirtying the page because compression had to fallback to
uncompressed IO, we use page->index to decide if a given async_chunk
struct really owns that page.
But, this is racey. If a given delalloc range is broken up into two
async_chunks (chunkA and chunkB), we can end up with something like
this:
compress_file_range(chunkA)
submit_compress_extents(chunkA)
submit compressed bios(chunkA)
put_page(locked_page)
compress_file_range(chunkB)
...
Or:
async_cow_submit
submit_compressed_extents <--- falls back to buffered writeout
cow_file_range
extent_clear_unlock_delalloc
__process_pages_contig
put_page(locked_pages)
async_cow_submit
The end result is that chunkA is completed and cleaned up before chunkB
even starts processing. This means we can free locked_page() and reuse
it elsewhere. If we get really lucky, it'll have the same page->index
in its new home as it did before.
While we're processing chunkB, we might decide we need to fall back to
uncompressed IO, and so compress_file_range() will call
__set_page_dirty_nobufers() on chunkB->locked_page.
Without cgroups in use, this creates as a phantom dirty page, which
isn't great but isn't the end of the world. What can happen, it can go
through the fixup worker and the whole COW machinery again:
in submit_compressed_extents():
while (async extents) {
...
cow_file_range
if (!page_started ...)
extent_write_locked_range
else if (...)
unlock_page
continue;
This hasn't been observed in practice but is still possible.
With cgroups in use, we might crash in the accounting code because
page->mapping->i_wb isn't set.
BUG: unable to handle kernel NULL pointer dereference at 00000000000000d0
IP: percpu_counter_add_batch+0x11/0x70
PGD 66534e067 P4D 66534e067 PUD 66534f067 PMD 0
Oops: 0000 [#1] SMP DEBUG_PAGEALLOC
CPU: 16 PID: 2172 Comm: rm Not tainted
RIP: 0010:percpu_counter_add_batch+0x11/0x70
RSP: 0018:ffffc9000a97bbe0 EFLAGS: 00010286
RAX: 0000000000000005 RBX: 0000000000000090 RCX: 0000000000026115
RDX: 0000000000000030 RSI: ffffffffffffffff RDI: 0000000000000090
RBP: 0000000000000000 R08: fffffffffffffff5 R09: 0000000000000000
R10: 00000000000260c0 R11: ffff881037fc26c0 R12: ffffffffffffffff
R13: ffff880fe4111548 R14: ffffc9000a97bc90 R15: 0000000000000001
FS: 00007f5503ced480(0000) GS:ffff880ff7200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000000000d0 CR3: 00000001e0459005 CR4: 0000000000360ee0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
account_page_cleaned+0x15b/0x1f0
__cancel_dirty_page+0x146/0x200
truncate_cleanup_page+0x92/0xb0
truncate_inode_pages_range+0x202/0x7d0
btrfs_evict_inode+0x92/0x5a0
evict+0xc1/0x190
do_unlinkat+0x176/0x280
do_syscall_64+0x63/0x1a0
entry_SYSCALL_64_after_hwframe+0x42/0xb7
The fix here is to make asyc_chunk->locked_page NULL everywhere but the
one async_chunk struct that's allowed to do things to the locked page.
Link: https://lore.kernel.org/linux-btrfs/c2419d01-5c84-3fb4-189e-4db519d08796@suse.com/
Fixes: 771ed689d2 ("Btrfs: Optimize compressed writeback and reads")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Chris Mason <clm@fb.com>
[ update changelog from mail thread discussion ]
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we're not using btrfs_schedule_bio() anymore, delete all the
code that supported it.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_schedule_bio() hands IO off to a helper thread to do the actual
submit_bio() call. This has been used to make sure async crc and
compression helpers don't get stuck on IO submission. To maintain good
performance, over time the IO submission threads duplicated some IO
scheduler characteristics such as high and low priority IOs and they
also made some ugly assumptions about request allocation batch sizes.
All of this cost at least one extra context switch during IO submission,
and doesn't fit well with the modern blkmq IO stack. So, this commit stops
using btrfs_schedule_bio(). We may need to adjust the number of async
helper threads for crcs and compression, but long term it's a better
path.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The attribute is more relaxed than const and the functions could
dereference pointers, as long as the observable state is not changed. We
do have such functions, based on -Wsuggest-attribute=pure .
The visible effects of this patch are negligible, there are differences
in the assembly but hard to summarize.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For some reason the attribute is called __attribute_const__ and not
__const, marks functions that have no observable effects on program
state, IOW not reading pointers, just the arguments and calculating a
value. Allows the compiler to do some optimizations, based on
-Wsuggest-attribute=const . The effects are rather small, though, about
60 bytes decrese of btrfs.ko.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The attribute can mark functions supposed to be called rarely if at all
and the text can be moved to sections far from the other code. The
attribute has been added to several functions already, this patch is
based on hints given by gcc -Wsuggest-attribute=cold.
The net effect of this patch is decrease of btrfs.ko by 1000-1300,
depending on the config options.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The parameter is now always set to NULL and could be dropped. The last
user was get_default_root but that got reworked in 05dbe6837b ("Btrfs:
unify subvol= and subvolid= mounting") and the parameter became unused.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We hit the following warning while running down a different problem
[ 6197.175850] ------------[ cut here ]------------
[ 6197.185082] refcount_t: underflow; use-after-free.
[ 6197.194704] WARNING: CPU: 47 PID: 966 at lib/refcount.c:190 refcount_sub_and_test_checked+0x53/0x60
[ 6197.521792] Call Trace:
[ 6197.526687] __btrfs_release_delayed_node+0x76/0x1c0
[ 6197.536615] btrfs_kill_all_delayed_nodes+0xec/0x130
[ 6197.546532] ? __btrfs_btree_balance_dirty+0x60/0x60
[ 6197.556482] btrfs_clean_one_deleted_snapshot+0x71/0xd0
[ 6197.566910] cleaner_kthread+0xfa/0x120
[ 6197.574573] kthread+0x111/0x130
[ 6197.581022] ? kthread_create_on_node+0x60/0x60
[ 6197.590086] ret_from_fork+0x1f/0x30
[ 6197.597228] ---[ end trace 424bb7ae00509f56 ]---
This is because the free side drops the ref without the lock, and then
takes the lock if our refcount is 0. So you can have nodes on the tree
that have a refcount of 0. Fix this by zero'ing out that element in our
temporary array so we don't try to kill it again.
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
Its very helpful if we had logged the device scanner process name to
debug the race condition between the systemd-udevd scan and the user
initiated device forget command.
This patch adds process name and pid to the scan message.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add pid to the message ]
Signed-off-by: David Sterba <dsterba@suse.com>
That function adds unnecessary indirection between backref_in_log and
the caller. Furthermore it also "downgrades" backref_in_log's return
value to a boolean, when in fact it could very well be an error.
Rectify the situation by simply opencoding name_in_log_ref in
replay_one_name and properly handling possible return codes from
backref_in_log.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
This function can return a negative error value if btrfs_search_slot
errors for whatever reason or if btrfs_alloc_path runs out of memory.
This is currently problemattic because backref_in_log is treated by its
callers as if it returns boolean.
Fix this by adding proper error handling in callers. That also enables
the function to return the direct error code from btrfs_search_slot.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Direct replacement, though note that the inside of the loop in
btrfs_find_name_in_backref is organized in a slightly different way but
is equvalent.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
The state was introduced in commit 4a9d8bdee3 ("Btrfs: make the state
of the transaction more readable"), then in commit 302167c50b
("btrfs: don't end the transaction for delayed refs in throttle") the
state is completely removed.
So we can just clean up the state since it's only compared but never
set.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add an overview of the basic btrfs transaction transitions, including
the following states:
- No transaction states
- Transaction N [[TRANS_STATE_RUNNING]]
- Transaction N [[TRANS_STATE_COMMIT_START]]
- Transaction N [[TRANS_STATE_COMMIT_DOING]]
- Transaction N [[TRANS_STATE_UNBLOCKED]]
- Transaction N [[TRANS_STATE_COMPLETED]]
For each state, the comment will include:
- Basic explaination about current state
- How to go next stage
- What will happen if we call various start_transaction() functions
- Relationship to transaction N+1
This doesn't provide tech details, but serves as a cheat sheet for
reader to get into the code a little easier.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Replace is_power_of_2 with the helper that is self-documenting and
remove the open coded call in alloc_profile_is_valid.
Signed-off-by: David Sterba <dsterba@suse.com>
As is_power_of_two takes unsigned long, it's not safe on 32bit
architectures, but we could pass any u64 value in seveal places. Add a
separate helper and also an alias that better expresses the purpose for
which the helper is used.
Signed-off-by: David Sterba <dsterba@suse.com>
When balance reduces the number of copies of metadata, it reduces the
redundancy, use the term redundancy instead of integrity.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function belongs to the family of locking functions, so move it
there. The 'noinline' keyword is dropped as it's now an exported
function that does not need it.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function belongs to the family of locking functions, so move it
there. The 'noinline' keyword is dropped as it's now an exported
function that does not need it.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function btrfs_assert_tree_locked is used outside of the locking
code so it is exported, however we can make it static inine as it's
fairly trivial.
This is the only locking assertion used in release builds, inlining
improves the text size by 174 bytes and reduces stack consumption in the
callers.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
I've noticed that none of the btrfs_assert_*lock* debugging helpers is
inlined, despite they're short and mostly a value update. Making them
inline shaves 67 from the text size, reduces stack consumption and
perhaps also slightly improves the performance due to avoiding
unnecessary calls.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit ac0c7cf8be ("btrfs: fix crash when tracepoint arguments are
freed by wq callbacks") added a void pointer, wtag, which is passed into
trace_btrfs_all_work_done() instead of the freed work item. This is
silly for a few reasons:
1. The freed work item still has the same address.
2. work is still in scope after it's freed, so assigning wtag doesn't
stop anyone from using it.
3. The tracepoint has always taken a void * argument, so assigning wtag
doesn't actually make things any more type-safe. (Note that the
original bug in commit bc074524e1 ("btrfs: prefix fsid to all trace
events") was that the void * was implicitly casted when it was passed
to btrfs_work_owner() in the trace point itself).
Instead, let's add some clearer warnings as comments.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 9e0af23764 ("Btrfs: fix task hang under heavy compressed
write") worked around the issue that a recycled work item could get a
false dependency on the original work item due to how the workqueue code
guarantees non-reentrancy. It did so by giving different work functions
to different types of work.
However, the fixes in the previous few patches are more complete, as
they prevent a work item from being recycled at all (except for a tiny
window that the kernel workqueue code handles for us). This obsoletes
the previous fix, so we don't need the unique helpers for correctness.
The only other reason to keep them would be so they show up in stack
traces, but they always seem to be optimized to a tail call, so they
don't show up anyways. So, let's just get rid of the extra indirection.
While we're here, rename normal_work_helper() to the more informative
btrfs_work_helper().
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, scrub_missing_raid56_worker() puts and potentially frees
sblock (which embeds the work item) and then submits a bio through
scrub_wr_submit(). This is another potential instance of the bug in
"btrfs: don't prematurely free work in run_ordered_work()". Fix it by
dropping the reference after we submit the bio.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, reada_start_machine_worker() frees the reada_machine_work and
then calls __reada_start_machine() to do readahead. This is another
potential instance of the bug in "btrfs: don't prematurely free work in
run_ordered_work()".
There _might_ already be a deadlock here: reada_start_machine_worker()
can depend on itself through stacked filesystems (__read_start_machine()
-> reada_start_machine_dev() -> reada_tree_block_flagged() ->
read_extent_buffer_pages() -> submit_one_bio() ->
btree_submit_bio_hook() -> btrfs_map_bio() -> submit_stripe_bio() ->
submit_bio() onto a loop device can trigger readahead on the lower
filesystem).
Either way, let's fix it by freeing the work at the end.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, end_workqueue_fn() frees the end_io_wq entry (which embeds
the work item) and then calls bio_endio(). This is another potential
instance of the bug in "btrfs: don't prematurely free work in
run_ordered_work()".
In particular, the endio call may depend on other work items. For
example, btrfs_end_dio_bio() can call btrfs_subio_endio_read() ->
__btrfs_correct_data_nocsum() -> dio_read_error() ->
submit_dio_repair_bio(), which submits a bio that is also completed
through a end_workqueue_fn() work item. However,
__btrfs_correct_data_nocsum() waits for the newly submitted bio to
complete, thus it depends on another work item.
This example currently usually works because we use different workqueue
helper functions for BTRFS_WQ_ENDIO_DATA and BTRFS_WQ_ENDIO_DIO_REPAIR.
However, it may deadlock with stacked filesystems and is fragile
overall. The proper fix is to free the work item at the very end of the
work function, so let's do that.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We hit the following very strange deadlock on a system with Btrfs on a
loop device backed by another Btrfs filesystem:
1. The top (loop device) filesystem queues an async_cow work item from
cow_file_range_async(). We'll call this work X.
2. Worker thread A starts work X (normal_work_helper()).
3. Worker thread A executes the ordered work for the top filesystem
(run_ordered_work()).
4. Worker thread A finishes the ordered work for work X and frees X
(work->ordered_free()).
5. Worker thread A executes another ordered work and gets blocked on I/O
to the bottom filesystem (still in run_ordered_work()).
6. Meanwhile, the bottom filesystem allocates and queues an async_cow
work item which happens to be the recently-freed X.
7. The workqueue code sees that X is already being executed by worker
thread A, so it schedules X to be executed _after_ worker thread A
finishes (see the find_worker_executing_work() call in
process_one_work()).
Now, the top filesystem is waiting for I/O on the bottom filesystem, but
the bottom filesystem is waiting for the top filesystem to finish, so we
deadlock.
This happens because we are breaking the workqueue assumption that a
work item cannot be recycled while it still depends on other work. Fix
it by waiting to free the work item until we are done with all of the
related ordered work.
P.S.:
One might ask why the workqueue code doesn't try to detect a recycled
work item. It actually does try by checking whether the work item has
the same work function (find_worker_executing_work()), but in our case
the function is the same. This is the only key that the workqueue code
has available to compare, short of adding an additional, layer-violating
"custom key". Considering that we're the only ones that have ever hit
this, we should just play by the rules.
Unfortunately, we haven't been able to create a minimal reproducer other
than our full container setup using a compress-force=zstd filesystem on
top of another compress-force=zstd filesystem.
Suggested-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit fc97fab0ea ("btrfs: Replace fs_info->qgroup_rescan_worker
workqueue with btrfs_workqueue.") converted qgroup_rescan_work to be
initialized with btrfs_init_work(), but it left behind an unnecessary
memset(). Get rid of the memset().
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This needs to be cleaned up in the future, but for now it belongs to the
extent-io-tree stuff since it uses the internal tree search code.
Needed to export get_state_failrec and set_state_failrec as well since
we're not going to move the actual IO part of the failrec stuff out at
this point.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This utilizes internal stuff to the extent_io_tree, so we need to export
it before we move it.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
extent_io.c/h are huge, encompassing a bunch of different things. The
extent_io_tree code can live on its own, so separate this out.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are moving extent_io_tree into it's on file, so separate out the
extent_state init stuff from extent_io_tree_init().
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We check both extent buffer and extent state leaks in the same function,
separate these two functions out so we can move them around.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The following comment shows up in btrfs_search_slot() with out much
sense:
/*
* setup the path here so we can release it under lock
* contention with the cow code
*/
if (cow) {
/* code touching path->lock[] is far away from here */
}
This comment hasn't been cleaned up after the relevant code has been
removed.
The original code is introduced in commit 65b51a009e
("btrfs_search_slot: reduce lock contention by cowing in two stages"):
+
+ /*
+ * setup the path here so we can release it under lock
+ * contention with the cow code
+ */
+ p->nodes[level] = b;
+ if (!p->skip_locking)
+ p->locks[level] = 1;
+
But in current code, we have different timing for modifying path lock,
so just remove the comment.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Similar to btrfs_search_slot() done in previous patch, make a shortcut
for the level 0 case and allow to reduce indentation for the remaining
case.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_search_slot(), we something like:
if (level != 0) {
/* Do search inside tree nodes*/
} else {
/* Do search inside tree leaves */
goto done;
}
This caused extra indent for tree node search code. Change it to
something like:
if (level == 0) {
/* Do search inside tree leaves */
goto done'
}
/* Do search inside tree nodes */
So we have more space to maneuver our code, this is especially useful as
the tree nodes search code is more complex than the leaves search code.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For INODE_REF we will check:
- Objectid (ino) against previous key
To detect missing INODE_ITEM.
- No overflow/padding in the data payload
Much like DIR_ITEM, but with less members to check.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For the following items, key->objectid is inode number:
- DIR_ITEM
- DIR_INDEX
- XATTR_ITEM
- EXTENT_DATA
- INODE_REF
So in the subvolume tree, such items must have its previous item share the
same objectid, e.g.:
(257 INODE_ITEM 0)
(257 DIR_INDEX xxx)
(257 DIR_ITEM xxx)
(258 INODE_ITEM 0)
(258 INODE_REF 0)
(258 XATTR_ITEM 0)
(258 EXTENT_DATA 0)
But if we have the following sequence, then there is definitely
something wrong, normally some INODE_ITEM is missing, like:
(257 INODE_ITEM 0)
(257 DIR_INDEX xxx)
(257 DIR_ITEM xxx)
(258 XATTR_ITEM 0) <<< objecitd suddenly changed to 258
(258 EXTENT_DATA 0)
So just by checking the previous key for above inode based key types, we
can detect a missing inode item.
For INODE_REF key type, the check will be added along with INODE_REF
checker.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's not used ouside of transaction.c
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A recent patch to btrfs showed that there was at least 1 case where a
nested transaction was committed. Nested transaction in this case means
a code which has a transaction handle calls some function which in turn
obtains a copy of the same transaction handle. In such cases the correct
thing to do is for the lower callee to call btrfs_end_transaction which
contains appropriate checks so as to not commit the transaction which
will result in stale trans handler for the caller.
To catch such cases add an assert in btrfs_commit_transaction ensuring
btrfs_trans_handle::use_count is always 1.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is similar to 942491c9e6 ("xfs: fix AIM7 regression"). Apparently
our current rwsem code doesn't like doing the trylock, then lock for
real scheme. This causes extra contention on the lock and can be
measured eg. by AIM7 benchmark. So change our read/write methods to
just do the trylock for the RWF_NOWAIT case.
Fixes: edf064e7c6 ("btrfs: nowait aio support")
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl3MUkoACgkQxWXV+ddt
WDvAEQ//fEHZ51NbIMwJNltqF4mr6Oao0M5u0wejEgiXzmR9E1IuHUgVK+KDQmSu
wZl/y+RTlQC0TiURyStaVFBreXEqiuB79my9u4iDeNv/4UJQB42qpmYB4EuviDgB
mxb9bFpWTLkO6Oc+vMrGF3BOmVsQKlq2nOua25g8VFtApQ6uiEfbwBOslCcC8kQB
ZpNBl6x74xz/VWNWZnRStBfwYjRitKNDVU6dyIyRuLj8cktqfGBxGtx7/w0wDiZT
kPR1bNtdpy3Ndke6H/0G6plRWi9kENqcN43hvrz54IKh2l+Jd2/as51j4Qq2tJU9
KaAnJzRaSePxc2m0SqtgZTvc2BYSOg7dqaCyHxBB0CUBdTdJdz2TVZ2KM9MiLns4
1haHBLo4l8o8zeYZpW05ac6OXKY4f8qsjWPEGshn4FDbq0TrHQzYxAF3c0X3hPag
SnuvilgYUuYal+n87qinePg/ZmVrrBXPRycpQnn7FxqezJbf/2WUEojUVQnreU05
mdp8mulxQxyFhgEvO7K1uDtlP8bqW69IO9M//6IWzGNKTDK2SRI08ULplghqgyna
8SG0+y9w26r8UIWDhuvPbdfUMSG3kEH8yLFK84AFDMVJJxOnfznE3sC8sGOiP5q9
OUkl8l7bhDkyAdWZY57gGUobebdPfnLxRV9A+LZQ2El1kSOEK18=
=xzXs
-----END PGP SIGNATURE-----
Merge tag 'for-5.4-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fix from David Sterba:
"A fix for an older bug that has started to show up during testing
(because of an updated test for rename exchange).
It's an in-memory corruption caused by local variable leaking out of
the function scope"
* tag 'for-5.4-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
Btrfs: fix log context list corruption after rename exchange operation
During rename exchange we might have successfully log the new name in the
source root's log tree, in which case we leave our log context (allocated
on stack) in the root's list of log contextes. However we might fail to
log the new name in the destination root, in which case we fallback to
a transaction commit later and never sync the log of the source root,
which causes the source root log context to remain in the list of log
contextes. This later causes invalid memory accesses because the context
was allocated on stack and after rename exchange finishes the stack gets
reused and overwritten for other purposes.
The kernel's linked list corruption detector (CONFIG_DEBUG_LIST=y) can
detect this and report something like the following:
[ 691.489929] ------------[ cut here ]------------
[ 691.489947] list_add corruption. prev->next should be next (ffff88819c944530), but was ffff8881c23f7be4. (prev=ffff8881c23f7a38).
[ 691.489967] WARNING: CPU: 2 PID: 28933 at lib/list_debug.c:28 __list_add_valid+0x95/0xe0
(...)
[ 691.489998] CPU: 2 PID: 28933 Comm: fsstress Not tainted 5.4.0-rc6-btrfs-next-62 #1
[ 691.490001] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-0-ga698c8995f-prebuilt.qemu.org 04/01/2014
[ 691.490003] RIP: 0010:__list_add_valid+0x95/0xe0
(...)
[ 691.490007] RSP: 0018:ffff8881f0b3faf8 EFLAGS: 00010282
[ 691.490010] RAX: 0000000000000000 RBX: ffff88819c944530 RCX: 0000000000000000
[ 691.490011] RDX: 0000000000000001 RSI: 0000000000000008 RDI: ffffffffa2c497e0
[ 691.490013] RBP: ffff8881f0b3fe68 R08: ffffed103eaa4115 R09: ffffed103eaa4114
[ 691.490015] R10: ffff88819c944000 R11: ffffed103eaa4115 R12: 7fffffffffffffff
[ 691.490016] R13: ffff8881b4035610 R14: ffff8881e7b84728 R15: 1ffff1103e167f7b
[ 691.490019] FS: 00007f4b25ea2e80(0000) GS:ffff8881f5500000(0000) knlGS:0000000000000000
[ 691.490021] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 691.490022] CR2: 00007fffbb2d4eec CR3: 00000001f2a4a004 CR4: 00000000003606e0
[ 691.490025] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 691.490027] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 691.490029] Call Trace:
[ 691.490058] btrfs_log_inode_parent+0x667/0x2730 [btrfs]
[ 691.490083] ? join_transaction+0x24a/0xce0 [btrfs]
[ 691.490107] ? btrfs_end_log_trans+0x80/0x80 [btrfs]
[ 691.490111] ? dget_parent+0xb8/0x460
[ 691.490116] ? lock_downgrade+0x6b0/0x6b0
[ 691.490121] ? rwlock_bug.part.0+0x90/0x90
[ 691.490127] ? do_raw_spin_unlock+0x142/0x220
[ 691.490151] btrfs_log_dentry_safe+0x65/0x90 [btrfs]
[ 691.490172] btrfs_sync_file+0x9f1/0xc00 [btrfs]
[ 691.490195] ? btrfs_file_write_iter+0x1800/0x1800 [btrfs]
[ 691.490198] ? rcu_read_lock_any_held.part.11+0x20/0x20
[ 691.490204] ? __do_sys_newstat+0x88/0xd0
[ 691.490207] ? cp_new_stat+0x5d0/0x5d0
[ 691.490218] ? do_fsync+0x38/0x60
[ 691.490220] do_fsync+0x38/0x60
[ 691.490224] __x64_sys_fdatasync+0x32/0x40
[ 691.490228] do_syscall_64+0x9f/0x540
[ 691.490233] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[ 691.490235] RIP: 0033:0x7f4b253ad5f0
(...)
[ 691.490239] RSP: 002b:00007fffbb2d6078 EFLAGS: 00000246 ORIG_RAX: 000000000000004b
[ 691.490242] RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007f4b253ad5f0
[ 691.490244] RDX: 00007fffbb2d5fe0 RSI: 00007fffbb2d5fe0 RDI: 0000000000000003
[ 691.490245] RBP: 000000000000000d R08: 0000000000000001 R09: 00007fffbb2d608c
[ 691.490247] R10: 00000000000002e8 R11: 0000000000000246 R12: 00000000000001f4
[ 691.490248] R13: 0000000051eb851f R14: 00007fffbb2d6120 R15: 00005635a498bda0
This started happening recently when running some test cases from fstests
like btrfs/004 for example, because support for rename exchange was added
last week to fsstress from fstests.
So fix this by deleting the log context for the source root from the list
if we have logged the new name in the source root.
Reported-by: Su Yue <Damenly_Su@gmx.com>
Fixes: d4682ba03e ("Btrfs: sync log after logging new name")
CC: stable@vger.kernel.org # 4.19+
Tested-by: Su Yue <Damenly_Su@gmx.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl3GwvEACgkQxWXV+ddt
WDvsfQ//UQ/TND1roMW3EmN+PLTRTUQS75Hb737r5Q66j0j94gFnBxB03R+tU8lP
bH5XVpateb1wDmmdscqVQ1WM9O82bQdDNiYeLDr86+kzpLgy61rZHswZfNlDtl5M
wDwyaxsrd7HndDeUZnIuaakYI9MXz9WIaNXkt0o8hSHctt0N18y23DSBFTVSh/4q
T3cn4odkoBKtQ4mIn2OSmQvkl69nWRBVpjPJZIvsNszKjOo9aZTuGHrOWUV5RPiE
Ho9UBkr+IjEDo8OH88vXAsHeYFIoYhEeUltjLHyF6Agwk1/Ajwp5sxXSubbfHUMQ
l1YdmrTZf+l1Dxdj0sCdyK1npcgGI5IuZmIICpNUEAny9AbTtpSE3GNwtnIHAEAr
cpki+1Z3lfaVSwNMYUz9Esbsb72C+f08WJHGHBMaOhjrBIwQUeWeYzTx6N7uDwNg
GjaDRxjqFV2o7373isQaz7WOTatUMNtL1xvhkeceONI9NBXQRjW5rq5zECmr1ix7
lSTKDzn7yAd6eGBW0T6iYdRl4Bta/zxPiDEF5KDNPugvv23yx17LAOdS4qAiHzbx
oglra/kz9D4xmKVqH7hpFaaHrzL38G4mz6aMdwBu0M7dkn9AwsXiXWSDb0n7jnK0
o96gkUBZjUSFBseUFD2s34MikFtrDynEJzPq96JHuWLguaByMcc=
=CZxY
-----END PGP SIGNATURE-----
Merge tag 'for-5.4-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A few regressions and fixes for stable.
Regressions:
- fix a race leading to metadata space leak after task received a
signal
- un-deprecate 2 ioctls, marked as deprecated by mistake
Fixes:
- fix limit check for number of devices during chunk allocation
- fix a race due to double evaluation of i_size_read inside max()
macro, can cause a crash
- remove wrong device id check in tree-checker"
* tag 'for-5.4-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: un-deprecate ioctls START_SYNC and WAIT_SYNC
btrfs: save i_size to avoid double evaluation of i_size_read in compress_file_range
Btrfs: fix race leading to metadata space leak after task received signal
btrfs: tree-checker: Fix wrong check on max devid
btrfs: Consider system chunk array size for new SYSTEM chunks
The two ioctls START_SYNC and WAIT_SYNC were mistakenly marked as
deprecated and scheduled for removal but we actualy do use them for
'btrfs subvolume delete -C/-c'. The deprecated thing in ebc87351e5
should have been just the async flag for subvolume creation.
The deprecation has been added in this development cycle, remove it
until it's time.
Fixes: ebc87351e5 ("btrfs: Deprecate BTRFS_SUBVOL_CREATE_ASYNC flag")
Signed-off-by: David Sterba <dsterba@suse.com>
We hit a regression while rolling out 5.2 internally where we were
hitting the following panic
kernel BUG at mm/page-writeback.c:2659!
RIP: 0010:clear_page_dirty_for_io+0xe6/0x1f0
Call Trace:
__process_pages_contig+0x25a/0x350
? extent_clear_unlock_delalloc+0x43/0x70
submit_compressed_extents+0x359/0x4d0
normal_work_helper+0x15a/0x330
process_one_work+0x1f5/0x3f0
worker_thread+0x2d/0x3d0
? rescuer_thread+0x340/0x340
kthread+0x111/0x130
? kthread_create_on_node+0x60/0x60
ret_from_fork+0x1f/0x30
This is happening because the page is not locked when doing
clear_page_dirty_for_io. Looking at the core dump it was because our
async_extent had a ram_size of 24576 but our async_chunk range only
spanned 20480, so we had a whole extra page in our ram_size for our
async_extent.
This happened because we try not to compress pages outside of our
i_size, however a cleanup patch changed us to do
actual_end = min_t(u64, i_size_read(inode), end + 1);
which is problematic because i_size_read() can evaluate to different
values in between checking and assigning. So either an expanding
truncate or a fallocate could increase our i_size while we're doing
writeout and actual_end would end up being past the range we have
locked.
I confirmed this was what was happening by installing a debug kernel
that had
actual_end = min_t(u64, i_size_read(inode), end + 1);
if (actual_end > end + 1) {
printk(KERN_ERR "KABOOM\n");
actual_end = end + 1;
}
and installing it onto 500 boxes of the tier that had been seeing the
problem regularly. Last night I got my debug message and no panic,
confirming what I expected.
[ dsterba: the assembly confirms a tiny race window:
mov 0x20(%rsp),%rax
cmp %rax,0x48(%r15) # read
movl $0x0,0x18(%rsp)
mov %rax,%r12
mov %r14,%rax
cmovbe 0x48(%r15),%r12 # eval
Where r15 is inode and 0x48 is offset of i_size.
The original fix was to revert 62b3762271 that would do an
intermediate assignment and this would also avoid the doulble
evaluation but is not future-proof, should the compiler merge the
stores and call i_size_read anyway.
There's a patch adding READ_ONCE to i_size_read but that's not being
applied at the moment and we need to fix the bug. Instead, emulate
READ_ONCE by two barrier()s that's what effectively happens. The
assembly confirms single evaluation:
mov 0x48(%rbp),%rax # read once
mov 0x20(%rsp),%rcx
mov $0x20,%edx
cmp %rax,%rcx
cmovbe %rcx,%rax
mov %rax,(%rsp)
mov %rax,%rcx
mov %r14,%rax
Where 0x48(%rbp) is inode->i_size stored to %eax.
]
Fixes: 62b3762271 ("btrfs: Remove isize local variable in compress_file_range")
CC: stable@vger.kernel.org # v5.1+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ changelog updated ]
Signed-off-by: David Sterba <dsterba@suse.com>
When a task that is allocating metadata needs to wait for the async
reclaim job to process its ticket and gets a signal (because it was killed
for example) before doing the wait, the task ends up erroring out but
with space reserved for its ticket, which never gets released, resulting
in a metadata space leak (more specifically a leak in the bytes_may_use
counter of the metadata space_info object).
Here's the sequence of steps leading to the space leak:
1) A task tries to create a file for example, so it ends up trying to
start a transaction at btrfs_create();
2) The filesystem is currently in a state where there is not enough
metadata free space to satisfy the transaction's needs. So at
space-info.c:__reserve_metadata_bytes() we create a ticket and
add it to the list of tickets of the space info object. Also,
because the metadata async reclaim job is not running, we queue
a job ro run metadata reclaim;
3) In the meanwhile the task receives a signal (like SIGTERM from
a kill command for example);
4) After queing the async reclaim job, at __reserve_metadata_bytes(),
we unlock the metadata space info and call handle_reserve_ticket();
5) That last function calls wait_reserve_ticket(), which acquires the
lock from the metadata space info. Then in the first iteration of
its while loop, it calls prepare_to_wait_event(), which returns
-ERESTARTSYS because the task has a pending signal. As a result,
we set the error field of the ticket to -EINTR and exit the while
loop without deleting the ticket from the list of tickets (in the
space info object). After exiting the loop we unlock the space info;
6) The async reclaim job is able to release enough metadata, acquires
the metadata space info's lock and then reserves space for the ticket,
since the ticket is still in the list of (non-priority) tickets. The
space reservation happens at btrfs_try_granting_tickets(), called from
maybe_fail_all_tickets(). This increments the bytes_may_use counter
from the metadata space info object, sets the ticket's bytes field to
zero (meaning success, that space was reserved) and removes it from
the list of tickets;
7) wait_reserve_ticket() returns, with the error field of the ticket
set to -EINTR. Then handle_reserve_ticket() just propagates that error
to the caller. Because an error was returned, the caller does not
release the reserved space, since the expectation is that any error
means no space was reserved.
Fix this by removing the ticket from the list, while holding the space
info lock, at wait_reserve_ticket() when prepare_to_wait_event() returns
an error.
Also add some comments and an assertion to guarantee we never end up with
a ticket that has an error set and a bytes counter field set to zero, to
more easily detect regressions in the future.
This issue could be triggered sporadically by some test cases from fstests
such as generic/269 for example, which tries to fill a filesystem and then
kills fsstress processes running in the background.
When this issue happens, we get a warning in syslog/dmesg when unmounting
the filesystem, like the following:
------------[ cut here ]------------
WARNING: CPU: 0 PID: 13240 at fs/btrfs/block-group.c:3186 btrfs_free_block_groups+0x314/0x470 [btrfs]
(...)
CPU: 0 PID: 13240 Comm: umount Tainted: G W L 5.3.0-rc8-btrfs-next-48+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-0-ga698c8995f-prebuilt.qemu.org 04/01/2014
RIP: 0010:btrfs_free_block_groups+0x314/0x470 [btrfs]
(...)
RSP: 0018:ffff9910c14cfdb8 EFLAGS: 00010286
RAX: 0000000000000024 RBX: ffff89cd8a4d55f0 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffff89cdf6a178a8 RDI: ffff89cdf6a178a8
RBP: ffff9910c14cfde8 R08: 0000000000000000 R09: 0000000000000001
R10: ffff89cd4d618040 R11: 0000000000000000 R12: ffff89cd8a4d5508
R13: ffff89cde7c4a600 R14: dead000000000122 R15: dead000000000100
FS: 00007f42754432c0(0000) GS:ffff89cdf6a00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fd25a47f730 CR3: 000000021f8d6006 CR4: 00000000003606f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
close_ctree+0x1ad/0x390 [btrfs]
generic_shutdown_super+0x6c/0x110
kill_anon_super+0xe/0x30
btrfs_kill_super+0x12/0xa0 [btrfs]
deactivate_locked_super+0x3a/0x70
cleanup_mnt+0xb4/0x160
task_work_run+0x7e/0xc0
exit_to_usermode_loop+0xfa/0x100
do_syscall_64+0x1cb/0x220
entry_SYSCALL_64_after_hwframe+0x49/0xbe
RIP: 0033:0x7f4274d2cb37
(...)
RSP: 002b:00007ffcff701d38 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
RAX: 0000000000000000 RBX: 0000557ebde2f060 RCX: 00007f4274d2cb37
RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000557ebde2f240
RBP: 0000557ebde2f240 R08: 0000557ebde2f270 R09: 0000000000000015
R10: 00000000000006b4 R11: 0000000000000246 R12: 00007f427522ee64
R13: 0000000000000000 R14: 0000000000000000 R15: 00007ffcff701fc0
irq event stamp: 0
hardirqs last enabled at (0): [<0000000000000000>] 0x0
hardirqs last disabled at (0): [<ffffffffb12b561e>] copy_process+0x75e/0x1fd0
softirqs last enabled at (0): [<ffffffffb12b561e>] copy_process+0x75e/0x1fd0
softirqs last disabled at (0): [<0000000000000000>] 0x0
---[ end trace bcf4b235461b26f6 ]---
BTRFS info (device sdb): space_info 4 has 19116032 free, is full
BTRFS info (device sdb): space_info total=33554432, used=14176256, pinned=0, reserved=0, may_use=196608, readonly=65536
BTRFS info (device sdb): global_block_rsv: size 0 reserved 0
BTRFS info (device sdb): trans_block_rsv: size 0 reserved 0
BTRFS info (device sdb): chunk_block_rsv: size 0 reserved 0
BTRFS info (device sdb): delayed_block_rsv: size 0 reserved 0
BTRFS info (device sdb): delayed_refs_rsv: size 0 reserved 0
Fixes: 374bf9c5cd ("btrfs: unify error handling for ticket flushing")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
The following script will cause false alert on devid check.
#!/bin/bash
dev1=/dev/test/test
dev2=/dev/test/scratch1
mnt=/mnt/btrfs
umount $dev1 &> /dev/null
umount $dev2 &> /dev/null
umount $mnt &> /dev/null
mkfs.btrfs -f $dev1
mount $dev1 $mnt
_fail()
{
echo "!!! FAILED !!!"
exit 1
}
for ((i = 0; i < 4096; i++)); do
btrfs dev add -f $dev2 $mnt || _fail
btrfs dev del $dev1 $mnt || _fail
dev_tmp=$dev1
dev1=$dev2
dev2=$dev_tmp
done
[CAUSE]
Tree-checker uses BTRFS_MAX_DEVS() and BTRFS_MAX_DEVS_SYS_CHUNK() as
upper limit for devid. But we can have devid holes just like above
script.
So the check for devid is incorrect and could cause false alert.
[FIX]
Just remove the whole devid check. We don't have any hard requirement
for devid assignment.
Furthermore, even devid could get corrupted by a bitflip, we still have
dev extents verification at mount time, so corrupted data won't sneak
in.
This fixes fstests btrfs/194.
Reported-by: Anand Jain <anand.jain@oracle.com>
Fixes: ab4ba2e133 ("btrfs: tree-checker: Verify dev item")
CC: stable@vger.kernel.org # 5.2+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For SYSTEM chunks, despite the regular chunk item size limit, there is
another limit due to system chunk array size.
The extra limit was removed in a refactoring, so add it back.
Fixes: e3ecdb3fde ("btrfs: factor out devs_max setting in __btrfs_alloc_chunk")
CC: stable@vger.kernel.org # 5.3+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl2vBPgACgkQxWXV+ddt
WDvaGQ/+JbV05ML7QjufNFKjzojNPg8dOwvLqF58askMEAqzyqOrzu1YsIOjchqv
eZPP+wxh6j6i8LFnbaMYRhSVMlgpK9XOR3tNStp73QlSox6/6VKu7XR4wFXAoip3
l4XI8UqO5XqDG55UTtjKyo2VNq8vgq1gRUWD6hPtfzDP6WYj4JZuXOd+dT6PbP32
VHd91RoB8Z8qmypLF9Sju6IBWNhKl91TjlRqVdfLywaK8azqaxE1UttPf5DVbE6+
MlTuXhuxkNc4ddzj//oJ1s3ZP/nXtFmIZ75+Sd6P5DfqRNeIfjkKqXvffsjqoYVI
1Wv9sDiezxRB1RZjfInhtqvdvsqcsrXrM7x6BRVqI7IZDUaH5em8IoozQT62ze/4
MJBrRIbVodx2I7EVDMNGkx2TaIDAfnW4Z3UC+YSHLoy6jht1+SA5KLQDR1G/4NeR
dWht5wOXwhp8P3DoaczTUpk0DLtAtygj04fH8CG277EILLCpuWwW8iRkPttkrIM2
HrtRKrKFJNyEpq9vHSFVvpQJkzgzqBFs1UnqnEuYh6qNgWCrS4PJDu9geQ8aPGr2
pA5aEqg5b+jjWzIYDP93PF0u7kF4mFVAozn6xMf95FKmM1OupYYQg5BRe7n/DfDu
yh3Ms0Mmd9+snpNJ9lDr40cobHC5CDvfvO2SRERyBeXxARainN0=
=Ft+G
-----END PGP SIGNATURE-----
Merge tag 'for-5.4-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- fixes of error handling cleanup of metadata accounting with qgroups
enabled
- fix swapped values for qgroup tracepoints
- fix race when handling full sync flag
- don't start unused worker thread, functionality removed already
* tag 'for-5.4-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
Btrfs: check for the full sync flag while holding the inode lock during fsync
Btrfs: fix qgroup double free after failure to reserve metadata for delalloc
btrfs: tracepoints: Fix bad entry members of qgroup events
btrfs: tracepoints: Fix wrong parameter order for qgroup events
btrfs: qgroup: Always free PREALLOC META reserve in btrfs_delalloc_release_extents()
btrfs: don't needlessly create extent-refs kernel thread
btrfs: block-group: Fix a memory leak due to missing btrfs_put_block_group()
Btrfs: add missing extents release on file extent cluster relocation error
We were checking for the full fsync flag in the inode before locking the
inode, which is racy, since at that that time it might not be set but
after we acquire the inode lock some other task set it. One case where
this can happen is on a system low on memory and some concurrent task
failed to allocate an extent map and therefore set the full sync flag on
the inode, to force the next fsync to work in full mode.
A consequence of missing the full fsync flag set is hitting the problems
fixed by commit 0c713cbab6 ("Btrfs: fix race between ranged fsync and
writeback of adjacent ranges"), BUG_ON() when dropping extents from a log
tree, hitting assertion failures at tree-log.c:copy_items() or all sorts
of weird inconsistencies after replaying a log due to file extents items
representing ranges that overlap.
So just move the check such that it's done after locking the inode and
before starting writeback again.
Fixes: 0c713cbab6 ("Btrfs: fix race between ranged fsync and writeback of adjacent ranges")
CC: stable@vger.kernel.org # 5.2+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we fail to reserve metadata for delalloc operations we end up releasing
the previously reserved qgroup amount twice, once explicitly under the
'out_qgroup' label by calling btrfs_qgroup_free_meta_prealloc() and once
again, under label 'out_fail', by calling btrfs_inode_rsv_release() with a
value of 'true' for its 'qgroup_free' argument, which results in
btrfs_qgroup_free_meta_prealloc() being called again, so we end up having
a double free.
Also if we fail to reserve the necessary qgroup amount, we jump to the
label 'out_fail', which calls btrfs_inode_rsv_release() and that in turns
calls btrfs_qgroup_free_meta_prealloc(), even though we weren't able to
reserve any qgroup amount. So we freed some amount we never reserved.
So fix this by removing the call to btrfs_inode_rsv_release() in the
failure path, since it's not necessary at all as we haven't changed the
inode's block reserve in any way at this point.
Fixes: c8eaeac7b7 ("btrfs: reserve delalloc metadata differently")
CC: stable@vger.kernel.org # 5.2+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
For btrfs:qgroup_meta_reserve event, the trace event can output garbage:
qgroup_meta_reserve: 9c7f6acc-b342-4037-bc47-7f6e4d2232d7: refroot=5(FS_TREE) type=DATA diff=2
The diff should always be alinged to sector size (4k), so there is
definitely something wrong.
[CAUSE]
For the wrong @diff, it's caused by wrong parameter order.
The correct parameters are:
struct btrfs_root, s64 diff, int type.
However the parameters used are:
struct btrfs_root, int type, s64 diff.
Fixes: 4ee0d8832c ("btrfs: qgroup: Update trace events for metadata reservation")
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[Background]
Btrfs qgroup uses two types of reserved space for METADATA space,
PERTRANS and PREALLOC.
PERTRANS is metadata space reserved for each transaction started by
btrfs_start_transaction().
While PREALLOC is for delalloc, where we reserve space before joining a
transaction, and finally it will be converted to PERTRANS after the
writeback is done.
[Inconsistency]
However there is inconsistency in how we handle PREALLOC metadata space.
The most obvious one is:
In btrfs_buffered_write():
btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes, true);
We always free qgroup PREALLOC meta space.
While in btrfs_truncate_block():
btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
We only free qgroup PREALLOC meta space when something went wrong.
[The Correct Behavior]
The correct behavior should be the one in btrfs_buffered_write(), we
should always free PREALLOC metadata space.
The reason is, the btrfs_delalloc_* mechanism works by:
- Reserve metadata first, even it's not necessary
In btrfs_delalloc_reserve_metadata()
- Free the unused metadata space
Normally in:
btrfs_delalloc_release_extents()
|- btrfs_inode_rsv_release()
Here we do calculation on whether we should release or not.
E.g. for 64K buffered write, the metadata rsv works like:
/* The first page */
reserve_meta: num_bytes=calc_inode_reservations()
free_meta: num_bytes=0
total: num_bytes=calc_inode_reservations()
/* The first page caused one outstanding extent, thus needs metadata
rsv */
/* The 2nd page */
reserve_meta: num_bytes=calc_inode_reservations()
free_meta: num_bytes=calc_inode_reservations()
total: not changed
/* The 2nd page doesn't cause new outstanding extent, needs no new meta
rsv, so we free what we have reserved */
/* The 3rd~16th pages */
reserve_meta: num_bytes=calc_inode_reservations()
free_meta: num_bytes=calc_inode_reservations()
total: not changed (still space for one outstanding extent)
This means, if btrfs_delalloc_release_extents() determines to free some
space, then those space should be freed NOW.
So for qgroup, we should call btrfs_qgroup_free_meta_prealloc() other
than btrfs_qgroup_convert_reserved_meta().
The good news is:
- The callers are not that hot
The hottest caller is in btrfs_buffered_write(), which is already
fixed by commit 336a8bb8e3 ("btrfs: Fix wrong
btrfs_delalloc_release_extents parameter"). Thus it's not that
easy to cause false EDQUOT.
- The trans commit in advance for qgroup would hide the bug
Since commit f5fef45936 ("btrfs: qgroup: Make qgroup async transaction
commit more aggressive"), when btrfs qgroup metadata free space is slow,
it will try to commit transaction and free the wrongly converted
PERTRANS space, so it's not that easy to hit such bug.
[FIX]
So to fix the problem, remove the @qgroup_free parameter for
btrfs_delalloc_release_extents(), and always pass true to
btrfs_inode_rsv_release().
Reported-by: Filipe Manana <fdmanana@suse.com>
Fixes: 43b18595d6 ("btrfs: qgroup: Use separate meta reservation type for delalloc")
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The patch 32b593bfcb ("Btrfs: remove no longer used function to run
delayed refs asynchronously") removed the async delayed refs but the
thread has been created, without any use. Remove it to avoid resource
consumption.
Fixes: 32b593bfcb ("Btrfs: remove no longer used function to run delayed refs asynchronously")
CC: stable@vger.kernel.org # 5.2+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_read_block_groups(), if we have an invalid block group which
has mixed type (DATA|METADATA) while the fs doesn't have MIXED_GROUPS
feature, we error out without freeing the block group cache.
This patch will add the missing btrfs_put_block_group() to prevent
memory leak.
Note for stable backports: the file to patch in versions <= 5.3 is
fs/btrfs/extent-tree.c
Fixes: 49303381f1 ("Btrfs: bail out if block group has different mixed flag")
CC: stable@vger.kernel.org # 4.9+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>