do_exit() clears ->it_##clock##_expires, but nothing prevents
another cpu to attach the timer to exiting process after that.
After exit_notify() does 'write_unlock_irq(&tasklist_lock)' and
before do_exit() calls 'schedule() local timer interrupt can find
tsk->exit_state != 0. If that state was EXIT_DEAD (or another cpu
does sys_wait4) interrupted task has ->signal == NULL.
At this moment exiting task has no pending cpu timers, they were cleaned
up in __exit_signal()->posix_cpu_timers_exit{,_group}(), so we can just
return from irq.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
1. cleanup_timers() sets timer->task = NULL under tasklist + ->sighand locks.
That means that this code in posix_cpu_timer_del() and posix_cpu_timer_set()
lock_timer(timer);
if (timer->task == NULL)
return;
read_lock(tasklist);
put_task_struct(timer->task)
is racy. With this patch timer->task modified and accounted only under
timer->it_lock. Sadly, this means that dead task_struct won't be freed
until timer deleted or armed.
2. run_posix_cpu_timers() collects expired timers into local list under
tasklist + ->sighand again. That means that posix_cpu_timer_del()
should check timer->it.cpu.firing under these locks too.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Bursty timers aren't good for anybody, very much including latency for
other programs when we trigger lots of timers in interrupt context. So
set a random limit, after which we'll handle the rest on the next timer
tick.
Noted by Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Oleg Nesterov reported an SMP deadlock. If there is a running timer
tracking a different process's CPU time clock when the process owning
the timer exits, we deadlock on tasklist_lock in posix_cpu_timer_del via
exit_itimers.
That code was using tasklist_lock to check for a race with __exit_signal
being called on the timer-target task and clearing its ->signal.
However, there is actually no such race. __exit_signal will have called
posix_cpu_timers_exit and posix_cpu_timers_exit_group before it does
that. Those will clear those k_itimer's association with the dying
task, so posix_cpu_timer_del will return early and never reach the code
in question.
In addition, posix_cpu_timer_del called from exit_itimers during execve
or directly from timer_delete in the process owning the timer can race
with an exiting timer-target task to cause a double put on timer-target
task struct. Make sure we always access cpu_timers lists with sighand
lock held.
Signed-off-by: Roland McGrath <roland@redhat.com>
Signed-off-by: Chris Wright <chrisw@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Make sure we release the task struct properly when releasing pending
timers.
release_task() does write_lock_irq(&tasklist_lock), so it can't race
with run_posix_cpu_timers() on any cpu.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!