Since devices can change name and other wierdness, don't hold onto
a copy of device name, instead use pointer to output device.
Fix a couple of leaks in error handling path as well.
Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org>
Signed-off-by: Robert Olsson <robert.olsson@its.uu.se>
Signed-off-by: David S. Miller <davem@davemloft.net>
The existing htonl() macro is smart enough to do the same code as
using __constant_htonl() and it looks cleaner.
Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org>
Signed-off-by: Robert Olsson <robert.olsson@its.uu.se>
Signed-off-by: David S. Miller <davem@davemloft.net>
Can use random32() now.
Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org>
Signed-off-by: Robert Olsson <robert.olsson@its.uu.se>
Signed-off-by: David S. Miller <davem@davemloft.net>
Remove private debug macro and replace with standard version
Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org>
Signed-off-by: Robert Olsson <robert.olsson@its.uu.se>
Signed-off-by: David S. Miller <davem@davemloft.net>
sk_backlog is a critical field of struct sock. (known famous words)
It is (ab)used in hot paths, in particular in release_sock(), tcp_recvmsg(),
tcp_v4_rcv(), sk_receive_skb().
It really makes sense to place it next to sk_lock, because sk_backlog is only
used after sk_lock locked (and thus memory cache line in L1 cache). This
should reduce cache misses and sk_lock acquisition time.
(In theory, we could only move the head pointer near sk_lock, and leaving tail
far away, because 'tail' is normally not so hot, but keep it simple :) )
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Undoing ssthresh is disabled in fastretrans_alert whenever
FLAG_ECE is set by clearing prior_ssthresh. The clearing does
not protect FRTO because FRTO operates before fastretrans_alert.
Moving the clearing of prior_ssthresh earlier seems to be a
suboptimal solution to the FRTO case because then FLAG_ECE will
cause a second ssthresh reduction in try_to_open (the first
occurred when FRTO was entered). So instead, FRTO falls back
immediately to the rate halving response, which switches TCP to
CA_CWR state preventing the latter reduction of ssthresh.
If the first ECE arrived before the ACK after which FRTO is able
to decide RTO as spurious, prior_ssthresh is already cleared.
Thus no undoing for ssthresh occurs. Besides, FLAG_ECE should be
set also in the following ACKs resulting in rate halving response
that sees TCP is already in CA_CWR, which again prevents an extra
ssthresh reduction on that round-trip.
If the first ECE arrived before RTO, ssthresh has already been
adapted and prior_ssthresh remains cleared on entry because TCP
is in CA_CWR (the same applies also to a case where FRTO is
entered more than once and ECE comes in the middle).
High_seq must not be touched after tcp_enter_cwr because CWR
round-trip calculation depends on it.
I believe that after this patch, FRTO should be ECN-safe and
even able to take advantage of synergy benefits.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
A local variable for icsk was created but this change was
missing. Spotted by Jarek Poplawski.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
In addition, fixed minor things in tcp_frto sysctl.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
New sysctl tcp_frto_response is added to select amongst these
responses:
- Rate halving based; reuses CA_CWR state (default)
- Very conservative; used to be the only one available (=1)
- Undo cwr; undoes ssthresh and cwnd reductions (=2)
The response with rate halving requires a new parameter to
tcp_enter_cwr because FRTO has already reduced ssthresh and
doing a second reduction there has to be prevented. In addition,
to keep things nice on 80 cols screen, a local variable was
added.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
The reordering detection must work also when FRTO has not been
used at all which was the original intention of mine, just the
expression of the idea was flawed.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
I noticed in oprofile study a cache miss in tcp_rcv_established() to read
copied_seq.
ffffffff80400a80 <tcp_rcv_established>: /* tcp_rcv_established total: 4034293
2.0400 */
55493 0.0281 :ffffffff80400bc9: mov 0x4c8(%r12),%eax copied_seq
543103 0.2746 :ffffffff80400bd1: cmp 0x3e0(%r12),%eax rcv_nxt
if (tp->copied_seq == tp->rcv_nxt &&
len - tcp_header_len <= tp->ucopy.len) {
In this function, the cache line 0x4c0 -> 0x500 is used only for this
reading 'copied_seq' field.
rcv_wup and copied_seq should be next to rcv_nxt field, to lower number of
active cache lines in hot paths. (tcp_rcv_established(), tcp_poll(), ...)
As you suggested, I changed tcp_create_openreq_child() so that these fields
are changed together, to avoid adding a new store buffer stall.
Patch is 64bit friendly (no new hole because of alignment constraints)
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In general, TCP code uses "sk" for struct sock pointer.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
YeAH-TCP is a sender-side high-speed enabled TCP congestion control
algorithm, which uses a mixed loss/delay approach to compute the
congestion window. It's design goals target high efficiency, internal,
RTT and Reno fairness, resilience to link loss while keeping network
elements load as low as possible.
For further details look here:
http://wil.cs.caltech.edu/pfldnet2007/paper/YeAH_TCP.pdf
Signed-off-by: Angelo P. Castellani <angelo.castellani@gmail.con>
Signed-off-by: David S. Miller <davem@davemloft.net>
The description is overly verbose to avoid ambiguity between
"SACK enabled" and "SACK enhanced FRTO"
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Implements the SACK-enhanced FRTO given in RFC4138 using the
variant given in Appendix B.
RFC4138, Appendix B:
"This means that in order to declare timeout spurious, the TCP
sender must receive an acknowledgment for non-retransmitted
segment between SND.UNA and RecoveryPoint in algorithm step 3.
RecoveryPoint is defined in conservative SACK-recovery
algorithm [RFC3517]"
The basic version of the FRTO algorithm can still be used also
when SACK is enabled. To enabled SACK-enhanced version, tcp_frto
sysctl is set to 2.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
To be honest, I'm not too sure how the reord stuff works in the
first place but this seems necessary.
When FRTO has been active, the one and only retransmission could
be unnecessary but the state and sending order might not be what
the sacktag code expects it to be (to work correctly).
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
TCP without FRTO would be in Loss state with small cwnd. FRTO,
however, leaves cwnd (typically) to a larger value which causes
ssthresh to become too large in case RTO is triggered again
compared to what conventional recovery would do. Because
consecutive RTOs result in only a single ssthresh reduction,
RTO+cumulative ACK+RTO pattern is required to trigger this
event.
A large comment is included for congestion control module writers
trying to figure out what CA_EVENT_FRTO handler should do because
there exists a remote possibility of incompatibility between
FRTO and module defined ssthresh functions.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Previously RETRANS bits were cleared on the entry to FRTO. We
postpone that into tcp_enter_frto_loss, which is really the
place were the clearing should be done anyway. This allows
simplification of the logic from a clearing loop to the head skb
clearing only.
Besides, the other changes made in the previous patches to
tcp_use_frto made it impossible for the non-SACKed FRTO to be
entered if other than the head has been rexmitted.
With SACK-enhanced FRTO (and Appendix B), however, there can be
a number retransmissions in flight when RTO expires (same thing
could happen before this patchset also with non-SACK FRTO). To
not introduce any jumpiness into the packet counting during FRTO,
instead of clearing RETRANS bits from skbs during entry, do it
later on.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
This interpretation comes from RFC4138:
"If the sender implements some loss recovery algorithm other
than Reno or NewReno [FHG04], the F-RTO algorithm SHOULD
NOT be entered when earlier fast recovery is underway."
I think the RFC means to say (especially in the light of
Appendix B) that ...recovery is underway (not just fast recovery)
or was underway when it was interrupted by an earlier (F-)RTO
that hasn't yet been resolved (snd_una has not advanced enough).
Thus, my interpretation is that whenever TCP has ever
retransmitted other than head, basic version cannot be used
because then the order assumptions which are used as FRTO basis
do not hold.
NewReno has only the head segment retransmitted at a time.
Therefore, walk up to the segment that has not been SACKed, if
that segment is not retransmitted nor anything before it, we know
for sure, that nothing after the non-SACKed segment should be
either. This assumption is valid because TCPCB_EVER_RETRANS does
not leave holes but each non-SACKed segment is rexmitted
in-order.
Check for retrans_out > 1 avoids more expensive walk through the
skb list, as we can know the result beforehand: F-RTO will not be
allowed.
SACKed skb can turn into non-SACked only in the extremely rare
case of SACK reneging, in this case we might fail to detect
retransmissions if there were them for any other than head. To
get rid of that feature, whole rexmit queue would have to be
walked (always) or FRTO should be prevented when SACK reneging
happens. Of course RTO should still trigger after reneging which
makes this issue even less likely to show up. And as long as the
response is as conservative as it's now, nothing bad happens even
then.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
FRTO controls cwnd when it still processes the ACK input or it
has just reverted back to conventional RTO recovery; the normal
rules apply when FRTO has reverted to standard congestion
control.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Because TCP is not in Loss state during FRTO recovery, fast
recovery could be triggered by accident. Non-SACK FRTO is more
robust than not yet included SACK-enhanced version (that can
receiver high number of duplicate ACKs with SACK blocks during
FRTO), at least with unidirectional transfers, but under
extraordinary patterns fast recovery can be incorrectly
triggered, e.g., Data loss+ACK losses => cumulative ACK with
enough SACK blocks to meet sacked_out >= dupthresh condition).
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since purpose is to reduce CWND, we prevent immediate growth. This
is not a major issue nor is "the correct way" specified anywhere.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
The FRTO detection did not care how ACK pattern affects to cwnd
calculation of the conventional recovery. This caused incorrect
setting of cwnd when the fallback becames necessary. The
knowledge tcp_process_frto() has about the incoming ACK is now
passed on to tcp_enter_frto_loss() in allowed_segments parameter
that gives the number of segments that must be added to
packets-in-flight while calculating the new cwnd.
Instead of snd_una we use FLAG_DATA_ACKED in duplicate ACK
detection because RFC4138 states (in Section 2.2):
If the first acknowledgment after the RTO retransmission
does not acknowledge all of the data that was retransmitted
in step 1, the TCP sender reverts to the conventional RTO
recovery. Otherwise, a malicious receiver acknowledging
partial segments could cause the sender to declare the
timeout spurious in a case where data was lost.
If the next ACK after RTO is duplicate, we do not retransmit
anything, which is equal to what conservative conventional
recovery does in such case.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Handles RFC4138 shortcoming (in step 2); it should also have case
c) which ignores ACKs that are not duplicates nor advance window
(opposite dir data, winupdate).
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Retransmission counter assumptions are to be changed. Forcing
reason to do this exist: Using sysctl in check would be racy
as soon as FRTO starts to ignore some ACKs (doing that in the
following patches). Userspace may disable it at any moment
giving nice oops if timing is right. frto_counter would be
inaccessible from userspace, but with SACK enhanced FRTO
retrans_out can include other than head, and possibly leaving
it non-zero after spurious RTO, boom again.
Luckily, solution seems rather simple: never go directly to Open
state but use Disorder instead. This does not really change much,
since TCP could anyway change its state to Disorder during FRTO
using path tcp_fastretrans_alert -> tcp_try_to_open (e.g., when
a SACK block makes ACK dubious). Besides, Disorder seems to be
the state where TCP should be if not recovering (in Recovery or
Loss state) while having some retransmissions in-flight (see
tcp_try_to_open), which is exactly what happens with FRTO.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
In case a latency spike causes more than one RTO, the later should not
cause the already reduced ssthresh to propagate into the prior_ssthresh
since FRTO declares all such RTOs spurious at once or none of them. In
treating of ssthresh, we mimic what tcp_enter_loss() does.
The previous state (in frto_counter) must be available until we have
checked it in tcp_enter_frto(), and also ACK information flag in
process_frto().
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Moved comments out from the body of process_frto() to the head
(preferred way; see Documentation/CodingStyle). Bonus: it's much
easier to read in this compacted form.
FRTO algorithm and implementation is described in greater detail.
For interested reader, more information is available in RFC4138.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
FRTO spurious RTO detection algorithm (RFC4138) does not include response
to a detected spurious RTO but can use different response algorithms.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
FRTO was slightly too brave... Should only clear
TCPCB_SACKED_RETRANS bit.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
* master.kernel.org:/pub/scm/linux/kernel/git/davem/sparc-2.6:
[PARPORT] SUNBPP: Fix OOPS when debugging is enabled.
[SPARC] openprom: Switch to ref counting PCI API
The packet driver is assuming (reasonably) that the (undocumented)
request.errors is an errno. But it is in fact some mysterious bitfield. When
things go wrong we return weird positive numbers to the VFS as pointers and it
goes oops.
Thanks to William Heimbigner for reporting and diagnosis.
(It doesn't oops, but this driver still doesn't work for William)
Cc: William Heimbigner <icxcnika@mar.tar.cc>
Cc: Peter Osterlund <petero2@telia.com>
Cc: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reply to NETLINK_FIB_LOOKUP messages were misrouted back to kernel,
which resulted in infinite recursion and stack overflow.
The bug is present in all kernel versions since the feature appeared.
The patch also makes some minimal cleanup:
1. Return something consistent (-ENOENT) when fib table is missing
2. Do not crash when queue is empty (does not happen, but yet)
3. Put result of lookup
Signed-off-by: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
Signed-off-by: David S. Miller <davem@davemloft.net>
There's a really rare and obscure bug in CFQ, that causes a crash in
cfq_dispatch_insert() due to rq == NULL. One example of the resulting
oops is seen here:
http://lkml.org/lkml/2007/4/15/41
Neil correctly diagnosed the situation for how this can happen: if two
concurrent requests with the exact same sector number (due to direct IO
or aliasing between MD and the raw device access), the alias handling
will add the request to the sortlist, but next_rq remains NULL.
Read the more complete analysis at:
http://lkml.org/lkml/2007/4/25/57
This looks like it requires md to trigger, even though it should
potentially be possible to due with O_DIRECT (at least if you edit the
kernel and doctor some of the unplug calls).
The fix is to move the ->next_rq update to when we add a request to the
rbtree. Then we remove the possibility for a request to exist in the
rbtree code, but not have ->next_rq correctly updated.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Oops, thinko. The test for accempting a RH0 was exatly the wrong way
around.
Signed-off-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tweak a register setting to prevent the tx mailbox from halting.
Update version to 1.5.8.
Signed-off-by: Michael Chan <mchan@broadcom.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
A security issue is emerging. Disallow Routing Header Type 0 by default
as we have been doing for IPv4.
Note: We allow RH2 by default because it is harmless.
Signed-off-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This did cause oprofile to fail on non-multithreaded systems with more
than 2 processors such as the BCM1480.
Reported by Manish Lachwani (mlachwani@mvista.com).
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
sparc64:
drivers/net/hamradio/baycom_ser_fdx.c: In function `ser12_open':
drivers/net/hamradio/baycom_ser_fdx.c:417: error: `NR_IRQS' undeclared (first us
e in this function)
drivers/net/hamradio/baycom_ser_fdx.c:417: error: (Each undeclared identifier is
reported only once
drivers/net/hamradio/baycom_ser_fdx.c:417: error: for each function it appears i
n.)
Cc: Folkert van Heusden <folkert@vanheusden.com>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
Broken by 4a1728a28a which switched the
return semantics of read_mii_word() but didn't fix usage of
read_mii_word() to conform to the new semantics.
Setting carrier to off based on the NO_CARRIER flag is also incorrect as
that flag only triggers on TX failure and therefore isn't correct when
no frames are being transmitted. Since there is already a 2*HZ MII
carrier check going on, defer to that.
Add a TRUST_LINK_STATUS feature flag for adapters where the LINK_STATUS
flag is actually correct, and use that rather than the NO_CARRIER flag.
Signed-off-by: Dan Williams <dcbw@redhat.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
The sis900 driver appears to have a bug in which the receive routine
passes the skbuff holding the received frame to the network stack before
refilling the buffer in the rx ring. If a new skbuff cannot be allocated, the
driver simply leaves a hole in the rx ring, which causes the driver to stop
receiving frames and become non-recoverable without an rmmod/insmod according to
reporters. This patch reverses that order, attempting to allocate a replacement
buffer first, and receiving the new frame only if one can be allocated. If no
skbuff can be allocated, the current skbuf in the rx ring is recycled, dropping
the current frame, but keeping the NIC operational.
Signed-off-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
The following patch fixes a kernel bug in depca_platform_probe().
We don't use a dynamic pointer for pldev->dev.platform_data, so it seems
that the correct way to proceed if platform_device_add(pldev) fails is
to explicitly set the pldev->dev.platform_data pointer to NULL, before
calling the platform_device_put(pldev), or it will be kfree'ed by
platform_device_release().
Signed-off-by: Jeff Garzik <jeff@garzik.org>