Both times() and clock_gettime(CLOCK_PROCESS_CPUTIME_ID) have scalability
issues on large systems, due to both functions being serialized with a
lock.
The lock protects against reporting a wrong value, due to a thread in the
task group exiting, its statistics reporting up to the signal struct, and
that exited task's statistics being counted twice (or not at all).
Protecting that with a lock results in times() and clock_gettime() being
completely serialized on large systems.
This can be fixed by using a seqlock around the events that gather and
propagate statistics. As an additional benefit, the protection code can
be moved into thread_group_cputime(), slightly simplifying the calling
functions.
In the case of posix_cpu_clock_get_task() things can be simplified a
lot, because the calling function already ensures that the task sticks
around, and the rest is now taken care of in thread_group_cputime().
This way the statistics reporting code can run lockless.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Daeseok Youn <daeseok.youn@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guillaume Morin <guillaume@morinfr.org>
Cc: Ionut Alexa <ionut.m.alexa@gmail.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Michal Schmidt <mschmidt@redhat.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: umgwanakikbuti@gmail.com
Cc: fweisbec@gmail.com
Cc: srao@redhat.com
Cc: lwoodman@redhat.com
Cc: atheurer@redhat.com
Link: http://lkml.kernel.org/r/20140816134010.26a9b572@annuminas.surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJUDOW+AAoJEHm+PkMAQRiGOXYH/00TPKm8PdM5cXXG2YYYv9eT
W99K7KD2i0/qiVtlGgjjvB7fO3K0HcZusTd2jmVd8IWntXvauq7Zpw5YZkjwu4KX
Y1HCwwCd2aw0FoqgrJhNP3+j5Cr1BD/HLtbffjCe+A3tppOIis4Bwt2wJOoYlXpS
hU9Jxxc4lcRo8YKbffouDo7PIneWeJy8N+WGpUR5BfJIEK0ZZtCUqn3/3WLX4FYu
fE6uiF/bACTpKXU/mo4dDbhZp439H/QdwQc9B0F8+8CBDMXKaNHrPV7kN36T2SWa
fD4boikTsi/yh9Ks1fvHbvNq2N0ihoMnja+vLRyvjAcAQv2fKG3OZtYgFWSdghU=
=Xknd
-----END PGP SIGNATURE-----
Merge tag 'v3.17-rc4' into sched/core, to prevent conflicts with upcoming patches, and to refresh the tree
Linux 3.17-rc4
An overrun could happen in function start_hrtick_dl()
when a task with SCHED_DEADLINE runs in the microseconds
range.
For example, if a task with SCHED_DEADLINE has the following parameters:
Task runtime deadline period
P1 200us 500us 500us
The deadline and period from task P1 are less than 1ms.
In order to achieve microsecond precision, we need to enable HRTICK feature
by the next command:
PC#echo "HRTICK" > /sys/kernel/debug/sched_features
PC#trace-cmd record -e sched_switch &
PC#./schedtool -E -t 200000:500000:500000 -e ./test
The binary test is in an endless while(1) loop here.
Some pieces of trace.dat are as follows:
<idle>-0 157.603157: sched_switch: :R ==> 2481:4294967295: test
test-2481 157.603203: sched_switch: 2481:R ==> 0:120: swapper/2
<idle>-0 157.605657: sched_switch: :R ==> 2481:4294967295: test
test-2481 157.608183: sched_switch: 2481:R ==> 2483:120: trace-cmd
trace-cmd-2483 157.609656: sched_switch:2483:R==>2481:4294967295: test
We can get the runtime of P1 from the information above:
runtime = 157.608183 - 157.605657
runtime = 0.002526(2.526ms)
The correct runtime should be less than or equal to 200us at some point.
The problem is caused by a conditional judgment "delta > 10000"
in function start_hrtick_dl().
Because no hrtimer start up to control the rest of runtime
when the reset of runtime is less than 10us.
So the process will continue to run until tick-period is coming.
Move the code with the limit of the least time slice
from hrtick_start_fair() to hrtick_start() because the
EDF schedule class also needs this function in start_hrtick_dl().
To fix this problem, we call hrtimer_start() unconditionally in
start_hrtick_dl(), and make sure the scheduling slice won't be smaller
than 10us in hrtimer_start().
Signed-off-by: Xiaofeng Yan <xiaofeng.yan@huawei.com>
Reviewed-by: Li Zefan <lizefan@huawei.com>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1409022941-5880-1-git-send-email-xiaofeng.yan@huawei.com
[ Massaged the changelog and the code. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The use of "rcu_assign_pointer()" is NULLing out the pointer.
According to RCU_INIT_POINTER()'s block comment:
"1. This use of RCU_INIT_POINTER() is NULLing out the pointer"
it is better to use it instead of rcu_assign_pointer() because it has a
smaller overhead.
The following Coccinelle semantic patch was used:
@@
@@
- rcu_assign_pointer
+ RCU_INIT_POINTER
(..., NULL)
Signed-off-by: Andreea-Cristina Bernat <bernat.ada@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: paulmck@linux.vnet.ibm.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140822145043.GA580@ada
Signed-off-by: Ingo Molnar <mingo@kernel.org>
__get_cpu_var can paper over differences in the definitions of
cpumask_var_t and either use the address of the cpumask variable
directly or perform a fetch of the address of the struct cpumask
allocated elsewhere. This is important particularly when using per cpu
cpumask_var_t declarations because in one case we have an offset into
a per cpu area to handle and in the other case we need to fetch a
pointer from the offset.
This patch introduces a new macro
this_cpu_cpumask_var_ptr()
that is defined where cpumask_var_t is defined and performs the proper
actions. All use cases where __get_cpu_var is used with cpumask_var_t
are converted to the use of this_cpu_cpumask_var_ptr().
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Convert all uses of __get_cpu_var for address calculation to use
this_cpu_ptr instead.
[Uses of __get_cpu_var with cpumask_var_t are no longer
handled by this patch]
Cc: Peter Zijlstra <peterz@infradead.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Convert uses of __get_cpu_var for creating a address from a percpu
offset to this_cpu_ptr.
The two cases where get_cpu_var is used to actually access a percpu
variable are changed to use this_cpu_read/raw_cpu_read.
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
This function will help an async task processing batched jobs from
workqueue decide if it wants to keep processing on more chunks of batched
work that can be delayed, or to accumulate more work for more efficient
batched processing later.
If no other tasks are running on the cpu, the batching process can take
advantgae of the available cpu cycles to a make decision to continue
processing the existing accumulated work to minimize delay,
otherwise it will yield.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Avoid double_rq_lock() and use TASK_ON_RQ_MIGRATING for
load_balance(). The advantage is (obviously) not holding two
rq->lock's at the same time and thereby increasing parallelism.
Further note that if there was no task to migrate we will not
have acquired the second rq->lock at all.
The important point to note is that because we acquire dst->lock
immediately after releasing src->lock the potential wait time of
task_rq_lock() callers on TASK_ON_RQ_MIGRATING is not longer
than it would have been in the double rq lock scenario.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1408528109.23412.94.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Avoid double_rq_lock() and use the TASK_ON_RQ_MIGRATING state for
active_load_balance_cpu_stop(). The advantage is (obviously) not
holding two 'rq->lock's at the same time and thereby increasing
parallelism.
Further note that if there was no task to migrate we will not
have acquired the second rq->lock at all.
The important point to note is that because we acquire dst->lock
immediately after releasing src->lock the potential wait time of
task_rq_lock() callers on TASK_ON_RQ_MIGRATING is not longer
than it would have been in the double rq lock scenario.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1408528081.23412.92.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Avoid double_rq_lock() and use TASK_ON_RQ_MIGRATING for
__migrate_task(). The advantage is (obviously) not holding two
rq->lock's at the same time and thereby increasing parallelism.
The important point to note is that because we acquire dst->lock
immediately after releasing src->lock the potential wait time of
task_rq_lock() callers on TASK_ON_RQ_MIGRATING is not longer
than it would have been in the double rq lock scenario.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1408528070.23412.89.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is a new p->on_rq state which will be used to indicate that a task
is in a process of migrating between two RQs. It allows to get
rid of double_rq_lock(), which we used to use to change a rq of
a queued task before.
Let's consider an example. To move a task between src_rq and
dst_rq we will do the following:
raw_spin_lock(&src_rq->lock);
/* p is a task which is queued on src_rq */
p = ...;
dequeue_task(src_rq, p, 0);
p->on_rq = TASK_ON_RQ_MIGRATING;
set_task_cpu(p, dst_cpu);
raw_spin_unlock(&src_rq->lock);
/*
* Both RQs are unlocked here.
* Task p is dequeued from src_rq
* but its on_rq value is not zero.
*/
raw_spin_lock(&dst_rq->lock);
p->on_rq = TASK_ON_RQ_QUEUED;
enqueue_task(dst_rq, p, 0);
raw_spin_unlock(&dst_rq->lock);
While p->on_rq is TASK_ON_RQ_MIGRATING, task is considered as
"migrating", and other parallel scheduler actions with it are
not available to parallel callers. The parallel caller is
spining till migration is completed.
The unavailable actions are changing of cpu affinity, changing
of priority etc, in other words all the functionality which used
to require task_rq(p)->lock before (and related to the task).
To implement TASK_ON_RQ_MIGRATING support we primarily are using
the following fact. Most of scheduler users (from which we are
protecting a migrating task) use task_rq_lock() and
__task_rq_lock() to get the lock of task_rq(p). These primitives
know that task's cpu may change, and they are spining while the
lock of the right RQ is not held. We add one more condition into
them, so they will be also spinning until the migration is
finished.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1408528062.23412.88.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Implement task_on_rq_queued() and use it everywhere instead of
on_rq check. No functional changes.
The only exception is we do not use the wrapper in
check_for_tasks(), because it requires to export
task_on_rq_queued() in global header files. Next patch in series
would return it back, so we do not twist it from here to there.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1408528052.23412.87.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
(sched_entity::on_rq == 1) does not guarantee the task is pickable;
changes on throttled cfs_rq must not lead to reschedule.
Check for task_struct::on_rq instead.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1407312361.8424.35.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Match the declaration of runqueues with the definition.
Signed-off-by: Pranith Kumar <bobby.prani@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1407950893-32731-1-git-send-email-bobby.prani@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Its been a while and there are no in-tree users left, so remove the
deprecated barriers.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chen, Gong <gong.chen@linux.intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Joe Perches <joe@perches.com>
Cc: John Sullivan <jsrhbz@kanargh.force9.co.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit a43455a1d5 ensures that
task_numa_migrate will call task_numa_compare on the preferred
node all the time, even when the preferred node has no free capacity.
This could lead to a performance regression if nr_running == capacity
on both the source and the destination node. This can be avoided by
also checking for nr_running == capacity on the source node, which is
one stricter than checking .has_free_capacity.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: mgorman@suse.de
Cc: vincent.guittot@linaro.org
Cc: Morten.Rasmussen@arm.com
Cc: nicolas.pitre@linaro.org
Cc: efault@gmx.de
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1407173008-9334-2-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The child variable in build_overlap_sched_groups() actually refers to the
peer or sibling domain of the given CPU. Rename it to sibling to be consistent
with the naming in build_group_mask().
Signed-off-by: Zhihui Zhang <zzhsuny@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1406942283-18249-1-git-send-email-zzhsuny@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Allow calculate_imbalance() to 'create' idle cpus in the busiest group
if there are idle cpus in the local group.
Suggested-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140729152705.GX12054@laptop.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently update_sd_pick_busiest only identifies the busiest sd
that is either overloaded, or has a group imbalance. When no
sd is imbalanced or overloaded, the load balancer fails to find
the busiest domain.
This breaks load balancing between domains that are not overloaded,
in the !SD_ASYM_PACKING case. This patch makes update_sd_pick_busiest
return true when the busiest sd yet is encountered.
Groups are ranked in the order overloaded > imbalanced > other,
with higher ranked groups getting priority even when their load
is lower. This is necessary due to the possibility of unequal
capacities and cpumasks between domains within a sched group.
Behaviour for SD_ASYM_PACKING does not seem to match the comment,
but I have no hardware to test that so I have left the behaviour
of that code unchanged.
Enum for group classification suggested by Peter Zijlstra.
Signed-off-by: Rik van Riel <riel@redhat.com>
[peterz: replaced sg_lb_stats::group_imb with the new enum group_type
in an attempt to avoid endless recalculation]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Michael Neuling <mikey@neuling.org>
Cc: ktkhai@parallels.com
Cc: tim.c.chen@linux.intel.com
Cc: nicolas.pitre@linaro.org
Cc: jhladky@redhat.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140729152743.GI3935@laptop
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Rik noticed that calculate_imbalance() relies on
update_sd_pick_busiest() to guarantee that busiest->sum_nr_running >
busiest->group_capacity_factor.
Break this implicit assumption (with the intent of not providing it
anymore) by having calculat_imbalance() verify it and not rely on
others.
Reported-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20140729152631.GW12054@laptop.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
* pm-sleep:
PM / hibernate: avoid unsafe pages in e820 reserved regions
* pm-cpufreq:
cpufreq: arm_big_little: fix module license spec
cpufreq: speedstep-smi: fix decimal printf specifiers
cpufreq: OPP: Avoid sleeping while atomic
cpufreq: cpu0: Do not print error message when deferring
cpufreq: integrator: Use set_cpus_allowed_ptr
* pm-cpuidle:
cpuidle: menu: Lookup CPU runqueues less
cpuidle: menu: Call nr_iowait_cpu less times
cpuidle: menu: Use ktime_to_us instead of reinventing the wheel
cpuidle: menu: Use shifts when calculating averages where possible
- ACPICA update to upstream version 20140724. That includes
ACPI 5.1 material (support for the _CCA and _DSD predefined names,
changes related to the DMAR and PCCT tables and ARM support among
other things) and cleanups related to using ACPICA's header files.
A major part of it is related to acpidump and the core code used
by that utility. Changes from Bob Moore, David E Box, Lv Zheng,
Sascha Wildner, Tomasz Nowicki, Hanjun Guo.
- Radix trees for memory bitmaps used by the hibernation core from
Joerg Roedel.
- Support for waking up the system from suspend-to-idle (also known
as the "freeze" sleep state) using ACPI-based PCI wakeup signaling
(Rafael J Wysocki).
- Fixes for issues related to ACPI button events (Rafael J Wysocki).
- New device ID for an ACPI-enumerated device included into the
Wildcat Point PCH from Jie Yang.
- ACPI video updates related to backlight handling from Hans de Goede
and Linus Torvalds.
- Preliminary changes needed to support ACPI on ARM from Hanjun Guo
and Graeme Gregory.
- ACPI PNP core cleanups from Arjun Sreedharan and Zhang Rui.
- Cleanups related to ACPI_COMPANION() and ACPI_HANDLE() macros
(Rafael J Wysocki).
- ACPI-based device hotplug cleanups from Wei Yongjun and
Rafael J Wysocki.
- Cleanups and improvements related to system suspend from
Lan Tianyu, Randy Dunlap and Rafael J Wysocki.
- ACPI battery cleanup from Wei Yongjun.
- cpufreq core fixes from Viresh Kumar.
- Elimination of a deadband effect from the cpufreq ondemand
governor and intel_pstate driver cleanups from Stratos Karafotis.
- 350MHz CPU support for the powernow-k6 cpufreq driver from
Mikulas Patocka.
- Fix for the imx6 cpufreq driver from Anson Huang.
- cpuidle core and governor cleanups from Daniel Lezcano,
Sandeep Tripathy and Mohammad Merajul Islam Molla.
- Build fix for the big_little cpuidle driver from Sachin Kamat.
- Configuration fix for the Operation Performance Points (OPP)
framework from Mark Brown.
- APM cleanup from Jean Delvare.
- cpupower utility fixes and cleanups from Peter Senna Tschudin,
Andrey Utkin, Himangi Saraogi, Rickard Strandqvist, Thomas Renninger.
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJT4nhtAAoJEILEb/54YlRxtZEP/2rtVQFSFdAW8l0Xm1SeSsl4
EnZpSNT1TFn+NdG23vSIot5Jzdz1/dLfeoJEbXpoVt4DPC9/PK4HPlv5FEDQYfh5
srftvvGcAva969sXzSBRNUeR+M8Yd2RdoYCfmqTEUjzf8GJLL4jC0VAIwMtsQklt
EbiQX8JaHQS7RIql7MDg1N2vaTo+zxkf39Kkcl56usmO/uATP7cAPjFreF/xQ3d8
OyBhz1cOXIhPw7bd9Dv9AgpJzA8WFpktDYEgy2sluBWMv+mLYjdZRCFkfpIRzmea
pt+hJDeAy8ZL6/bjWCzz2x6wG7uJdDLblreI28sgnJx/VHR3Co6u4H1BqUBj18ct
CHV6zQ55WFmx9/uJqBtwFy333HS2ysJziC5ucwmg8QjkvAn4RK8S0qHMfRvSSaHj
F9ejnHGxyrc3zzfsngUf/VXIp67FReaavyKX3LYxjHjMPZDMw2xCtCWEpUs52l2o
fAbkv8YFBbUalIv0RtELH5XnKQ2ggMP8UgvT74KyfXU6LaliH8lEV20FFjMgwrPI
sMr2xk04eS8mNRNAXL8OMMwvh6DY/Qsmb7BVg58RIw6CdHeFJl834yztzcf7+j56
4oUmA16QYBCFA3udGQ3Tb07mi8XTfrMdTOGA0koQG9tjswKXuLUXUk9WAXZe4vml
ItRpZKE86BCs3mLJMYre
=ZODv
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-3.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI and power management updates from Rafael Wysocki:
"Again, ACPICA leads the pack (47 commits), followed by cpufreq (18
commits) and system suspend/hibernation (9 commits).
From the new code perspective, the ACPICA update brings ACPI 5.1 to
the table, including a new device configuration object called _DSD
(Device Specific Data) that will hopefully help us to operate device
properties like Device Trees do (at least to some extent) and changes
related to supporting ACPI on ARM.
Apart from that we have hibernation changes making it use radix trees
to store memory bitmaps which should speed up some operations carried
out by it quite significantly. We also have some power management
changes related to suspend-to-idle (the "freeze" sleep state) support
and more preliminary changes needed to support ACPI on ARM (outside of
ACPICA).
The rest is fixes and cleanups pretty much everywhere.
Specifics:
- ACPICA update to upstream version 20140724. That includes ACPI 5.1
material (support for the _CCA and _DSD predefined names, changes
related to the DMAR and PCCT tables and ARM support among other
things) and cleanups related to using ACPICA's header files. A
major part of it is related to acpidump and the core code used by
that utility. Changes from Bob Moore, David E Box, Lv Zheng,
Sascha Wildner, Tomasz Nowicki, Hanjun Guo.
- Radix trees for memory bitmaps used by the hibernation core from
Joerg Roedel.
- Support for waking up the system from suspend-to-idle (also known
as the "freeze" sleep state) using ACPI-based PCI wakeup signaling
(Rafael J Wysocki).
- Fixes for issues related to ACPI button events (Rafael J Wysocki).
- New device ID for an ACPI-enumerated device included into the
Wildcat Point PCH from Jie Yang.
- ACPI video updates related to backlight handling from Hans de Goede
and Linus Torvalds.
- Preliminary changes needed to support ACPI on ARM from Hanjun Guo
and Graeme Gregory.
- ACPI PNP core cleanups from Arjun Sreedharan and Zhang Rui.
- Cleanups related to ACPI_COMPANION() and ACPI_HANDLE() macros
(Rafael J Wysocki).
- ACPI-based device hotplug cleanups from Wei Yongjun and Rafael J
Wysocki.
- Cleanups and improvements related to system suspend from Lan
Tianyu, Randy Dunlap and Rafael J Wysocki.
- ACPI battery cleanup from Wei Yongjun.
- cpufreq core fixes from Viresh Kumar.
- Elimination of a deadband effect from the cpufreq ondemand governor
and intel_pstate driver cleanups from Stratos Karafotis.
- 350MHz CPU support for the powernow-k6 cpufreq driver from Mikulas
Patocka.
- Fix for the imx6 cpufreq driver from Anson Huang.
- cpuidle core and governor cleanups from Daniel Lezcano, Sandeep
Tripathy and Mohammad Merajul Islam Molla.
- Build fix for the big_little cpuidle driver from Sachin Kamat.
- Configuration fix for the Operation Performance Points (OPP)
framework from Mark Brown.
- APM cleanup from Jean Delvare.
- cpupower utility fixes and cleanups from Peter Senna Tschudin,
Andrey Utkin, Himangi Saraogi, Rickard Strandqvist, Thomas
Renninger"
* tag 'pm+acpi-3.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (118 commits)
ACPI / LPSS: add LPSS device for Wildcat Point PCH
ACPI / PNP: Replace faulty is_hex_digit() by isxdigit()
ACPICA: Update version to 20140724.
ACPICA: ACPI 5.1: Update for PCCT table changes.
ACPICA/ARM: ACPI 5.1: Update for GTDT table changes.
ACPICA/ARM: ACPI 5.1: Update for MADT changes.
ACPICA/ARM: ACPI 5.1: Update for FADT changes.
ACPICA: ACPI 5.1: Support for the _CCA predifined name.
ACPICA: ACPI 5.1: New notify value for System Affinity Update.
ACPICA: ACPI 5.1: Support for the _DSD predefined name.
ACPICA: Debug object: Add current value of Timer() to debug line prefix.
ACPICA: acpihelp: Add UUID support, restructure some existing files.
ACPICA: Utilities: Fix local printf issue.
ACPICA: Tables: Update for DMAR table changes.
ACPICA: Remove some extraneous printf arguments.
ACPICA: Update for comments/formatting. No functional changes.
ACPICA: Disassembler: Add support for the ToUUID opererator (macro).
ACPICA: Remove a redundant cast to acpi_size for ACPI_OFFSET() macro.
ACPICA: Work around an ancient GCC bug.
ACPI / processor: Make it possible to get local x2apic id via _MAT
...
The menu governer makes separate lookups of the CPU runqueue to get
load and number of IO waiters but it can be done with a single lookup.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
* pm-cpuidle:
cpuidle: Remove time measurement in poll state
cpuidle: Remove manual selection of the multiple driver support
cpuidle: ladder governor - use macro instead of hardcoded value
cpuidle: big_little: Fix build error
cpuidle: menu governor - remove unused macro STDDEV_THRESH
cpuidle: fix permission for driver name sysfs node
cpuidle: move idle traces to cpuidle_enter_state()
Pull scheduler updates from Ingo Molnar:
- Move the nohz kick code out of the scheduler tick to a dedicated IPI,
from Frederic Weisbecker.
This necessiated quite some background infrastructure rework,
including:
* Clean up some irq-work internals
* Implement remote irq-work
* Implement nohz kick on top of remote irq-work
* Move full dynticks timer enqueue notification to new kick
* Move multi-task notification to new kick
* Remove unecessary barriers on multi-task notification
- Remove proliferation of wait_on_bit() action functions and allow
wait_on_bit_action() functions to support a timeout. (Neil Brown)
- Another round of sched/numa improvements, cleanups and fixes. (Rik
van Riel)
- Implement fast idling of CPUs when the system is partially loaded,
for better scalability. (Tim Chen)
- Restructure and fix the CPU hotplug handling code that may leave
cfs_rq and rt_rq's throttled when tasks are migrated away from a dead
cpu. (Kirill Tkhai)
- Robustify the sched topology setup code. (Peterz Zijlstra)
- Improve sched_feat() handling wrt. static_keys (Jason Baron)
- Misc fixes.
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
sched/fair: Fix 'make xmldocs' warning caused by missing description
sched: Use macro for magic number of -1 for setparam
sched: Robustify topology setup
sched: Fix sched_setparam() policy == -1 logic
sched: Allow wait_on_bit_action() functions to support a timeout
sched: Remove proliferation of wait_on_bit() action functions
sched/numa: Revert "Use effective_load() to balance NUMA loads"
sched: Fix static_key race with sched_feat()
sched: Remove extra static_key*() function indirection
sched/rt: Fix replenish_dl_entity() comments to match the current upstream code
sched: Transform resched_task() into resched_curr()
sched/deadline: Kill task_struct->pi_top_task
sched: Rework check_for_tasks()
sched/rt: Enqueue just unthrottled rt_rq back on the stack in __disable_runtime()
sched/fair: Disable runtime_enabled on dying rq
sched/numa: Change scan period code to match intent
sched/numa: Rework best node setting in task_numa_migrate()
sched/numa: Examine a task move when examining a task swap
sched/numa: Simplify task_numa_compare()
sched/numa: Use effective_load() to balance NUMA loads
...
Pull cgroup changes from Tejun Heo:
"Mostly changes to get the v2 interface ready. The core features are
mostly ready now and I think it's reasonable to expect to drop the
devel mask in one or two devel cycles at least for a subset of
controllers.
- cgroup added a controller dependency mechanism so that block cgroup
can depend on memory cgroup. This will be used to finally support
IO provisioning on the writeback traffic, which is currently being
implemented.
- The v2 interface now uses a separate table so that the interface
files for the new interface are explicitly declared in one place.
Each controller will explicitly review and add the files for the
new interface.
- cpuset is getting ready for the hierarchical behavior which is in
the similar style with other controllers so that an ancestor's
configuration change doesn't change the descendants' configurations
irreversibly and processes aren't silently migrated when a CPU or
node goes down.
All the changes are to the new interface and no behavior changed for
the multiple hierarchies"
* 'for-3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (29 commits)
cpuset: fix the WARN_ON() in update_nodemasks_hier()
cgroup: initialize cgrp_dfl_root_inhibit_ss_mask from !->dfl_files test
cgroup: make CFTYPE_ONLY_ON_DFL and CFTYPE_NO_ internal to cgroup core
cgroup: distinguish the default and legacy hierarchies when handling cftypes
cgroup: replace cgroup_add_cftypes() with cgroup_add_legacy_cftypes()
cgroup: rename cgroup_subsys->base_cftypes to ->legacy_cftypes
cgroup: split cgroup_base_files[] into cgroup_{dfl|legacy}_base_files[]
cpuset: export effective masks to userspace
cpuset: allow writing offlined masks to cpuset.cpus/mems
cpuset: enable onlined cpu/node in effective masks
cpuset: refactor cpuset_hotplug_update_tasks()
cpuset: make cs->{cpus, mems}_allowed as user-configured masks
cpuset: apply cs->effective_{cpus,mems}
cpuset: initialize top_cpuset's configured masks at mount
cpuset: use effective cpumask to build sched domains
cpuset: inherit ancestor's masks if effective_{cpus, mems} becomes empty
cpuset: update cs->effective_{cpus, mems} when config changes
cpuset: update cpuset->effective_{cpus,mems} at hotplug
cpuset: add cs->effective_cpus and cs->effective_mems
cgroup: clean up sane_behavior handling
...
This patch fix following warning caused by missing description
"overload" in kernel/sched/fair.c
Warning(.//kernel/sched/fair.c:5906): No description found for
parameter 'overload'
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1406518686-7274-1-git-send-email-standby24x7@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Instead of passing around a magic number -1 for the sched_setparam()
policy, use a more descriptive macro name like SETPARAM_POLICY.
[ based on top of Daniel's sched_setparam() fix ]
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Daniel Bristot de Oliveira<bristot@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140723112826.6ed6cbce@gandalf.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We hard assume that higher topology levels are supersets of lower
levels.
Detect, warn and try to fixup when we encounter this violated.
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Josh Boyer <jwboyer@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Bruno Wolff III <bruno@wolff.to>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140722094740.GJ12054@laptop.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The scheduler uses policy == -1 to preserve the current policy state to
implement sched_setparam(). But, as (int) -1 is equals to 0xffffffff,
it's matching the if (policy & SCHED_RESET_ON_FORK) on
_sched_setscheduler(). This match changes the policy value to an
invalid value, breaking the sched_setparam() syscall.
This patch checks policy == -1 before check the SCHED_RESET_ON_FORK flag.
The following program shows the bug:
int main(void)
{
struct sched_param param = {
.sched_priority = 5,
};
sched_setscheduler(0, SCHED_FIFO, ¶m);
param.sched_priority = 1;
sched_setparam(0, ¶m);
param.sched_priority = 0;
sched_getparam(0, ¶m);
if (param.sched_priority != 1)
printf("failed priority setting (found %d instead of 1)\n",
param.sched_priority);
else
printf("priority setting fine\n");
}
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: <stable@vger.kernel.org> # 3.14+
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Fixes: 7479f3c9cf "sched: Move SCHED_RESET_ON_FORK into attr::sched_flags"
Link: http://lkml.kernel.org/r/9ebe0566a08dbbb3999759d3f20d6004bb2dbcfa.1406079891.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler fix from Thomas Gleixner:
"Prevent a possible divide by zero in the debugging code"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched: Fix possible divide by zero in avg_atom() calculation
It is currently not possible for various wait_on_bit functions
to implement a timeout.
While the "action" function that is called to do the waiting
could certainly use schedule_timeout(), there is no way to carry
forward the remaining timeout after a false wake-up.
As false-wakeups a clearly possible at least due to possible
hash collisions in bit_waitqueue(), this is a real problem.
The 'action' function is currently passed a pointer to the word
containing the bit being waited on. No current action functions
use this pointer. So changing it to something else will be a
little noisy but will have no immediate effect.
This patch changes the 'action' function to take a pointer to
the "struct wait_bit_key", which contains a pointer to the word
containing the bit so nothing is really lost.
It also adds a 'private' field to "struct wait_bit_key", which
is initialized to zero.
An action function can now implement a timeout with something
like
static int timed_out_waiter(struct wait_bit_key *key)
{
unsigned long waited;
if (key->private == 0) {
key->private = jiffies;
if (key->private == 0)
key->private -= 1;
}
waited = jiffies - key->private;
if (waited > 10 * HZ)
return -EAGAIN;
schedule_timeout(waited - 10 * HZ);
return 0;
}
If any other need for context in a waiter were found it would be
easy to use ->private for some other purpose, or even extend
"struct wait_bit_key".
My particular need is to support timeouts in nfs_release_page()
to avoid deadlocks with loopback mounted NFS.
While wait_on_bit_timeout() would be a cleaner interface, it
will not meet my need. I need the timeout to be sensitive to
the state of the connection with the server, which could change.
So I need to use an 'action' interface.
Signed-off-by: NeilBrown <neilb@suse.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steve French <sfrench@samba.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140707051604.28027.41257.stgit@notabene.brown
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current "wait_on_bit" interface requires an 'action'
function to be provided which does the actual waiting.
There are over 20 such functions, many of them identical.
Most cases can be satisfied by one of just two functions, one
which uses io_schedule() and one which just uses schedule().
So:
Rename wait_on_bit and wait_on_bit_lock to
wait_on_bit_action and wait_on_bit_lock_action
to make it explicit that they need an action function.
Introduce new wait_on_bit{,_lock} and wait_on_bit{,_lock}_io
which are *not* given an action function but implicitly use
a standard one.
The decision to error-out if a signal is pending is now made
based on the 'mode' argument rather than being encoded in the action
function.
All instances of the old wait_on_bit and wait_on_bit_lock which
can use the new version have been changed accordingly and their
action functions have been discarded.
wait_on_bit{_lock} does not return any specific error code in the
event of a signal so the caller must check for non-zero and
interpolate their own error code as appropriate.
The wait_on_bit() call in __fscache_wait_on_invalidate() was
ambiguous as it specified TASK_UNINTERRUPTIBLE but used
fscache_wait_bit_interruptible as an action function.
David Howells confirms this should be uniformly
"uninterruptible"
The main remaining user of wait_on_bit{,_lock}_action is NFS
which needs to use a freezer-aware schedule() call.
A comment in fs/gfs2/glock.c notes that having multiple 'action'
functions is useful as they display differently in the 'wchan'
field of 'ps'. (and /proc/$PID/wchan).
As the new bit_wait{,_io} functions are tagged "__sched", they
will not show up at all, but something higher in the stack. So
the distinction will still be visible, only with different
function names (gds2_glock_wait versus gfs2_glock_dq_wait in the
gfs2/glock.c case).
Since first version of this patch (against 3.15) two new action
functions appeared, on in NFS and one in CIFS. CIFS also now
uses an action function that makes the same freezer aware
schedule call as NFS.
Signed-off-by: NeilBrown <neilb@suse.de>
Acked-by: David Howells <dhowells@redhat.com> (fscache, keys)
Acked-by: Steven Whitehouse <swhiteho@redhat.com> (gfs2)
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steve French <sfrench@samba.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140707051603.28027.72349.stgit@notabene.brown
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Due to divergent trees, Rik find that this patch is no longer
required.
Requested-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-u6odkgkw8wz3m7orgsjfo5pi@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As pointed out by Andi Kleen, the usage of static keys can be racy in
sched_feat_disable() vs. sched_feat_enable(). Currently, we first check the
value of keys->enabled, and subsequently update the branch direction. This,
can be racy and can potentially leave the keys in an inconsistent state.
Take the i_mutex around these calls to resolve the race.
Reported-by: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Jason Baron <jbaron@akamai.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/9d7780c83db26683955cd01e6bc654ee2586e67f.1404315388.git.jbaron@akamai.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We always use resched_task() with rq->curr argument.
It's not possible to reschedule any task but rq's current.
The patch introduces resched_curr(struct rq *) to
replace all of the repeating patterns. The main aim
is cleanup, but there is a little size profit too:
(before)
$ size kernel/sched/built-in.o
text data bss dec hex filename
155274 16445 7042 178761 2ba49 kernel/sched/built-in.o
$ size vmlinux
text data bss dec hex filename
7411490 1178376 991232 9581098 92322a vmlinux
(after)
$ size kernel/sched/built-in.o
text data bss dec hex filename
155130 16445 7042 178617 2b9b9 kernel/sched/built-in.o
$ size vmlinux
text data bss dec hex filename
7411362 1178376 991232 9580970 9231aa vmlinux
I was choosing between resched_curr() and resched_rq(),
and the first name looks better for me.
A little lie in Documentation/trace/ftrace.txt. I have not
actually collected the tracing again. With a hope the patch
won't make execution times much worse :)
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20140628200219.1778.18735.stgit@localhost
Signed-off-by: Ingo Molnar <mingo@kernel.org>
proc_sched_show_task() does:
if (nr_switches)
do_div(avg_atom, nr_switches);
nr_switches is unsigned long and do_div truncates it to 32 bits, which
means it can test non-zero on e.g. x86-64 and be truncated to zero for
division.
Fix the problem by using div64_ul() instead.
As a side effect calculations of avg_atom for big nr_switches are now correct.
Signed-off-by: Mateusz Guzik <mguzik@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1402750809-31991-1-git-send-email-mguzik@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, cgroup_subsys->base_cftypes is used for both the unified
default hierarchy and legacy ones and subsystems can mark each file
with either CFTYPE_ONLY_ON_DFL or CFTYPE_INSANE if it has to appear
only on one of them. This is quite hairy and error-prone. Also, we
may end up exposing interface files to the default hierarchy without
thinking it through.
cgroup_subsys will grow two separate cftype arrays and apply each only
on the hierarchies of the matching type. This will allow organizing
cftypes in a lot clearer way and encourage subsystems to scrutinize
the interface which is being exposed in the new default hierarchy.
In preparation, this patch renames cgroup_subsys->base_cftypes to
cgroup_subsys->legacy_cftypes. This patch is pure rename.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Aristeu Rozanski <aris@redhat.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
idle_exit event is the first event after a core exits
idle state. So this should be traced before local irq
is ebabled. Likewise idle_entry is the last event before
a core enters idle state. This will ease visualising the
cpu idle state from kernel traces.
Signed-off-by: Sandeep Tripathy <sandeep.tripathy@linaro.org>
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
[rjw: Subject, rebase]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Make rt_rq available for pick_next_task(). Otherwise, their tasks
stay prisoned long time till dead cpu becomes alive again.
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
CC: Konstantin Khorenko <khorenko@parallels.com>
CC: Ben Segall <bsegall@google.com>
CC: Paul Turner <pjt@google.com>
CC: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403684388.3462.43.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We kill rq->rd on the CPU_DOWN_PREPARE stage:
cpuset_cpu_inactive -> cpuset_update_active_cpus -> partition_sched_domains ->
-> cpu_attach_domain -> rq_attach_root -> set_rq_offline
This unthrottles all throttled cfs_rqs.
But the cpu is still able to call schedule() till
take_cpu_down->__cpu_disable()
is called from stop_machine.
This case the tasks from just unthrottled cfs_rqs are pickable
in a standard scheduler way, and they are picked by dying cpu.
The cfs_rqs becomes throttled again, and migrate_tasks()
in migration_call skips their tasks (one more unthrottle
in migrate_tasks()->CPU_DYING does not happen, because rq->rd
is already NULL).
Patch sets runtime_enabled to zero. This guarantees, the runtime
is not accounted, and the cfs_rqs won't exceed given
cfs_rq->runtime_remaining = 1, and tasks will be pickable
in migrate_tasks(). runtime_enabled is recalculated again
when rq becomes online again.
Ben Segall also noticed, we always enable runtime in
tg_set_cfs_bandwidth(). Actually, we should do that for online
cpus only. To prevent races with unthrottle_offline_cfs_rqs()
we take get_online_cpus() lock.
Reviewed-by: Ben Segall <bsegall@google.com>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
CC: Konstantin Khorenko <khorenko@parallels.com>
CC: Paul Turner <pjt@google.com>
CC: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403684382.3462.42.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reading through the scan period code and comment, it appears the
intent was to slow down NUMA scanning when a majority of accesses
are on the local node, specifically a local:remote ratio of 3:1.
However, the code actually tests local / (local + remote), and
the actual cut-off point was around 30% local accesses, well before
a task has actually converged on a node.
Changing the threshold to 7 means scanning slows down when a task
has around 70% of its accesses local, which appears to match the
intent of the code more closely.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: mgorman@suse.de
Cc: chegu_vinod@hp.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403538095-31256-8-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix up the best node setting in task_numa_migrate() to deal with a task
in a pseudo-interleaved NUMA group, which is already running in the
best location.
Set the task's preferred nid to the current nid, so task migration is
not retried at a high rate.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: mgorman@suse.de
Cc: chegu_vinod@hp.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403538095-31256-7-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Running "perf bench numa mem -0 -m -P 1000 -p 8 -t 20" on a 4
node system results in 160 runnable threads on a system with 80
CPU threads.
Once a process has nearly converged, with 39 threads on one node
and 1 thread on another node, the remaining thread will be unable
to migrate to its preferred node through a task swap.
However, a simple task move would make the workload converge,
witout causing an imbalance.
Test for this unlikely occurrence, and attempt a task move to
the preferred nid when it happens.
# Running main, "perf bench numa mem -p 8 -t 20 -0 -m -P 1000"
###
# 160 tasks will execute (on 4 nodes, 80 CPUs):
# -1x 0MB global shared mem operations
# -1x 1000MB process shared mem operations
# -1x 0MB thread local mem operations
###
###
#
# 0.0% [0.2 mins] 0/0 1/1 36/2 0/0 [36/3 ] l: 0-0 ( 0) {0-2}
# 0.0% [0.3 mins] 43/3 37/2 39/2 41/3 [ 6/10] l: 0-1 ( 1) {1-2}
# 0.0% [0.4 mins] 42/3 38/2 40/2 40/2 [ 4/9 ] l: 1-2 ( 1) [50.0%] {1-2}
# 0.0% [0.6 mins] 41/3 39/2 40/2 40/2 [ 2/9 ] l: 2-4 ( 2) [50.0%] {1-2}
# 0.0% [0.7 mins] 40/2 40/2 40/2 40/2 [ 0/8 ] l: 3-5 ( 2) [40.0%] ( 41.8s converged)
Without this patch, this same perf bench numa mem run had to
rely on the scheduler load balancer to first balance out the
load (moving a random task), before a task swap could complete
the NUMA convergence.
The load balancer does not normally take action unless the load
difference exceeds 25%. Convergence times of over half an hour
have been observed without this patch.
With this patch, the NUMA balancing code will simply migrate the
task, if that does not cause an imbalance.
Also skip examining a CPU in detail if the improvement on that CPU
is no more than the best we already have.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: chegu_vinod@hp.com
Cc: mgorman@suse.de
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-ggthh0rnh0yua6o5o3p6cr1o@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a task is part of a numa_group, the comparison should always use
the group weight, in order to make workloads converge.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: chegu_vinod@hp.com
Cc: mgorman@suse.de
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403538378-31571-4-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When CONFIG_FAIR_GROUP_SCHED is enabled, the load that a task places
on a CPU is determined by the group the task is in. The active groups
on the source and destination CPU can be different, resulting in a
different load contribution by the same task at its source and at its
destination. As a result, the load needs to be calculated separately
for each CPU, instead of estimated once with task_h_load().
Getting this calculation right allows some workloads to converge,
where previously the last thread could get stuck on another node,
without being able to migrate to its final destination.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: mgorman@suse.de
Cc: chegu_vinod@hp.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403538378-31571-3-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently the NUMA code scales the load on each node with the
amount of CPU power available on that node, but it does not
apply any adjustment to the load of the task that is being
moved over.
On systems with SMT/HT, this results in a task being weighed
much more heavily than a CPU core, and a task move that would
even out the load between nodes being disallowed.
The correct thing is to apply the power correction to the
numbers after we have first applied the move of the tasks'
loads to them.
This also allows us to do the power correction with a multiplication,
rather than a division.
Also drop two function arguments for load_too_unbalanced, since it
takes various factors from env already.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: chegu_vinod@hp.com
Cc: mgorman@suse.de
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403538378-31571-2-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
From task_numa_placement, always try to consolidate the tasks
in a group on the group's top nid.
In case this task is part of a group that is interleaved over
multiple nodes, task_numa_migrate will set the task's preferred
nid to the best node it could find for the task, so this patch
will cause at most one run through task_numa_migrate.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: mgorman@suse.de
Cc: chegu_vinod@hp.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403538095-31256-2-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a system is lightly loaded (i.e. no more than 1 job per cpu),
attempt to pull job to a cpu before putting it to idle is unnecessary and
can be skipped. This patch adds an indicator so the scheduler can know
when there's no more than 1 active job is on any CPU in the system to
skip needless job pulls.
On a 4 socket machine with a request/response kind of workload from
clients, we saw about 0.13 msec delay when we go through a full load
balance to try pull job from all the other cpus. While 0.1 msec was
spent on processing the request and generating a response, the 0.13 msec
load balance overhead was actually more than the actual work being done.
This overhead can be skipped much of the time for lightly loaded systems.
With this patch, we tested with a netperf request/response workload that
has the server busy with half the cpus in a 4 socket system. We found
the patch eliminated 75% of the load balance attempts before idling a cpu.
The overhead of setting/clearing the indicator is low as we already gather
the necessary info while we call add_nr_running() and update_sd_lb_stats.()
We switch to full load balance load immediately if any cpu got more than
one job on its run queue in add_nr_running. We'll clear the indicator
to avoid load balance when we detect no cpu's have more than one job
when we scan the work queues in update_sg_lb_stats(). We are aggressive
in turning on the load balance and opportunistic in skipping the load
balance.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Jason Low <jason.low2@hp.com>
Cc: "Paul E.McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <davidlohr@hp.com>
Cc: Alex Shi <alex.shi@linaro.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Peter Hurley <peter@hurleysoftware.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403551009.2970.613.camel@schen9-DESK
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We don't need 'broadcast' to be set to 'zero or one', but to 'zero or non-zero'
and so the extra operation to convert it to 'zero or one' can be skipped.
Also change type of 'broadcast' to unsigned int, i.e. type of
drv->states[*].flags.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/0dfbe2976aa108c53e08d3477ea90f6360c1f54c.1403584026.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If a task has been dequeued, it has been accounted. Do not project
cycles that may or may not ever be accounted to a dequeued task, as
that may make clock_gettime() both inaccurate and non-monotonic.
Protect update_rq_clock() from slight TSC skew while at it.
Signed-off-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: kosaki.motohiro@jp.fujitsu.com
Cc: pjt@google.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403588980.29711.11.camel@marge.simpson.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
distribute_cfs_runtime() intentionally only hands out enough runtime to
bring each cfs_rq to 1 ns of runtime, expecting the cfs_rqs to then take
the runtime they need only once they actually get to run. However, if
they get to run sufficiently quickly, the period timer is still in
distribute_cfs_runtime() and no runtime is available, causing them to
throttle. Then distribute has to handle them again, and this can go on
until distribute has handed out all of the runtime 1ns at a time, which
takes far too long.
Instead allow access to the same runtime that distribute is handing out,
accepting that corner cases with very low quota may be able to spend the
entire cfs_b->runtime during distribute_cfs_runtime, meaning that the
runtime directly handed out by distribute_cfs_runtime was over quota. In
addition, if a cfs_rq does manage to throttle like this, make sure the
existing distribute_cfs_runtime no longer loops over it again.
Signed-off-by: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140620222120.13814.21652.stgit@sword-of-the-dawn.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
sched_can_stop_tick() is using 7 spaces instead of 8 spaces or a 'tab' at the
beginning of few lines. Which doesn't align well with the Coding Guidelines.
Also remove local variable 'rq' as it is used at only one place and we can
directly use this_rq() instead.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: fweisbec@gmail.com
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/afb781733e4a9ffbced5eb9fd25cc0aa5c6ffd7a.1403596966.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit ac1bea8578 (Make cond_resched() report RCU quiescent states)
fixed a problem where a CPU looping in the kernel with but one runnable
task would give RCU CPU stall warnings, even if the in-kernel loop
contained cond_resched() calls. Unfortunately, in so doing, it introduced
performance regressions in Anton Blanchard's will-it-scale "open1" test.
The problem appears to be not so much the increased cond_resched() path
length as an increase in the rate at which grace periods complete, which
increased per-update grace-period overhead.
This commit takes a different approach to fixing this bug, mainly by
moving the RCU-visible quiescent state from cond_resched() to
rcu_note_context_switch(), and by further reducing the check to a
simple non-zero test of a single per-CPU variable. However, this
approach requires that the force-quiescent-state processing send
resched IPIs to the offending CPUs. These will be sent only once
the grace period has reached an age specified by the boot/sysfs
parameter rcutree.jiffies_till_sched_qs, or once the grace period
reaches an age halfway to the point at which RCU CPU stall warnings
will be emitted, whichever comes first.
Reported-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@gentwo.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
[ paulmck: Made rcu_momentary_dyntick_idle() as suggested by the
ktest build robot. Also fixed smp_mb() comment as noted by
Oleg Nesterov. ]
Merge with e552592e (Reduce overhead of cond_resched() checks for RCU)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
When computing cache hot, we should check if the migration dst cpu is idle,
instead of the current cpu. Though they are same in normal balancing, that
is false nowadays in nohz idle balancing at least.
Signed-off-by: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mike Galbraith <mgalbraith@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140607090452.4696E301D2@webmail.sinamail.sina.com.cn
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is possible that at task_numa_placement() time, the task's
numa_preferred_nid does not change, but the task is not
actually running on the preferred node at the time.
In that case, we still want to attempt migration to the
preferred node.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: mgorman@suse.de
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140604163315.1dbc7b56@cuia.bos.redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The first thing task_numa_migrate() does is check to see if there is
CPU capacity available on the preferred node, in order to move the
task there.
However, if the preferred node is all busy, we would skip considering
that node for tasks swaps in the subsequent loop. This prevents NUMA
convergence of tasks on busy systems.
However, swapping locations with a task on our preferred nid, when
the preferred nid is busy, is perfectly fine.
The fix is to also look for a CPU on our preferred nid when it is
totally busy.
This changes "perf bench numa mem -p 4 -t 20 -m -0 -P 1000" from
not converging in 15 minutes on my 4 node system, to converging in
10-20 seconds.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: mgorman@suse.de
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140604160942.6969b101@cuia.bos.redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A full dynticks CPU is allowed to stop its tick when a single task runs.
Meanwhile when a new task gets enqueued, the CPU must be notified so that
it can restart its tick to maintain local fairness and other accounting
details.
This notification is performed by way of an IPI. Then when the target
receives the IPI, we expect it to see the new value of rq->nr_running.
Hence the following ordering scenario:
CPU 0 CPU 1
write rq->running get IPI
smp_wmb() smp_rmb()
send IPI read rq->nr_running
But Paul Mckenney says that nowadays IPIs imply a full barrier on
all architectures. So we can safely remove this pair and rely on the
implicit barriers that come along IPI send/receive. Lets
just comment on this new assumption.
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Now that we have a nohz full remote kick based on irq work, lets use
it to notify a CPU that it's exiting single task mode.
This unbloats a bit the scheduler IPI that the nohz code was abusing
for its cool "callable anywhere/anytime" properties.
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
When a new timer is enqueued on a full dynticks target, that CPU must
re-evaluate the next tick to handle the timer correctly.
This is currently performed through the scheduler IPI. Meanwhile this
happens at the cost of off-topic workarounds in that fast path to make
it call irq_exit().
As we plan to remove this hack off the scheduler IPI, lets use
the nohz full kick instead. Pretty much any IPI fits for that job
as long at it calls irq_exit(). The nohz full kick just happens to be
handy and readily available here.
If it happens to be too much an overkill in the future, we can still
turn that timer kick into an empty IPI.
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Pull more scheduler updates from Ingo Molnar:
"Second round of scheduler changes:
- try-to-wakeup and IPI reduction speedups, from Andy Lutomirski
- continued power scheduling cleanups and refactorings, from Nicolas
Pitre
- misc fixes and enhancements"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/deadline: Delete extraneous extern for to_ratio()
sched/idle: Optimize try-to-wake-up IPI
sched/idle: Simplify wake_up_idle_cpu()
sched/idle: Clear polling before descheduling the idle thread
sched, trace: Add a tracepoint for IPI-less remote wakeups
cpuidle: Set polling in poll_idle
sched: Remove redundant assignment to "rt_rq" in update_curr_rt(...)
sched: Rename capacity related flags
sched: Final power vs. capacity cleanups
sched: Remove remaining dubious usage of "power"
sched: Let 'struct sched_group_power' care about CPU capacity
sched/fair: Disambiguate existing/remaining "capacity" usage
sched/fair: Change "has_capacity" to "has_free_capacity"
sched/fair: Remove "power" from 'struct numa_stats'
sched: Fix signedness bug in yield_to()
sched/fair: Use time_after() in record_wakee()
sched/balancing: Reduce the rate of needless idle load balancing
sched/fair: Fix unlocked reads of some cfs_b->quota/period
Pull more perf updates from Ingo Molnar:
"A second round of perf updates:
- wide reaching kprobes sanitization and robustization, with the hope
of fixing all 'probe this function crashes the kernel' bugs, by
Masami Hiramatsu.
- uprobes updates from Oleg Nesterov: tmpfs support, corner case
fixes and robustization work.
- perf tooling updates and fixes from Jiri Olsa, Namhyung Ki, Arnaldo
et al:
* Add support to accumulate hist periods (Namhyung Kim)
* various fixes, refactorings and enhancements"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (101 commits)
perf: Differentiate exec() and non-exec() comm events
perf: Fix perf_event_comm() vs. exec() assumption
uprobes/x86: Rename arch_uprobe->def to ->defparam, minor comment updates
perf/documentation: Add description for conditional branch filter
perf/x86: Add conditional branch filtering support
perf/tool: Add conditional branch filter 'cond' to perf record
perf: Add new conditional branch filter 'PERF_SAMPLE_BRANCH_COND'
uprobes: Teach copy_insn() to support tmpfs
uprobes: Shift ->readpage check from __copy_insn() to uprobe_register()
perf/x86: Use common PMU interrupt disabled code
perf/ARM: Use common PMU interrupt disabled code
perf: Disable sampled events if no PMU interrupt
perf: Fix use after free in perf_remove_from_context()
perf tools: Fix 'make help' message error
perf record: Fix poll return value propagation
perf tools: Move elide bool into perf_hpp_fmt struct
perf tools: Remove elide setup for SORT_MODE__MEMORY mode
perf tools: Fix "==" into "=" in ui_browser__warning assignment
perf tools: Allow overriding sysfs and proc finding with env var
perf tools: Consider header files outside perf directory in tags target
...
Fix this dependency on the locking tree's smp_mb*() API changes:
kernel/sched/idle.c:247:3: error: implicit declaration of function ‘smp_mb__after_atomic’ [-Werror=implicit-function-declaration]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull cgroup updates from Tejun Heo:
"A lot of activities on cgroup side. Heavy restructuring including
locking simplification took place to improve the code base and enable
implementation of the unified hierarchy, which currently exists behind
a __DEVEL__ mount option. The core support is mostly complete but
individual controllers need further work. To explain the design and
rationales of the the unified hierarchy
Documentation/cgroups/unified-hierarchy.txt
is added.
Another notable change is css (cgroup_subsys_state - what each
controller uses to identify and interact with a cgroup) iteration
update. This is part of continuing updates on css object lifetime and
visibility. cgroup started with reference count draining on removal
way back and is now reaching a point where csses behave and are
iterated like normal refcnted objects albeit with some complexities to
allow distinguishing the state where they're being deleted. The css
iteration update isn't taken advantage of yet but is planned to be
used to simplify memcg significantly"
* 'for-3.16' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (77 commits)
cgroup: disallow disabled controllers on the default hierarchy
cgroup: don't destroy the default root
cgroup: disallow debug controller on the default hierarchy
cgroup: clean up MAINTAINERS entries
cgroup: implement css_tryget()
device_cgroup: use css_has_online_children() instead of has_children()
cgroup: convert cgroup_has_live_children() into css_has_online_children()
cgroup: use CSS_ONLINE instead of CGRP_DEAD
cgroup: iterate cgroup_subsys_states directly
cgroup: introduce CSS_RELEASED and reduce css iteration fallback window
cgroup: move cgroup->serial_nr into cgroup_subsys_state
cgroup: link all cgroup_subsys_states in their sibling lists
cgroup: move cgroup->sibling and ->children into cgroup_subsys_state
cgroup: remove cgroup->parent
device_cgroup: remove direct access to cgroup->children
memcg: update memcg_has_children() to use css_next_child()
memcg: remove tasks/children test from mem_cgroup_force_empty()
cgroup: remove css_parent()
cgroup: skip refcnting on normal root csses and cgrp_dfl_root self css
cgroup: use cgroup->self.refcnt for cgroup refcnting
...
This function is supposed to return true if the new load imbalance is
worse than the old one. It didn't. I can only hope brown paper bags
are in style.
Now things converge much better on both the 4 node and 8 node systems.
I am not sure why this did not seem to impact specjbb performance on the
4 node system, which is the system I have full-time access to.
This bug was introduced recently, with commit e63da03639 ("sched/numa:
Allow task switch if load imbalance improves")
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that 3.15 is released, this merges the 'next' branch into 'master',
bringing us to the normal situation where my 'master' branch is the
merge window.
* accumulated work in next: (6809 commits)
ufs: sb mutex merge + mutex_destroy
powerpc: update comments for generic idle conversion
cris: update comments for generic idle conversion
idle: remove cpu_idle() forward declarations
nbd: zero from and len fields in NBD_CMD_DISCONNECT.
mm: convert some level-less printks to pr_*
MAINTAINERS: adi-buildroot-devel is moderated
MAINTAINERS: add linux-api for review of API/ABI changes
mm/kmemleak-test.c: use pr_fmt for logging
fs/dlm/debug_fs.c: replace seq_printf by seq_puts
fs/dlm/lockspace.c: convert simple_str to kstr
fs/dlm/config.c: convert simple_str to kstr
mm: mark remap_file_pages() syscall as deprecated
mm: memcontrol: remove unnecessary memcg argument from soft limit functions
mm: memcontrol: clean up memcg zoneinfo lookup
mm/memblock.c: call kmemleak directly from memblock_(alloc|free)
mm/mempool.c: update the kmemleak stack trace for mempool allocations
lib/radix-tree.c: update the kmemleak stack trace for radix tree allocations
mm: introduce kmemleak_update_trace()
mm/kmemleak.c: use %u to print ->checksum
...
Pull scheduler fixes from Ingo Molnar:
"Four misc fixes: each was deemed serious enough to warrant v3.15
inclusion"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/fair: Fix tg_set_cfs_bandwidth() deadlock on rq->lock
sched/dl: Fix race in dl_task_timer()
sched: Fix sched_policy < 0 comparison
sched/numa: Fix use of spin_{un}lock_irq() when interrupts are disabled
There was a prototype for it added to kernel/sched/sched.h
at the same time the extern was added, so the extern in
the C file was never really ever needed.
See commit 332ac17ef5
("sched/deadline: Add bandwidth management for SCHED_DEADLINE
tasks") for details.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dario Faggioli <raistlin@linux.it>
Link: http://lkml.kernel.org/r/1400013605-18717-1-git-send-email-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
[ This series reduces the number of IPIs on Andy's workload by something like
99%. It's down from many hundreds per second to very few.
The basic idea behind this series is to make TIF_POLLING_NRFLAG be a
reliable indication that the idle task is polling. Once that's done,
the rest is reasonably straightforward. ]
When enqueueing tasks on remote LLC domains, we send an IPI to do the
work 'locally' and avoid bouncing all the cachelines over.
However, when the remote CPU is idle (and polling, say x86 mwait), we
don't need to send an IPI, we can simply kick the TIF word to wake it
up and have the 'idle' loop do the work.
So when _TIF_POLLING_NRFLAG is set, but _TIF_NEED_RESCHED is not (yet)
set, set _TIF_NEED_RESCHED and avoid sending the IPI.
Much-requested-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
[Edited by Andy Lutomirski, but this is mostly Peter Zijlstra's code.]
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Cc: nicolas.pitre@linaro.org
Cc: daniel.lezcano@linaro.org
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: umgwanakikbuti@gmail.com
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/ce06f8b02e7e337be63e97597fc4b248d3aa6f9b.1401902905.git.luto@amacapital.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, the only real guarantee provided by the polling bit is
that, if you hold rq->lock and the polling bit is set, then you can
set need_resched to force a reschedule.
The only reason the lock is needed is that the idle thread might not
be running at all when setting its need_resched bit, and rq->lock
keeps it pinned.
This is easy to fix: just clear the polling bit before scheduling.
Now the idle thread's polling bit is only ever set when
rq->curr == rq->idle.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: nicolas.pitre@linaro.org
Cc: daniel.lezcano@linaro.org
Cc: umgwanakikbuti@gmail.com
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/b2059fcb4c613d520cb503b6fad6e47033c7c203.1401902905.git.luto@amacapital.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Variable "rt_rq" is used only in block "for_each_sched_rt_entity" so the
value assigned to it at the beginning of the update_curr_rt(...) gets
overwritten without ever being read. Remove redundant assignment and
move variable declaration to the block in which it is being used.
Signed-off-by: Giedrius Rekasius <giedrius.rekasius@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: kernel-janitors@vger.kernel.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1401027811-30066-1-git-send-email-giedrius.rekasius@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is better not to think about compute capacity as being equivalent
to "CPU power". The upcoming "power aware" scheduler work may create
confusion with the notion of energy consumption if "power" is used too
liberally.
Let's rename the following feature flags since they do relate to capacity:
SD_SHARE_CPUPOWER -> SD_SHARE_CPUCAPACITY
ARCH_POWER -> ARCH_CAPACITY
NONTASK_POWER -> NONTASK_CAPACITY
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linaro-kernel@lists.linaro.org
Cc: Andy Fleming <afleming@freescale.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vasant Hegde <hegdevasant@linux.vnet.ibm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: devicetree@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Link: http://lkml.kernel.org/n/tip-e93lpnxb87owfievqatey6b5@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is better not to think about compute capacity as being equivalent
to "CPU power". The upcoming "power aware" scheduler work may create
confusion with the notion of energy consumption if "power" is used too
liberally.
This contains the architecture visible changes. Incidentally, only ARM
takes advantage of the available pow^H^H^Hcapacity scaling hooks and
therefore those changes outside kernel/sched/ are confined to one ARM
specific file. The default arch_scale_smt_power() hook is not overridden
by anyone.
Replacements are as follows:
arch_scale_freq_power --> arch_scale_freq_capacity
arch_scale_smt_power --> arch_scale_smt_capacity
SCHED_POWER_SCALE --> SCHED_CAPACITY_SCALE
SCHED_POWER_SHIFT --> SCHED_CAPACITY_SHIFT
The local usage of "power" in arch/arm/kernel/topology.c is also changed
to "capacity" as appropriate.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linaro-kernel@lists.linaro.org
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Brown <broonie@linaro.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: devicetree@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/n/tip-48zba9qbznvglwelgq2cfygh@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is better not to think about compute capacity as being equivalent
to "CPU power". The upcoming "power aware" scheduler work may create
confusion with the notion of energy consumption if "power" is used too
liberally.
This is the remaining "power" -> "capacity" rename for local symbols.
Those symbols visible to the rest of the kernel are not included yet.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linaro-kernel@lists.linaro.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/n/tip-yyyhohzhkwnaotr3lx8zd5aa@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is better not to think about compute capacity as being equivalent
to "CPU power". The upcoming "power aware" scheduler work may create
confusion with the notion of energy consumption if "power" is used too
liberally.
Since struct sched_group_power is really about compute capacity of sched
groups, let's rename it to struct sched_group_capacity. Similarly sgp
becomes sgc. Related variables and functions dealing with groups are also
adjusted accordingly.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linaro-kernel@lists.linaro.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/n/tip-5yeix833vvgf2uyj5o36hpu9@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We have "power" (which should actually become "capacity") and "capacity"
which is a scaled down "capacity factor" in terms of unitary tasks.
Let's use "capacity_factor" to make room for proper usage of "capacity"
later.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linaro-kernel@lists.linaro.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/n/tip-gk1co8sqdev3763opqm6ovml@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The capacity of a CPU/group should be some intrinsic value that doesn't
change with task placement. It is like a container which capacity is
stable regardless of the amount of liquid in it (its "utilization")...
unless the container itself is crushed that is, but that's another story.
Therefore let's rename "has_capacity" to "has_free_capacity" in order to
better convey the wanted meaning.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linaro-kernel@lists.linaro.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/n/tip-djzkk027jm0e8x8jxy70opzh@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is better not to think about compute capacity as being equivalent
to "CPU power". The upcoming "power aware" scheduler work may create
confusion with the notion of energy consumption if "power" is used too
liberally.
To make things explicit and not create more confusion with the existing
"capacity" member, let's rename things as follows:
power -> compute_capacity
capacity -> task_capacity
Note: none of those fields are actually used outside update_numa_stats().
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linaro-kernel@lists.linaro.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/n/tip-2e2ndymj5gyshyjq8am79f20@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
yield_to() is supposed to return -ESRCH if there is no task to
yield to, but because the type is bool that is the same as returning
true.
The only place I see which cares is kvm_vcpu_on_spin().
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Raghavendra <raghavendra.kt@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: kvm@vger.kernel.org
Link: http://lkml.kernel.org/r/20140523102042.GA7267@mwanda
Signed-off-by: Ingo Molnar <mingo@kernel.org>
To be future-proof and for better readability the time comparisons are modified
to use time_after() instead of plain, error-prone math.
Signed-off-by: Manuel Schölling <manuel.schoelling@gmx.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1400780723-24626-1-git-send-email-manuel.schoelling@gmx.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current no_hz idle load balancer do load balancing for *all* idle cpus,
even though the time due to load balance for a particular
idle cpu could be still a while in the future. This introduces a much
higher load balancing rate than what is necessary. The patch
changes the behavior by only doing idle load balancing on
behalf of an idle cpu only when it is due for load balancing.
On SGI's systems with over 3000 cores, the cpu responsible for idle balancing
got overwhelmed with idle balancing, and introduces a lot of OS noise
to workloads. This patch fixes the issue.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Acked-by: Russ Anderson <rja@sgi.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Jason Low <jason.low2@hp.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Hedi Berriche <hedi@sgi.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: MichelLespinasse <walken@google.com>
Cc: Peter Hurley <peter@hurleysoftware.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1400621967.2970.280.camel@schen9-DESK
Signed-off-by: Ingo Molnar <mingo@kernel.org>
sched_cfs_period_timer() reads cfs_b->period without locks before calling
do_sched_cfs_period_timer(), and similarly unthrottle_offline_cfs_rqs()
would read cfs_b->period without the right lock. Thus a simultaneous
change of bandwidth could cause corruption on any platform where ktime_t
or u64 writes/reads are not atomic.
Extend cfs_b->lock from do_sched_cfs_period_timer() to include the read of
cfs_b->period to solve that issue; unthrottle_offline_cfs_rqs() can just
use 1 rather than the exact quota, much like distribute_cfs_runtime()
does.
There is also an unlocked read of cfs_b->runtime_expires, but a race
there would only delay runtime expiry by a tick. Still, the comparison
should just be != anyway, which clarifies even that problem.
Signed-off-by: Ben Segall <bsegall@google.com>
Tested-by: Roman Gushchin <klamm@yandex-team.ru>
[peterz: Fix compile warn]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140519224945.20303.93530.stgit@sword-of-the-dawn.mtv.corp.google.com
Cc: pjt@google.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
tg_set_cfs_bandwidth() sets cfs_b->timer_active to 0 to
force the period timer restart. It's not safe, because
can lead to deadlock, described in commit 927b54fccbf0:
"__start_cfs_bandwidth calls hrtimer_cancel while holding rq->lock,
waiting for the hrtimer to finish. However, if sched_cfs_period_timer
runs for another loop iteration, the hrtimer can attempt to take
rq->lock, resulting in deadlock."
Three CPUs must be involved:
CPU0 CPU1 CPU2
take rq->lock period timer fired
... take cfs_b lock
... ... tg_set_cfs_bandwidth()
throttle_cfs_rq() release cfs_b lock take cfs_b lock
... distribute_cfs_runtime() timer_active = 0
take cfs_b->lock wait for rq->lock ...
__start_cfs_bandwidth()
{wait for timer callback
break if timer_active == 1}
So, CPU0 and CPU1 are deadlocked.
Instead of resetting cfs_b->timer_active, tg_set_cfs_bandwidth can
wait for period timer callbacks (ignoring cfs_b->timer_active) and
restart the timer explicitly.
Signed-off-by: Roman Gushchin <klamm@yandex-team.ru>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/87wqdi9g8e.wl\%klamm@yandex-team.ru
Cc: pjt@google.com
Cc: chris.j.arges@canonical.com
Cc: gregkh@linuxfoundation.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Throttled task is still on rq, and it may be moved to other cpu
if user is playing with sched_setaffinity(). Therefore, unlocked
task_rq() access makes the race.
Juri Lelli reports he got this race when dl_bandwidth_enabled()
was not set.
Other thing, pointed by Peter Zijlstra:
"Now I suppose the problem can still actually happen when
you change the root domain and trigger a effective affinity
change that way".
To fix that we do the same as made in __task_rq_lock(). We do not
use __task_rq_lock() itself, because it has a useful lockdep check,
which is not correct in case of dl_task_timer(). We do not need
pi_lock locked here. This case is an exception (PeterZ):
"The only reason we don't strictly need ->pi_lock now is because
we're guaranteed to have p->state == TASK_RUNNING here and are
thus free of ttwu races".
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org> # v3.14+
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/3056991400578422@web14g.yandex.ru
Signed-off-by: Ingo Molnar <mingo@kernel.org>
attr.sched_policy is u32, therefore a comparison against < 0 is never true.
Fix this by casting sched_policy to int.
This issue was reported by coverity CID 1219934.
Fixes: dbdb22754f ("sched: Disallow sched_attr::sched_policy < 0")
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1401741514-7045-1-git-send-email-richard@nod.at
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As Peter Zijlstra told me, we have the following path:
do_exit()
exit_itimers()
itimer_delete()
spin_lock_irqsave(&timer->it_lock, &flags);
timer_delete_hook(timer);
kc->timer_del(timer) := posix_cpu_timer_del()
put_task_struct()
__put_task_struct()
task_numa_free()
spin_lock(&grp->lock);
Which means that task_numa_free() can be called with interrupts
disabled, which means that we should not be using spin_lock_irq() but
spin_lock_irqsave() instead. Otherwise we are enabling interrupts while
holding an interrupt unsafe lock!
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner<tglx@linutronix.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140527182541.GH11096@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>