/* * Request reply cache. This is currently a global cache, but this may * change in the future and be a per-client cache. * * This code is heavily inspired by the 44BSD implementation, although * it does things a bit differently. * * Copyright (C) 1995, 1996 Olaf Kirch */ #include #include #include #include "nfsd.h" #include "cache.h" #define NFSDDBG_FACILITY NFSDDBG_REPCACHE #define HASHSIZE 64 static struct hlist_head * cache_hash; static struct list_head lru_head; static int cache_disabled = 1; static struct kmem_cache *drc_slab; static unsigned int num_drc_entries; static unsigned int max_drc_entries; /* * Calculate the hash index from an XID. */ static inline u32 request_hash(u32 xid) { u32 h = xid; h ^= (xid >> 24); return h & (HASHSIZE-1); } static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec); /* * locking for the reply cache: * A cache entry is "single use" if c_state == RC_INPROG * Otherwise, it when accessing _prev or _next, the lock must be held. */ static DEFINE_SPINLOCK(cache_lock); /* * Put a cap on the size of the DRC based on the amount of available * low memory in the machine. * * 64MB: 8192 * 128MB: 11585 * 256MB: 16384 * 512MB: 23170 * 1GB: 32768 * 2GB: 46340 * 4GB: 65536 * 8GB: 92681 * 16GB: 131072 * * ...with a hard cap of 256k entries. In the worst case, each entry will be * ~1k, so the above numbers should give a rough max of the amount of memory * used in k. */ static unsigned int nfsd_cache_size_limit(void) { unsigned int limit; unsigned long low_pages = totalram_pages - totalhigh_pages; limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10); return min_t(unsigned int, limit, 256*1024); } static struct svc_cacherep * nfsd_reply_cache_alloc(void) { struct svc_cacherep *rp; rp = kmem_cache_alloc(drc_slab, GFP_KERNEL); if (rp) { rp->c_state = RC_UNUSED; rp->c_type = RC_NOCACHE; INIT_LIST_HEAD(&rp->c_lru); INIT_HLIST_NODE(&rp->c_hash); } return rp; } static void nfsd_reply_cache_free_locked(struct svc_cacherep *rp) { if (rp->c_type == RC_REPLBUFF) kfree(rp->c_replvec.iov_base); hlist_del(&rp->c_hash); list_del(&rp->c_lru); --num_drc_entries; kmem_cache_free(drc_slab, rp); } int nfsd_reply_cache_init(void) { drc_slab = kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep), 0, 0, NULL); if (!drc_slab) goto out_nomem; cache_hash = kcalloc(HASHSIZE, sizeof(struct hlist_head), GFP_KERNEL); if (!cache_hash) goto out_nomem; INIT_LIST_HEAD(&lru_head); max_drc_entries = nfsd_cache_size_limit(); num_drc_entries = 0; cache_disabled = 0; return 0; out_nomem: printk(KERN_ERR "nfsd: failed to allocate reply cache\n"); nfsd_reply_cache_shutdown(); return -ENOMEM; } void nfsd_reply_cache_shutdown(void) { struct svc_cacherep *rp; while (!list_empty(&lru_head)) { rp = list_entry(lru_head.next, struct svc_cacherep, c_lru); nfsd_reply_cache_free_locked(rp); } cache_disabled = 1; kfree (cache_hash); cache_hash = NULL; if (drc_slab) { kmem_cache_destroy(drc_slab); drc_slab = NULL; } } /* * Move cache entry to end of LRU list */ static void lru_put_end(struct svc_cacherep *rp) { rp->c_timestamp = jiffies; list_move_tail(&rp->c_lru, &lru_head); } /* * Move a cache entry from one hash list to another */ static void hash_refile(struct svc_cacherep *rp) { hlist_del_init(&rp->c_hash); hlist_add_head(&rp->c_hash, cache_hash + request_hash(rp->c_xid)); } static inline bool nfsd_cache_entry_expired(struct svc_cacherep *rp) { return rp->c_state != RC_INPROG && time_after(jiffies, rp->c_timestamp + RC_EXPIRE); } /* * Search the request hash for an entry that matches the given rqstp. * Must be called with cache_lock held. Returns the found entry or * NULL on failure. */ static struct svc_cacherep * nfsd_cache_search(struct svc_rqst *rqstp) { struct svc_cacherep *rp; struct hlist_node *hn; struct hlist_head *rh; __be32 xid = rqstp->rq_xid; u32 proto = rqstp->rq_prot, vers = rqstp->rq_vers, proc = rqstp->rq_proc; rh = &cache_hash[request_hash(xid)]; hlist_for_each_entry(rp, hn, rh, c_hash) { if (rp->c_state != RC_UNUSED && xid == rp->c_xid && proc == rp->c_proc && proto == rp->c_prot && vers == rp->c_vers && !nfsd_cache_entry_expired(rp) && rpc_cmp_addr(svc_addr(rqstp), (struct sockaddr *)&rp->c_addr) && rpc_get_port(svc_addr(rqstp)) == rpc_get_port((struct sockaddr *)&rp->c_addr)) return rp; } return NULL; } /* * Try to find an entry matching the current call in the cache. When none * is found, we grab the oldest unlocked entry off the LRU list. * Note that no operation within the loop may sleep. */ int nfsd_cache_lookup(struct svc_rqst *rqstp) { struct svc_cacherep *rp, *found; __be32 xid = rqstp->rq_xid; u32 proto = rqstp->rq_prot, vers = rqstp->rq_vers, proc = rqstp->rq_proc; unsigned long age; int type = rqstp->rq_cachetype; int rtn; rqstp->rq_cacherep = NULL; if (cache_disabled || type == RC_NOCACHE) { nfsdstats.rcnocache++; return RC_DOIT; } spin_lock(&cache_lock); rtn = RC_DOIT; rp = nfsd_cache_search(rqstp); if (rp) goto found_entry; /* Try to use the first entry on the LRU */ if (!list_empty(&lru_head)) { rp = list_first_entry(&lru_head, struct svc_cacherep, c_lru); if (nfsd_cache_entry_expired(rp) || num_drc_entries >= max_drc_entries) goto setup_entry; } spin_unlock(&cache_lock); rp = nfsd_reply_cache_alloc(); if (!rp) { dprintk("nfsd: unable to allocate DRC entry!\n"); return RC_DOIT; } spin_lock(&cache_lock); ++num_drc_entries; /* * Must search again just in case someone inserted one * after we dropped the lock above. */ found = nfsd_cache_search(rqstp); if (found) { nfsd_reply_cache_free_locked(rp); rp = found; goto found_entry; } /* * We're keeping the one we just allocated. Are we now over the * limit? Prune one off the tip of the LRU in trade for the one we * just allocated if so. */ if (num_drc_entries >= max_drc_entries) nfsd_reply_cache_free_locked(list_first_entry(&lru_head, struct svc_cacherep, c_lru)); setup_entry: nfsdstats.rcmisses++; rqstp->rq_cacherep = rp; rp->c_state = RC_INPROG; rp->c_xid = xid; rp->c_proc = proc; rpc_copy_addr((struct sockaddr *)&rp->c_addr, svc_addr(rqstp)); rpc_set_port((struct sockaddr *)&rp->c_addr, rpc_get_port(svc_addr(rqstp))); rp->c_prot = proto; rp->c_vers = vers; hash_refile(rp); lru_put_end(rp); /* release any buffer */ if (rp->c_type == RC_REPLBUFF) { kfree(rp->c_replvec.iov_base); rp->c_replvec.iov_base = NULL; } rp->c_type = RC_NOCACHE; out: spin_unlock(&cache_lock); return rtn; found_entry: nfsdstats.rchits++; /* We found a matching entry which is either in progress or done. */ age = jiffies - rp->c_timestamp; lru_put_end(rp); rtn = RC_DROPIT; /* Request being processed or excessive rexmits */ if (rp->c_state == RC_INPROG || age < RC_DELAY) goto out; /* From the hall of fame of impractical attacks: * Is this a user who tries to snoop on the cache? */ rtn = RC_DOIT; if (!rqstp->rq_secure && rp->c_secure) goto out; /* Compose RPC reply header */ switch (rp->c_type) { case RC_NOCACHE: break; case RC_REPLSTAT: svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat); rtn = RC_REPLY; break; case RC_REPLBUFF: if (!nfsd_cache_append(rqstp, &rp->c_replvec)) goto out; /* should not happen */ rtn = RC_REPLY; break; default: printk(KERN_WARNING "nfsd: bad repcache type %d\n", rp->c_type); nfsd_reply_cache_free_locked(rp); } goto out; } /* * Update a cache entry. This is called from nfsd_dispatch when * the procedure has been executed and the complete reply is in * rqstp->rq_res. * * We're copying around data here rather than swapping buffers because * the toplevel loop requires max-sized buffers, which would be a waste * of memory for a cache with a max reply size of 100 bytes (diropokres). * * If we should start to use different types of cache entries tailored * specifically for attrstat and fh's, we may save even more space. * * Also note that a cachetype of RC_NOCACHE can legally be passed when * nfsd failed to encode a reply that otherwise would have been cached. * In this case, nfsd_cache_update is called with statp == NULL. */ void nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp) { struct svc_cacherep *rp; struct kvec *resv = &rqstp->rq_res.head[0], *cachv; int len; if (!(rp = rqstp->rq_cacherep) || cache_disabled) return; len = resv->iov_len - ((char*)statp - (char*)resv->iov_base); len >>= 2; /* Don't cache excessive amounts of data and XDR failures */ if (!statp || len > (256 >> 2)) { rp->c_state = RC_UNUSED; return; } switch (cachetype) { case RC_REPLSTAT: if (len != 1) printk("nfsd: RC_REPLSTAT/reply len %d!\n",len); rp->c_replstat = *statp; break; case RC_REPLBUFF: cachv = &rp->c_replvec; cachv->iov_base = kmalloc(len << 2, GFP_KERNEL); if (!cachv->iov_base) { rp->c_state = RC_UNUSED; return; } cachv->iov_len = len << 2; memcpy(cachv->iov_base, statp, len << 2); break; } spin_lock(&cache_lock); lru_put_end(rp); rp->c_secure = rqstp->rq_secure; rp->c_type = cachetype; rp->c_state = RC_DONE; spin_unlock(&cache_lock); return; } /* * Copy cached reply to current reply buffer. Should always fit. * FIXME as reply is in a page, we should just attach the page, and * keep a refcount.... */ static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data) { struct kvec *vec = &rqstp->rq_res.head[0]; if (vec->iov_len + data->iov_len > PAGE_SIZE) { printk(KERN_WARNING "nfsd: cached reply too large (%Zd).\n", data->iov_len); return 0; } memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len); vec->iov_len += data->iov_len; return 1; }