/* * lm63.c - driver for the National Semiconductor LM63 temperature sensor * with integrated fan control * Copyright (C) 2004-2008 Jean Delvare * Based on the lm90 driver. * * The LM63 is a sensor chip made by National Semiconductor. It measures * two temperatures (its own and one external one) and the speed of one * fan, those speed it can additionally control. Complete datasheet can be * obtained from National's website at: * http://www.national.com/pf/LM/LM63.html * * The LM63 is basically an LM86 with fan speed monitoring and control * capabilities added. It misses some of the LM86 features though: * - No low limit for local temperature. * - No critical limit for local temperature. * - Critical limit for remote temperature can be changed only once. We * will consider that the critical limit is read-only. * * The datasheet isn't very clear about what the tachometer reading is. * I had a explanation from National Semiconductor though. The two lower * bits of the read value have to be masked out. The value is still 16 bit * in width. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include #include #include /* * Addresses to scan * Address is fully defined internally and cannot be changed except for * LM64 which has one pin dedicated to address selection. * LM63 and LM96163 have address 0x4c. * LM64 can have address 0x18 or 0x4e. */ static const unsigned short normal_i2c[] = { 0x18, 0x4c, 0x4e, I2C_CLIENT_END }; /* * The LM63 registers */ #define LM63_REG_CONFIG1 0x03 #define LM63_REG_CONVRATE 0x04 #define LM63_REG_CONFIG2 0xBF #define LM63_REG_CONFIG_FAN 0x4A #define LM63_REG_TACH_COUNT_MSB 0x47 #define LM63_REG_TACH_COUNT_LSB 0x46 #define LM63_REG_TACH_LIMIT_MSB 0x49 #define LM63_REG_TACH_LIMIT_LSB 0x48 #define LM63_REG_PWM_VALUE 0x4C #define LM63_REG_PWM_FREQ 0x4D #define LM63_REG_LUT_TEMP_HYST 0x4F #define LM63_REG_LUT_TEMP(nr) (0x50 + 2 * (nr)) #define LM63_REG_LUT_PWM(nr) (0x51 + 2 * (nr)) #define LM63_REG_LOCAL_TEMP 0x00 #define LM63_REG_LOCAL_HIGH 0x05 #define LM63_REG_REMOTE_TEMP_MSB 0x01 #define LM63_REG_REMOTE_TEMP_LSB 0x10 #define LM63_REG_REMOTE_OFFSET_MSB 0x11 #define LM63_REG_REMOTE_OFFSET_LSB 0x12 #define LM63_REG_REMOTE_HIGH_MSB 0x07 #define LM63_REG_REMOTE_HIGH_LSB 0x13 #define LM63_REG_REMOTE_LOW_MSB 0x08 #define LM63_REG_REMOTE_LOW_LSB 0x14 #define LM63_REG_REMOTE_TCRIT 0x19 #define LM63_REG_REMOTE_TCRIT_HYST 0x21 #define LM63_REG_ALERT_STATUS 0x02 #define LM63_REG_ALERT_MASK 0x16 #define LM63_REG_MAN_ID 0xFE #define LM63_REG_CHIP_ID 0xFF #define LM96163_REG_TRUTHERM 0x30 #define LM96163_REG_REMOTE_TEMP_U_MSB 0x31 #define LM96163_REG_REMOTE_TEMP_U_LSB 0x32 #define LM96163_REG_CONFIG_ENHANCED 0x45 #define LM63_MAX_CONVRATE 9 #define LM63_MAX_CONVRATE_HZ 32 #define LM96163_MAX_CONVRATE_HZ 26 /* * Conversions and various macros * For tachometer counts, the LM63 uses 16-bit values. * For local temperature and high limit, remote critical limit and hysteresis * value, it uses signed 8-bit values with LSB = 1 degree Celsius. * For remote temperature, low and high limits, it uses signed 11-bit values * with LSB = 0.125 degree Celsius, left-justified in 16-bit registers. * For LM64 the actual remote diode temperature is 16 degree Celsius higher * than the register reading. Remote temperature setpoints have to be * adapted accordingly. */ #define FAN_FROM_REG(reg) ((reg) == 0xFFFC || (reg) == 0 ? 0 : \ 5400000 / (reg)) #define FAN_TO_REG(val) ((val) <= 82 ? 0xFFFC : \ (5400000 / (val)) & 0xFFFC) #define TEMP8_FROM_REG(reg) ((reg) * 1000) #define TEMP8_TO_REG(val) ((val) <= -128000 ? -128 : \ (val) >= 127000 ? 127 : \ (val) < 0 ? ((val) - 500) / 1000 : \ ((val) + 500) / 1000) #define TEMP8U_TO_REG(val) ((val) <= 0 ? 0 : \ (val) >= 255000 ? 255 : \ ((val) + 500) / 1000) #define TEMP11_FROM_REG(reg) ((reg) / 32 * 125) #define TEMP11_TO_REG(val) ((val) <= -128000 ? 0x8000 : \ (val) >= 127875 ? 0x7FE0 : \ (val) < 0 ? ((val) - 62) / 125 * 32 : \ ((val) + 62) / 125 * 32) #define TEMP11U_TO_REG(val) ((val) <= 0 ? 0 : \ (val) >= 255875 ? 0xFFE0 : \ ((val) + 62) / 125 * 32) #define HYST_TO_REG(val) ((val) <= 0 ? 0 : \ (val) >= 127000 ? 127 : \ ((val) + 500) / 1000) #define UPDATE_INTERVAL(max, rate) \ ((1000 << (LM63_MAX_CONVRATE - (rate))) / (max)) /* * Functions declaration */ static int lm63_probe(struct i2c_client *client, const struct i2c_device_id *id); static int lm63_remove(struct i2c_client *client); static struct lm63_data *lm63_update_device(struct device *dev); static int lm63_detect(struct i2c_client *client, struct i2c_board_info *info); static void lm63_init_client(struct i2c_client *client); enum chips { lm63, lm64, lm96163 }; /* * Driver data (common to all clients) */ static const struct i2c_device_id lm63_id[] = { { "lm63", lm63 }, { "lm64", lm64 }, { "lm96163", lm96163 }, { } }; MODULE_DEVICE_TABLE(i2c, lm63_id); static struct i2c_driver lm63_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "lm63", }, .probe = lm63_probe, .remove = lm63_remove, .id_table = lm63_id, .detect = lm63_detect, .address_list = normal_i2c, }; /* * Client data (each client gets its own) */ struct lm63_data { struct device *hwmon_dev; struct mutex update_lock; char valid; /* zero until following fields are valid */ char lut_valid; /* zero until lut fields are valid */ unsigned long last_updated; /* in jiffies */ unsigned long lut_last_updated; /* in jiffies */ enum chips kind; int temp2_offset; int update_interval; /* in milliseconds */ int max_convrate_hz; /* registers values */ u8 config, config_fan; u16 fan[2]; /* 0: input 1: low limit */ u8 pwm1_freq; u8 pwm1[9]; /* 0: current output 1-8: lookup table */ s8 temp8[11]; /* 0: local input 1: local high limit 2: remote critical limit 3-10: lookup table */ s16 temp11[4]; /* 0: remote input 1: remote low limit 2: remote high limit 3: remote offset */ u16 temp11u; /* remote input (unsigned) */ u8 temp2_crit_hyst; u8 lut_temp_hyst; u8 alarms; bool pwm_highres; bool lut_temp_highres; bool remote_unsigned; /* true if unsigned remote upper limits */ bool trutherm; }; static inline int temp8_from_reg(struct lm63_data *data, int nr) { if (data->remote_unsigned) return TEMP8_FROM_REG((u8)data->temp8[nr]); return TEMP8_FROM_REG(data->temp8[nr]); } static inline int lut_temp_from_reg(struct lm63_data *data, int nr) { return data->temp8[nr] * (data->lut_temp_highres ? 500 : 1000); } /* * Sysfs callback functions and files */ static ssize_t show_fan(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct lm63_data *data = lm63_update_device(dev); return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[attr->index])); } static ssize_t set_fan(struct device *dev, struct device_attribute *dummy, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct lm63_data *data = i2c_get_clientdata(client); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->fan[1] = FAN_TO_REG(val); i2c_smbus_write_byte_data(client, LM63_REG_TACH_LIMIT_LSB, data->fan[1] & 0xFF); i2c_smbus_write_byte_data(client, LM63_REG_TACH_LIMIT_MSB, data->fan[1] >> 8); mutex_unlock(&data->update_lock); return count; } static ssize_t show_pwm1(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct lm63_data *data = lm63_update_device(dev); int nr = attr->index; int pwm; if (data->pwm_highres) pwm = data->pwm1[nr]; else pwm = data->pwm1[nr] >= 2 * data->pwm1_freq ? 255 : (data->pwm1[nr] * 255 + data->pwm1_freq) / (2 * data->pwm1_freq); return sprintf(buf, "%d\n", pwm); } static ssize_t set_pwm1(struct device *dev, struct device_attribute *dummy, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct lm63_data *data = i2c_get_clientdata(client); unsigned long val; int err; if (!(data->config_fan & 0x20)) /* register is read-only */ return -EPERM; err = kstrtoul(buf, 10, &val); if (err) return err; val = SENSORS_LIMIT(val, 0, 255); mutex_lock(&data->update_lock); data->pwm1[0] = data->pwm_highres ? val : (val * data->pwm1_freq * 2 + 127) / 255; i2c_smbus_write_byte_data(client, LM63_REG_PWM_VALUE, data->pwm1[0]); mutex_unlock(&data->update_lock); return count; } static ssize_t show_pwm1_enable(struct device *dev, struct device_attribute *dummy, char *buf) { struct lm63_data *data = lm63_update_device(dev); return sprintf(buf, "%d\n", data->config_fan & 0x20 ? 1 : 2); } /* * There are 8bit registers for both local(temp1) and remote(temp2) sensor. * For remote sensor registers temp2_offset has to be considered, * for local sensor it must not. * So we need separate 8bit accessors for local and remote sensor. */ static ssize_t show_local_temp8(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct lm63_data *data = lm63_update_device(dev); return sprintf(buf, "%d\n", TEMP8_FROM_REG(data->temp8[attr->index])); } static ssize_t show_remote_temp8(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct lm63_data *data = lm63_update_device(dev); return sprintf(buf, "%d\n", temp8_from_reg(data, attr->index) + data->temp2_offset); } static ssize_t show_lut_temp(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct lm63_data *data = lm63_update_device(dev); return sprintf(buf, "%d\n", lut_temp_from_reg(data, attr->index) + data->temp2_offset); } static ssize_t set_temp8(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct i2c_client *client = to_i2c_client(dev); struct lm63_data *data = i2c_get_clientdata(client); int nr = attr->index; int reg = nr == 2 ? LM63_REG_REMOTE_TCRIT : LM63_REG_LOCAL_HIGH; long val; int err; int temp; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); if (nr == 2) { if (data->remote_unsigned) temp = TEMP8U_TO_REG(val - data->temp2_offset); else temp = TEMP8_TO_REG(val - data->temp2_offset); } else { temp = TEMP8_TO_REG(val); } data->temp8[nr] = temp; i2c_smbus_write_byte_data(client, reg, temp); mutex_unlock(&data->update_lock); return count; } static ssize_t show_temp11(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct lm63_data *data = lm63_update_device(dev); int nr = attr->index; int temp; if (!nr) { /* * Use unsigned temperature unless its value is zero. * If it is zero, use signed temperature. */ if (data->temp11u) temp = TEMP11_FROM_REG(data->temp11u); else temp = TEMP11_FROM_REG(data->temp11[nr]); } else { if (data->remote_unsigned && nr == 2) temp = TEMP11_FROM_REG((u16)data->temp11[nr]); else temp = TEMP11_FROM_REG(data->temp11[nr]); } return sprintf(buf, "%d\n", temp + data->temp2_offset); } static ssize_t set_temp11(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { static const u8 reg[6] = { LM63_REG_REMOTE_LOW_MSB, LM63_REG_REMOTE_LOW_LSB, LM63_REG_REMOTE_HIGH_MSB, LM63_REG_REMOTE_HIGH_LSB, LM63_REG_REMOTE_OFFSET_MSB, LM63_REG_REMOTE_OFFSET_LSB, }; struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct i2c_client *client = to_i2c_client(dev); struct lm63_data *data = i2c_get_clientdata(client); long val; int err; int nr = attr->index; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); if (data->remote_unsigned && nr == 2) data->temp11[nr] = TEMP11U_TO_REG(val - data->temp2_offset); else data->temp11[nr] = TEMP11_TO_REG(val - data->temp2_offset); i2c_smbus_write_byte_data(client, reg[(nr - 1) * 2], data->temp11[nr] >> 8); i2c_smbus_write_byte_data(client, reg[(nr - 1) * 2 + 1], data->temp11[nr] & 0xff); mutex_unlock(&data->update_lock); return count; } /* * Hysteresis register holds a relative value, while we want to present * an absolute to user-space */ static ssize_t show_temp2_crit_hyst(struct device *dev, struct device_attribute *dummy, char *buf) { struct lm63_data *data = lm63_update_device(dev); return sprintf(buf, "%d\n", temp8_from_reg(data, 2) + data->temp2_offset - TEMP8_FROM_REG(data->temp2_crit_hyst)); } static ssize_t show_lut_temp_hyst(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct lm63_data *data = lm63_update_device(dev); return sprintf(buf, "%d\n", lut_temp_from_reg(data, attr->index) + data->temp2_offset - TEMP8_FROM_REG(data->lut_temp_hyst)); } /* * And now the other way around, user-space provides an absolute * hysteresis value and we have to store a relative one */ static ssize_t set_temp2_crit_hyst(struct device *dev, struct device_attribute *dummy, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct lm63_data *data = i2c_get_clientdata(client); long val; int err; long hyst; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); hyst = temp8_from_reg(data, 2) + data->temp2_offset - val; i2c_smbus_write_byte_data(client, LM63_REG_REMOTE_TCRIT_HYST, HYST_TO_REG(hyst)); mutex_unlock(&data->update_lock); return count; } /* * Set conversion rate. * client->update_lock must be held when calling this function. */ static void lm63_set_convrate(struct i2c_client *client, struct lm63_data *data, unsigned int interval) { int i; unsigned int update_interval; /* Shift calculations to avoid rounding errors */ interval <<= 6; /* find the nearest update rate */ update_interval = (1 << (LM63_MAX_CONVRATE + 6)) * 1000 / data->max_convrate_hz; for (i = 0; i < LM63_MAX_CONVRATE; i++, update_interval >>= 1) if (interval >= update_interval * 3 / 4) break; i2c_smbus_write_byte_data(client, LM63_REG_CONVRATE, i); data->update_interval = UPDATE_INTERVAL(data->max_convrate_hz, i); } static ssize_t show_update_interval(struct device *dev, struct device_attribute *attr, char *buf) { struct lm63_data *data = dev_get_drvdata(dev); return sprintf(buf, "%u\n", data->update_interval); } static ssize_t set_update_interval(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct lm63_data *data = i2c_get_clientdata(client); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); lm63_set_convrate(client, data, SENSORS_LIMIT(val, 0, 100000)); mutex_unlock(&data->update_lock); return count; } static ssize_t show_type(struct device *dev, struct device_attribute *attr, char *buf) { struct i2c_client *client = to_i2c_client(dev); struct lm63_data *data = i2c_get_clientdata(client); return sprintf(buf, data->trutherm ? "1\n" : "2\n"); } static ssize_t set_type(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct lm63_data *data = i2c_get_clientdata(client); unsigned long val; int ret; u8 reg; ret = kstrtoul(buf, 10, &val); if (ret < 0) return ret; if (val != 1 && val != 2) return -EINVAL; mutex_lock(&data->update_lock); data->trutherm = val == 1; reg = i2c_smbus_read_byte_data(client, LM96163_REG_TRUTHERM) & ~0x02; i2c_smbus_write_byte_data(client, LM96163_REG_TRUTHERM, reg | (data->trutherm ? 0x02 : 0x00)); data->valid = 0; mutex_unlock(&data->update_lock); return count; } static ssize_t show_alarms(struct device *dev, struct device_attribute *dummy, char *buf) { struct lm63_data *data = lm63_update_device(dev); return sprintf(buf, "%u\n", data->alarms); } static ssize_t show_alarm(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct lm63_data *data = lm63_update_device(dev); int bitnr = attr->index; return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1); } static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0); static SENSOR_DEVICE_ATTR(fan1_min, S_IWUSR | S_IRUGO, show_fan, set_fan, 1); static SENSOR_DEVICE_ATTR(pwm1, S_IWUSR | S_IRUGO, show_pwm1, set_pwm1, 0); static DEVICE_ATTR(pwm1_enable, S_IRUGO, show_pwm1_enable, NULL); static SENSOR_DEVICE_ATTR(pwm1_auto_point1_pwm, S_IRUGO, show_pwm1, NULL, 1); static SENSOR_DEVICE_ATTR(pwm1_auto_point1_temp, S_IRUGO, show_lut_temp, NULL, 3); static SENSOR_DEVICE_ATTR(pwm1_auto_point1_temp_hyst, S_IRUGO, show_lut_temp_hyst, NULL, 3); static SENSOR_DEVICE_ATTR(pwm1_auto_point2_pwm, S_IRUGO, show_pwm1, NULL, 2); static SENSOR_DEVICE_ATTR(pwm1_auto_point2_temp, S_IRUGO, show_lut_temp, NULL, 4); static SENSOR_DEVICE_ATTR(pwm1_auto_point2_temp_hyst, S_IRUGO, show_lut_temp_hyst, NULL, 4); static SENSOR_DEVICE_ATTR(pwm1_auto_point3_pwm, S_IRUGO, show_pwm1, NULL, 3); static SENSOR_DEVICE_ATTR(pwm1_auto_point3_temp, S_IRUGO, show_lut_temp, NULL, 5); static SENSOR_DEVICE_ATTR(pwm1_auto_point3_temp_hyst, S_IRUGO, show_lut_temp_hyst, NULL, 5); static SENSOR_DEVICE_ATTR(pwm1_auto_point4_pwm, S_IRUGO, show_pwm1, NULL, 4); static SENSOR_DEVICE_ATTR(pwm1_auto_point4_temp, S_IRUGO, show_lut_temp, NULL, 6); static SENSOR_DEVICE_ATTR(pwm1_auto_point4_temp_hyst, S_IRUGO, show_lut_temp_hyst, NULL, 6); static SENSOR_DEVICE_ATTR(pwm1_auto_point5_pwm, S_IRUGO, show_pwm1, NULL, 5); static SENSOR_DEVICE_ATTR(pwm1_auto_point5_temp, S_IRUGO, show_lut_temp, NULL, 7); static SENSOR_DEVICE_ATTR(pwm1_auto_point5_temp_hyst, S_IRUGO, show_lut_temp_hyst, NULL, 7); static SENSOR_DEVICE_ATTR(pwm1_auto_point6_pwm, S_IRUGO, show_pwm1, NULL, 6); static SENSOR_DEVICE_ATTR(pwm1_auto_point6_temp, S_IRUGO, show_lut_temp, NULL, 8); static SENSOR_DEVICE_ATTR(pwm1_auto_point6_temp_hyst, S_IRUGO, show_lut_temp_hyst, NULL, 8); static SENSOR_DEVICE_ATTR(pwm1_auto_point7_pwm, S_IRUGO, show_pwm1, NULL, 7); static SENSOR_DEVICE_ATTR(pwm1_auto_point7_temp, S_IRUGO, show_lut_temp, NULL, 9); static SENSOR_DEVICE_ATTR(pwm1_auto_point7_temp_hyst, S_IRUGO, show_lut_temp_hyst, NULL, 9); static SENSOR_DEVICE_ATTR(pwm1_auto_point8_pwm, S_IRUGO, show_pwm1, NULL, 8); static SENSOR_DEVICE_ATTR(pwm1_auto_point8_temp, S_IRUGO, show_lut_temp, NULL, 10); static SENSOR_DEVICE_ATTR(pwm1_auto_point8_temp_hyst, S_IRUGO, show_lut_temp_hyst, NULL, 10); static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_local_temp8, NULL, 0); static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_local_temp8, set_temp8, 1); static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_temp11, NULL, 0); static SENSOR_DEVICE_ATTR(temp2_min, S_IWUSR | S_IRUGO, show_temp11, set_temp11, 1); static SENSOR_DEVICE_ATTR(temp2_max, S_IWUSR | S_IRUGO, show_temp11, set_temp11, 2); static SENSOR_DEVICE_ATTR(temp2_offset, S_IWUSR | S_IRUGO, show_temp11, set_temp11, 3); static SENSOR_DEVICE_ATTR(temp2_crit, S_IRUGO, show_remote_temp8, set_temp8, 2); static DEVICE_ATTR(temp2_crit_hyst, S_IWUSR | S_IRUGO, show_temp2_crit_hyst, set_temp2_crit_hyst); static DEVICE_ATTR(temp2_type, S_IWUSR | S_IRUGO, show_type, set_type); /* Individual alarm files */ static SENSOR_DEVICE_ATTR(fan1_min_alarm, S_IRUGO, show_alarm, NULL, 0); static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 1); static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 2); static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3); static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 4); static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6); /* Raw alarm file for compatibility */ static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL); static DEVICE_ATTR(update_interval, S_IRUGO | S_IWUSR, show_update_interval, set_update_interval); static struct attribute *lm63_attributes[] = { &sensor_dev_attr_pwm1.dev_attr.attr, &dev_attr_pwm1_enable.attr, &sensor_dev_attr_pwm1_auto_point1_pwm.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point1_temp.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point1_temp_hyst.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point2_pwm.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point2_temp.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point2_temp_hyst.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point3_pwm.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point3_temp.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point3_temp_hyst.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point4_pwm.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point4_temp.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point4_temp_hyst.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point5_pwm.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point5_temp.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point5_temp_hyst.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point6_pwm.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point6_temp.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point6_temp_hyst.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point7_pwm.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point7_temp.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point7_temp_hyst.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point8_pwm.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point8_temp.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point8_temp_hyst.dev_attr.attr, &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp2_min.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp2_max.dev_attr.attr, &sensor_dev_attr_temp2_offset.dev_attr.attr, &sensor_dev_attr_temp2_crit.dev_attr.attr, &dev_attr_temp2_crit_hyst.attr, &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr, &sensor_dev_attr_temp2_fault.dev_attr.attr, &sensor_dev_attr_temp2_min_alarm.dev_attr.attr, &sensor_dev_attr_temp2_max_alarm.dev_attr.attr, &sensor_dev_attr_temp1_max_alarm.dev_attr.attr, &dev_attr_alarms.attr, &dev_attr_update_interval.attr, NULL }; /* * On LM63, temp2_crit can be set only once, which should be job * of the bootloader. * On LM64, temp2_crit can always be set. * On LM96163, temp2_crit can be set if bit 1 of the configuration * register is true. */ static umode_t lm63_attribute_mode(struct kobject *kobj, struct attribute *attr, int index) { struct device *dev = container_of(kobj, struct device, kobj); struct i2c_client *client = to_i2c_client(dev); struct lm63_data *data = i2c_get_clientdata(client); if (attr == &sensor_dev_attr_temp2_crit.dev_attr.attr && (data->kind == lm64 || (data->kind == lm96163 && (data->config & 0x02)))) return attr->mode | S_IWUSR; return attr->mode; } static const struct attribute_group lm63_group = { .is_visible = lm63_attribute_mode, .attrs = lm63_attributes, }; static struct attribute *lm63_attributes_fan1[] = { &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_fan1_min.dev_attr.attr, &sensor_dev_attr_fan1_min_alarm.dev_attr.attr, NULL }; static const struct attribute_group lm63_group_fan1 = { .attrs = lm63_attributes_fan1, }; /* * Real code */ /* Return 0 if detection is successful, -ENODEV otherwise */ static int lm63_detect(struct i2c_client *new_client, struct i2c_board_info *info) { struct i2c_adapter *adapter = new_client->adapter; u8 man_id, chip_id, reg_config1, reg_config2; u8 reg_alert_status, reg_alert_mask; int address = new_client->addr; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -ENODEV; man_id = i2c_smbus_read_byte_data(new_client, LM63_REG_MAN_ID); chip_id = i2c_smbus_read_byte_data(new_client, LM63_REG_CHIP_ID); reg_config1 = i2c_smbus_read_byte_data(new_client, LM63_REG_CONFIG1); reg_config2 = i2c_smbus_read_byte_data(new_client, LM63_REG_CONFIG2); reg_alert_status = i2c_smbus_read_byte_data(new_client, LM63_REG_ALERT_STATUS); reg_alert_mask = i2c_smbus_read_byte_data(new_client, LM63_REG_ALERT_MASK); if (man_id != 0x01 /* National Semiconductor */ || (reg_config1 & 0x18) != 0x00 || (reg_config2 & 0xF8) != 0x00 || (reg_alert_status & 0x20) != 0x00 || (reg_alert_mask & 0xA4) != 0xA4) { dev_dbg(&adapter->dev, "Unsupported chip (man_id=0x%02X, chip_id=0x%02X)\n", man_id, chip_id); return -ENODEV; } if (chip_id == 0x41 && address == 0x4c) strlcpy(info->type, "lm63", I2C_NAME_SIZE); else if (chip_id == 0x51 && (address == 0x18 || address == 0x4e)) strlcpy(info->type, "lm64", I2C_NAME_SIZE); else if (chip_id == 0x49 && address == 0x4c) strlcpy(info->type, "lm96163", I2C_NAME_SIZE); else return -ENODEV; return 0; } static int lm63_probe(struct i2c_client *new_client, const struct i2c_device_id *id) { struct lm63_data *data; int err; data = kzalloc(sizeof(struct lm63_data), GFP_KERNEL); if (!data) { err = -ENOMEM; goto exit; } i2c_set_clientdata(new_client, data); data->valid = 0; mutex_init(&data->update_lock); /* Set the device type */ data->kind = id->driver_data; if (data->kind == lm64) data->temp2_offset = 16000; /* Initialize chip */ lm63_init_client(new_client); /* Register sysfs hooks */ err = sysfs_create_group(&new_client->dev.kobj, &lm63_group); if (err) goto exit_free; if (data->config & 0x04) { /* tachometer enabled */ err = sysfs_create_group(&new_client->dev.kobj, &lm63_group_fan1); if (err) goto exit_remove_files; } if (data->kind == lm96163) { err = device_create_file(&new_client->dev, &dev_attr_temp2_type); if (err) goto exit_remove_files; } data->hwmon_dev = hwmon_device_register(&new_client->dev); if (IS_ERR(data->hwmon_dev)) { err = PTR_ERR(data->hwmon_dev); goto exit_remove_files; } return 0; exit_remove_files: device_remove_file(&new_client->dev, &dev_attr_temp2_type); sysfs_remove_group(&new_client->dev.kobj, &lm63_group); sysfs_remove_group(&new_client->dev.kobj, &lm63_group_fan1); exit_free: kfree(data); exit: return err; } /* * Ideally we shouldn't have to initialize anything, since the BIOS * should have taken care of everything */ static void lm63_init_client(struct i2c_client *client) { struct lm63_data *data = i2c_get_clientdata(client); u8 convrate; data->config = i2c_smbus_read_byte_data(client, LM63_REG_CONFIG1); data->config_fan = i2c_smbus_read_byte_data(client, LM63_REG_CONFIG_FAN); /* Start converting if needed */ if (data->config & 0x40) { /* standby */ dev_dbg(&client->dev, "Switching to operational mode\n"); data->config &= 0xA7; i2c_smbus_write_byte_data(client, LM63_REG_CONFIG1, data->config); } /* Tachometer is always enabled on LM64 */ if (data->kind == lm64) data->config |= 0x04; /* We may need pwm1_freq before ever updating the client data */ data->pwm1_freq = i2c_smbus_read_byte_data(client, LM63_REG_PWM_FREQ); if (data->pwm1_freq == 0) data->pwm1_freq = 1; switch (data->kind) { case lm63: case lm64: data->max_convrate_hz = LM63_MAX_CONVRATE_HZ; break; case lm96163: data->max_convrate_hz = LM96163_MAX_CONVRATE_HZ; data->trutherm = i2c_smbus_read_byte_data(client, LM96163_REG_TRUTHERM) & 0x02; break; } convrate = i2c_smbus_read_byte_data(client, LM63_REG_CONVRATE); if (unlikely(convrate > LM63_MAX_CONVRATE)) convrate = LM63_MAX_CONVRATE; data->update_interval = UPDATE_INTERVAL(data->max_convrate_hz, convrate); /* * For LM96163, check if high resolution PWM * and unsigned temperature format is enabled. */ if (data->kind == lm96163) { u8 config_enhanced = i2c_smbus_read_byte_data(client, LM96163_REG_CONFIG_ENHANCED); if (config_enhanced & 0x20) data->lut_temp_highres = true; if ((config_enhanced & 0x10) && !(data->config_fan & 0x08) && data->pwm1_freq == 8) data->pwm_highres = true; if (config_enhanced & 0x08) data->remote_unsigned = true; } /* Show some debug info about the LM63 configuration */ if (data->kind == lm63) dev_dbg(&client->dev, "Alert/tach pin configured for %s\n", (data->config & 0x04) ? "tachometer input" : "alert output"); dev_dbg(&client->dev, "PWM clock %s kHz, output frequency %u Hz\n", (data->config_fan & 0x08) ? "1.4" : "360", ((data->config_fan & 0x08) ? 700 : 180000) / data->pwm1_freq); dev_dbg(&client->dev, "PWM output active %s, %s mode\n", (data->config_fan & 0x10) ? "low" : "high", (data->config_fan & 0x20) ? "manual" : "auto"); } static int lm63_remove(struct i2c_client *client) { struct lm63_data *data = i2c_get_clientdata(client); hwmon_device_unregister(data->hwmon_dev); device_remove_file(&client->dev, &dev_attr_temp2_type); sysfs_remove_group(&client->dev.kobj, &lm63_group); sysfs_remove_group(&client->dev.kobj, &lm63_group_fan1); kfree(data); return 0; } static struct lm63_data *lm63_update_device(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct lm63_data *data = i2c_get_clientdata(client); unsigned long next_update; int i; mutex_lock(&data->update_lock); next_update = data->last_updated + msecs_to_jiffies(data->update_interval) + 1; if (time_after(jiffies, next_update) || !data->valid) { if (data->config & 0x04) { /* tachometer enabled */ /* order matters for fan1_input */ data->fan[0] = i2c_smbus_read_byte_data(client, LM63_REG_TACH_COUNT_LSB) & 0xFC; data->fan[0] |= i2c_smbus_read_byte_data(client, LM63_REG_TACH_COUNT_MSB) << 8; data->fan[1] = (i2c_smbus_read_byte_data(client, LM63_REG_TACH_LIMIT_LSB) & 0xFC) | (i2c_smbus_read_byte_data(client, LM63_REG_TACH_LIMIT_MSB) << 8); } data->pwm1_freq = i2c_smbus_read_byte_data(client, LM63_REG_PWM_FREQ); if (data->pwm1_freq == 0) data->pwm1_freq = 1; data->pwm1[0] = i2c_smbus_read_byte_data(client, LM63_REG_PWM_VALUE); data->temp8[0] = i2c_smbus_read_byte_data(client, LM63_REG_LOCAL_TEMP); data->temp8[1] = i2c_smbus_read_byte_data(client, LM63_REG_LOCAL_HIGH); /* order matters for temp2_input */ data->temp11[0] = i2c_smbus_read_byte_data(client, LM63_REG_REMOTE_TEMP_MSB) << 8; data->temp11[0] |= i2c_smbus_read_byte_data(client, LM63_REG_REMOTE_TEMP_LSB); data->temp11[1] = (i2c_smbus_read_byte_data(client, LM63_REG_REMOTE_LOW_MSB) << 8) | i2c_smbus_read_byte_data(client, LM63_REG_REMOTE_LOW_LSB); data->temp11[2] = (i2c_smbus_read_byte_data(client, LM63_REG_REMOTE_HIGH_MSB) << 8) | i2c_smbus_read_byte_data(client, LM63_REG_REMOTE_HIGH_LSB); data->temp11[3] = (i2c_smbus_read_byte_data(client, LM63_REG_REMOTE_OFFSET_MSB) << 8) | i2c_smbus_read_byte_data(client, LM63_REG_REMOTE_OFFSET_LSB); if (data->kind == lm96163) data->temp11u = (i2c_smbus_read_byte_data(client, LM96163_REG_REMOTE_TEMP_U_MSB) << 8) | i2c_smbus_read_byte_data(client, LM96163_REG_REMOTE_TEMP_U_LSB); data->temp8[2] = i2c_smbus_read_byte_data(client, LM63_REG_REMOTE_TCRIT); data->temp2_crit_hyst = i2c_smbus_read_byte_data(client, LM63_REG_REMOTE_TCRIT_HYST); data->alarms = i2c_smbus_read_byte_data(client, LM63_REG_ALERT_STATUS) & 0x7F; data->last_updated = jiffies; data->valid = 1; } if (time_after(jiffies, data->lut_last_updated + 5 * HZ) || !data->lut_valid) { for (i = 0; i < 8; i++) { data->pwm1[1 + i] = i2c_smbus_read_byte_data(client, LM63_REG_LUT_PWM(i)); data->temp8[3 + i] = i2c_smbus_read_byte_data(client, LM63_REG_LUT_TEMP(i)); } data->lut_temp_hyst = i2c_smbus_read_byte_data(client, LM63_REG_LUT_TEMP_HYST); data->lut_last_updated = jiffies; data->lut_valid = 1; } mutex_unlock(&data->update_lock); return data; } static int __init sensors_lm63_init(void) { return i2c_add_driver(&lm63_driver); } static void __exit sensors_lm63_exit(void) { i2c_del_driver(&lm63_driver); } MODULE_AUTHOR("Jean Delvare "); MODULE_DESCRIPTION("LM63 driver"); MODULE_LICENSE("GPL"); module_init(sensors_lm63_init); module_exit(sensors_lm63_exit);