kernel_optimize_test/include/net/vxlan.h
Jesse Gross 5f35227ea3 net: Generalize ndo_gso_check to ndo_features_check
GSO isn't the only offload feature with restrictions that
potentially can't be expressed with the current features mechanism.
Checksum is another although it's a general issue that could in
theory apply to anything. Even if it may be possible to
implement these restrictions in other ways, it can result in
duplicate code or inefficient per-packet behavior.

This generalizes ndo_gso_check so that drivers can remove any
features that don't make sense for a given packet, similar to
netif_skb_features(). It also converts existing driver
restrictions to the new format, completing the work that was
done to support tunnel protocols since the issues apply to
checksums as well.

By actually removing features from the set that are used to do
offloading, it solves another problem with the existing
interface. In these cases, GSO would run with the original set
of features and not do anything because it appears that
segmentation is not required.

CC: Tom Herbert <therbert@google.com>
CC: Joe Stringer <joestringer@nicira.com>
CC: Eric Dumazet <edumazet@google.com>
CC: Hayes Wang <hayeswang@realtek.com>
Signed-off-by: Jesse Gross <jesse@nicira.com>
Acked-by:  Tom Herbert <therbert@google.com>
Fixes: 04ffcb255f ("net: Add ndo_gso_check")
Tested-by: Hayes Wang <hayeswang@realtek.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-12-26 17:20:56 -05:00

99 lines
2.4 KiB
C

#ifndef __NET_VXLAN_H
#define __NET_VXLAN_H 1
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/if_vlan.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/udp.h>
#define VNI_HASH_BITS 10
#define VNI_HASH_SIZE (1<<VNI_HASH_BITS)
/* VXLAN protocol header */
struct vxlanhdr {
__be32 vx_flags;
__be32 vx_vni;
};
struct vxlan_sock;
typedef void (vxlan_rcv_t)(struct vxlan_sock *vh, struct sk_buff *skb, __be32 key);
/* per UDP socket information */
struct vxlan_sock {
struct hlist_node hlist;
vxlan_rcv_t *rcv;
void *data;
struct work_struct del_work;
struct socket *sock;
struct rcu_head rcu;
struct hlist_head vni_list[VNI_HASH_SIZE];
atomic_t refcnt;
struct udp_offload udp_offloads;
};
#define VXLAN_F_LEARN 0x01
#define VXLAN_F_PROXY 0x02
#define VXLAN_F_RSC 0x04
#define VXLAN_F_L2MISS 0x08
#define VXLAN_F_L3MISS 0x10
#define VXLAN_F_IPV6 0x20
#define VXLAN_F_UDP_CSUM 0x40
#define VXLAN_F_UDP_ZERO_CSUM6_TX 0x80
#define VXLAN_F_UDP_ZERO_CSUM6_RX 0x100
struct vxlan_sock *vxlan_sock_add(struct net *net, __be16 port,
vxlan_rcv_t *rcv, void *data,
bool no_share, u32 flags);
void vxlan_sock_release(struct vxlan_sock *vs);
int vxlan_xmit_skb(struct vxlan_sock *vs,
struct rtable *rt, struct sk_buff *skb,
__be32 src, __be32 dst, __u8 tos, __u8 ttl, __be16 df,
__be16 src_port, __be16 dst_port, __be32 vni, bool xnet);
static inline netdev_features_t vxlan_features_check(struct sk_buff *skb,
netdev_features_t features)
{
u8 l4_hdr = 0;
if (!skb->encapsulation)
return features;
switch (vlan_get_protocol(skb)) {
case htons(ETH_P_IP):
l4_hdr = ip_hdr(skb)->protocol;
break;
case htons(ETH_P_IPV6):
l4_hdr = ipv6_hdr(skb)->nexthdr;
break;
default:
return features;;
}
if ((l4_hdr == IPPROTO_UDP) &&
(skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
skb->inner_protocol != htons(ETH_P_TEB) ||
(skb_inner_mac_header(skb) - skb_transport_header(skb) !=
sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
return features & ~(NETIF_F_ALL_CSUM | NETIF_F_GSO_MASK);
return features;
}
/* IP header + UDP + VXLAN + Ethernet header */
#define VXLAN_HEADROOM (20 + 8 + 8 + 14)
/* IPv6 header + UDP + VXLAN + Ethernet header */
#define VXLAN6_HEADROOM (40 + 8 + 8 + 14)
#if IS_ENABLED(CONFIG_VXLAN)
void vxlan_get_rx_port(struct net_device *netdev);
#else
static inline void vxlan_get_rx_port(struct net_device *netdev)
{
}
#endif
#endif