kernel_optimize_test/drivers/acpi/acpica/hwvalid.c
Matthew Garrett b681f7d9ab ACPICA: Truncate I/O addresses to 16 bits for Windows compatibility
This feature is optional and is enabled if the BIOS requests any
Windows OSI strings. It can also be enabled by the host OS.

Signed-off-by: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2010-06-12 00:55:50 -04:00

328 lines
10 KiB
C

/******************************************************************************
*
* Module Name: hwvalid - I/O request validation
*
*****************************************************************************/
/*
* Copyright (C) 2000 - 2010, Intel Corp.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*/
#include <acpi/acpi.h>
#include "accommon.h"
#define _COMPONENT ACPI_HARDWARE
ACPI_MODULE_NAME("hwvalid")
/* Local prototypes */
static acpi_status
acpi_hw_validate_io_request(acpi_io_address address, u32 bit_width);
/*
* Protected I/O ports. Some ports are always illegal, and some are
* conditionally illegal. This table must remain ordered by port address.
*
* The table is used to implement the Microsoft port access rules that
* first appeared in Windows XP. Some ports are always illegal, and some
* ports are only illegal if the BIOS calls _OSI with a win_xP string or
* later (meaning that the BIOS itelf is post-XP.)
*
* This provides ACPICA with the desired port protections and
* Microsoft compatibility.
*
* Description of port entries:
* DMA: DMA controller
* PIC0: Programmable Interrupt Controller (8259_a)
* PIT1: System Timer 1
* PIT2: System Timer 2 failsafe
* RTC: Real-time clock
* CMOS: Extended CMOS
* DMA1: DMA 1 page registers
* DMA1L: DMA 1 Ch 0 low page
* DMA2: DMA 2 page registers
* DMA2L: DMA 2 low page refresh
* ARBC: Arbitration control
* SETUP: Reserved system board setup
* POS: POS channel select
* PIC1: Cascaded PIC
* IDMA: ISA DMA
* ELCR: PIC edge/level registers
* PCI: PCI configuration space
*/
static const struct acpi_port_info acpi_protected_ports[] = {
{"DMA", 0x0000, 0x000F, ACPI_OSI_WIN_XP},
{"PIC0", 0x0020, 0x0021, ACPI_ALWAYS_ILLEGAL},
{"PIT1", 0x0040, 0x0043, ACPI_OSI_WIN_XP},
{"PIT2", 0x0048, 0x004B, ACPI_OSI_WIN_XP},
{"RTC", 0x0070, 0x0071, ACPI_OSI_WIN_XP},
{"CMOS", 0x0074, 0x0076, ACPI_OSI_WIN_XP},
{"DMA1", 0x0081, 0x0083, ACPI_OSI_WIN_XP},
{"DMA1L", 0x0087, 0x0087, ACPI_OSI_WIN_XP},
{"DMA2", 0x0089, 0x008B, ACPI_OSI_WIN_XP},
{"DMA2L", 0x008F, 0x008F, ACPI_OSI_WIN_XP},
{"ARBC", 0x0090, 0x0091, ACPI_OSI_WIN_XP},
{"SETUP", 0x0093, 0x0094, ACPI_OSI_WIN_XP},
{"POS", 0x0096, 0x0097, ACPI_OSI_WIN_XP},
{"PIC1", 0x00A0, 0x00A1, ACPI_ALWAYS_ILLEGAL},
{"IDMA", 0x00C0, 0x00DF, ACPI_OSI_WIN_XP},
{"ELCR", 0x04D0, 0x04D1, ACPI_ALWAYS_ILLEGAL},
{"PCI", 0x0CF8, 0x0CFF, ACPI_OSI_WIN_XP}
};
#define ACPI_PORT_INFO_ENTRIES ACPI_ARRAY_LENGTH (acpi_protected_ports)
/******************************************************************************
*
* FUNCTION: acpi_hw_validate_io_request
*
* PARAMETERS: Address Address of I/O port/register
* bit_width Number of bits (8,16,32)
*
* RETURN: Status
*
* DESCRIPTION: Validates an I/O request (address/length). Certain ports are
* always illegal and some ports are only illegal depending on
* the requests the BIOS AML code makes to the predefined
* _OSI method.
*
******************************************************************************/
static acpi_status
acpi_hw_validate_io_request(acpi_io_address address, u32 bit_width)
{
u32 i;
u32 byte_width;
acpi_io_address last_address;
const struct acpi_port_info *port_info;
ACPI_FUNCTION_TRACE(hw_validate_io_request);
/* Supported widths are 8/16/32 */
if ((bit_width != 8) && (bit_width != 16) && (bit_width != 32)) {
return AE_BAD_PARAMETER;
}
port_info = acpi_protected_ports;
byte_width = ACPI_DIV_8(bit_width);
last_address = address + byte_width - 1;
ACPI_DEBUG_PRINT((ACPI_DB_IO, "Address %p LastAddress %p Length %X",
ACPI_CAST_PTR(void, address), ACPI_CAST_PTR(void,
last_address),
byte_width));
/* Maximum 16-bit address in I/O space */
if (last_address > ACPI_UINT16_MAX) {
ACPI_ERROR((AE_INFO,
"Illegal I/O port address/length above 64K: %p/0x%X",
ACPI_CAST_PTR(void, address), byte_width));
return_ACPI_STATUS(AE_LIMIT);
}
/* Exit if requested address is not within the protected port table */
if (address > acpi_protected_ports[ACPI_PORT_INFO_ENTRIES - 1].end) {
return_ACPI_STATUS(AE_OK);
}
/* Check request against the list of protected I/O ports */
for (i = 0; i < ACPI_PORT_INFO_ENTRIES; i++, port_info++) {
/*
* Check if the requested address range will write to a reserved
* port. Four cases to consider:
*
* 1) Address range is contained completely in the port address range
* 2) Address range overlaps port range at the port range start
* 3) Address range overlaps port range at the port range end
* 4) Address range completely encompasses the port range
*/
if ((address <= port_info->end)
&& (last_address >= port_info->start)) {
/* Port illegality may depend on the _OSI calls made by the BIOS */
if (acpi_gbl_osi_data >= port_info->osi_dependency) {
ACPI_DEBUG_PRINT((ACPI_DB_IO,
"Denied AML access to port 0x%p/%X (%s 0x%.4X-0x%.4X)",
ACPI_CAST_PTR(void, address),
byte_width, port_info->name,
port_info->start,
port_info->end));
return_ACPI_STATUS(AE_AML_ILLEGAL_ADDRESS);
}
}
/* Finished if address range ends before the end of this port */
if (last_address <= port_info->end) {
break;
}
}
return_ACPI_STATUS(AE_OK);
}
/******************************************************************************
*
* FUNCTION: acpi_hw_read_port
*
* PARAMETERS: Address Address of I/O port/register to read
* Value Where value is placed
* Width Number of bits
*
* RETURN: Status and value read from port
*
* DESCRIPTION: Read data from an I/O port or register. This is a front-end
* to acpi_os_read_port that performs validation on both the port
* address and the length.
*
*****************************************************************************/
acpi_status acpi_hw_read_port(acpi_io_address address, u32 *value, u32 width)
{
acpi_status status;
u32 one_byte;
u32 i;
/* Truncate address to 16 bits if requested */
if (acpi_gbl_truncate_io_addresses) {
address &= ACPI_UINT16_MAX;
}
/* Validate the entire request and perform the I/O */
status = acpi_hw_validate_io_request(address, width);
if (ACPI_SUCCESS(status)) {
status = acpi_os_read_port(address, value, width);
return status;
}
if (status != AE_AML_ILLEGAL_ADDRESS) {
return status;
}
/*
* There has been a protection violation within the request. Fall
* back to byte granularity port I/O and ignore the failing bytes.
* This provides Windows compatibility.
*/
for (i = 0, *value = 0; i < width; i += 8) {
/* Validate and read one byte */
if (acpi_hw_validate_io_request(address, 8) == AE_OK) {
status = acpi_os_read_port(address, &one_byte, 8);
if (ACPI_FAILURE(status)) {
return status;
}
*value |= (one_byte << i);
}
address++;
}
return AE_OK;
}
/******************************************************************************
*
* FUNCTION: acpi_hw_write_port
*
* PARAMETERS: Address Address of I/O port/register to write
* Value Value to write
* Width Number of bits
*
* RETURN: Status
*
* DESCRIPTION: Write data to an I/O port or register. This is a front-end
* to acpi_os_write_port that performs validation on both the port
* address and the length.
*
*****************************************************************************/
acpi_status acpi_hw_write_port(acpi_io_address address, u32 value, u32 width)
{
acpi_status status;
u32 i;
/* Truncate address to 16 bits if requested */
if (acpi_gbl_truncate_io_addresses) {
address &= ACPI_UINT16_MAX;
}
/* Validate the entire request and perform the I/O */
status = acpi_hw_validate_io_request(address, width);
if (ACPI_SUCCESS(status)) {
status = acpi_os_write_port(address, value, width);
return status;
}
if (status != AE_AML_ILLEGAL_ADDRESS) {
return status;
}
/*
* There has been a protection violation within the request. Fall
* back to byte granularity port I/O and ignore the failing bytes.
* This provides Windows compatibility.
*/
for (i = 0; i < width; i += 8) {
/* Validate and write one byte */
if (acpi_hw_validate_io_request(address, 8) == AE_OK) {
status =
acpi_os_write_port(address, (value >> i) & 0xFF, 8);
if (ACPI_FAILURE(status)) {
return status;
}
}
address++;
}
return AE_OK;
}