kernel_optimize_test/fs/fscache
Christoph Lameter 170d800af8 block: Replace __get_cpu_var uses
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x).  This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.

Other use cases are for storing and retrieving data from the current
processors percpu area.  __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.

__get_cpu_var() is defined as :

#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))

__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.

this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.

This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset.  Thereby address calculations are avoided and less registers
are used when code is generated.

At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.

The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e.  using a global
register that may be set to the per cpu base.

Transformations done to __get_cpu_var()

1. Determine the address of the percpu instance of the current processor.

	DEFINE_PER_CPU(int, y);
	int *x = &__get_cpu_var(y);

    Converts to

	int *x = this_cpu_ptr(&y);

2. Same as #1 but this time an array structure is involved.

	DEFINE_PER_CPU(int, y[20]);
	int *x = __get_cpu_var(y);

    Converts to

	int *x = this_cpu_ptr(y);

3. Retrieve the content of the current processors instance of a per cpu
variable.

	DEFINE_PER_CPU(int, y);
	int x = __get_cpu_var(y)

   Converts to

	int x = __this_cpu_read(y);

4. Retrieve the content of a percpu struct

	DEFINE_PER_CPU(struct mystruct, y);
	struct mystruct x = __get_cpu_var(y);

   Converts to

	memcpy(&x, this_cpu_ptr(&y), sizeof(x));

5. Assignment to a per cpu variable

	DEFINE_PER_CPU(int, y)
	__get_cpu_var(y) = x;

   Converts to

	this_cpu_write(y, x);

6. Increment/Decrement etc of a per cpu variable

	DEFINE_PER_CPU(int, y);
	__get_cpu_var(y)++

   Converts to

	this_cpu_inc(y)

Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-11-08 08:59:58 -07:00
..
cache.c FS-Cache: Fix object state machine to have separate work and wait states 2013-06-19 14:16:47 +01:00
cookie.c fscache: check consistency does not decrement refcount 2013-09-10 09:04:46 -07:00
fsdef.c FS-Cache: Simplify cookie retention for fscache_objects, fixing oops 2013-06-19 14:16:47 +01:00
histogram.c
internal.h FS-Cache: Add interface to check consistency of a cached object 2013-09-06 09:17:30 +01:00
Kconfig fscache: drop references to slow-work 2010-07-22 22:58:58 +02:00
main.c FS-Cache: Simplify cookie retention for fscache_objects, fixing oops 2013-06-19 14:16:47 +01:00
Makefile FS-Cache: Allow the current state of all objects to be dumped 2009-11-19 18:11:04 +00:00
netfs.c FS-Cache: Simplify cookie retention for fscache_objects, fixing oops 2013-06-19 14:16:47 +01:00
object-list.c FS-Cache: Simplify cookie retention for fscache_objects, fixing oops 2013-06-19 14:16:47 +01:00
object.c block: Replace __get_cpu_var uses 2013-11-08 08:59:58 -07:00
operation.c FS-Cache: Don't use spin_is_locked() in assertions 2013-06-19 14:16:47 +01:00
page.c lib/radix-tree.c: make radix_tree_node_alloc() work correctly within interrupt 2013-09-11 15:59:36 -07:00
proc.c FS-Cache: Allow the current state of all objects to be dumped 2009-11-19 18:11:04 +00:00
stats.c fs/fscache/stats.c: fix memory leak 2013-04-29 15:54:27 -07:00