forked from luck/tmp_suning_uos_patched
537b60d178
* 'x86-uv-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: x86, UV: uv_irq.c: Fix all sparse warnings x86, UV: Improve BAU performance and error recovery x86, UV: Delete unneeded boot messages x86, UV: Clean up UV headers for MMR definitions
1398 lines
38 KiB
C
1398 lines
38 KiB
C
/*
|
|
* SGI UltraViolet TLB flush routines.
|
|
*
|
|
* (c) 2008-2010 Cliff Wickman <cpw@sgi.com>, SGI.
|
|
*
|
|
* This code is released under the GNU General Public License version 2 or
|
|
* later.
|
|
*/
|
|
#include <linux/seq_file.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/uv/uv.h>
|
|
#include <asm/uv/uv_mmrs.h>
|
|
#include <asm/uv/uv_hub.h>
|
|
#include <asm/uv/uv_bau.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/idle.h>
|
|
#include <asm/tsc.h>
|
|
#include <asm/irq_vectors.h>
|
|
#include <asm/timer.h>
|
|
|
|
struct msg_desc {
|
|
struct bau_payload_queue_entry *msg;
|
|
int msg_slot;
|
|
int sw_ack_slot;
|
|
struct bau_payload_queue_entry *va_queue_first;
|
|
struct bau_payload_queue_entry *va_queue_last;
|
|
};
|
|
|
|
#define UV_INTD_SOFT_ACK_TIMEOUT_PERIOD 0x000000000bUL
|
|
|
|
static int uv_bau_max_concurrent __read_mostly;
|
|
|
|
static int nobau;
|
|
static int __init setup_nobau(char *arg)
|
|
{
|
|
nobau = 1;
|
|
return 0;
|
|
}
|
|
early_param("nobau", setup_nobau);
|
|
|
|
/* base pnode in this partition */
|
|
static int uv_partition_base_pnode __read_mostly;
|
|
/* position of pnode (which is nasid>>1): */
|
|
static int uv_nshift __read_mostly;
|
|
static unsigned long uv_mmask __read_mostly;
|
|
|
|
static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
|
|
static DEFINE_PER_CPU(struct bau_control, bau_control);
|
|
static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
|
|
|
|
struct reset_args {
|
|
int sender;
|
|
};
|
|
|
|
/*
|
|
* Determine the first node on a uvhub. 'Nodes' are used for kernel
|
|
* memory allocation.
|
|
*/
|
|
static int __init uvhub_to_first_node(int uvhub)
|
|
{
|
|
int node, b;
|
|
|
|
for_each_online_node(node) {
|
|
b = uv_node_to_blade_id(node);
|
|
if (uvhub == b)
|
|
return node;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Determine the apicid of the first cpu on a uvhub.
|
|
*/
|
|
static int __init uvhub_to_first_apicid(int uvhub)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_present_cpu(cpu)
|
|
if (uvhub == uv_cpu_to_blade_id(cpu))
|
|
return per_cpu(x86_cpu_to_apicid, cpu);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Free a software acknowledge hardware resource by clearing its Pending
|
|
* bit. This will return a reply to the sender.
|
|
* If the message has timed out, a reply has already been sent by the
|
|
* hardware but the resource has not been released. In that case our
|
|
* clear of the Timeout bit (as well) will free the resource. No reply will
|
|
* be sent (the hardware will only do one reply per message).
|
|
*/
|
|
static inline void uv_reply_to_message(struct msg_desc *mdp,
|
|
struct bau_control *bcp)
|
|
{
|
|
unsigned long dw;
|
|
struct bau_payload_queue_entry *msg;
|
|
|
|
msg = mdp->msg;
|
|
if (!msg->canceled) {
|
|
dw = (msg->sw_ack_vector << UV_SW_ACK_NPENDING) |
|
|
msg->sw_ack_vector;
|
|
uv_write_local_mmr(
|
|
UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
|
|
}
|
|
msg->replied_to = 1;
|
|
msg->sw_ack_vector = 0;
|
|
}
|
|
|
|
/*
|
|
* Process the receipt of a RETRY message
|
|
*/
|
|
static inline void uv_bau_process_retry_msg(struct msg_desc *mdp,
|
|
struct bau_control *bcp)
|
|
{
|
|
int i;
|
|
int cancel_count = 0;
|
|
int slot2;
|
|
unsigned long msg_res;
|
|
unsigned long mmr = 0;
|
|
struct bau_payload_queue_entry *msg;
|
|
struct bau_payload_queue_entry *msg2;
|
|
struct ptc_stats *stat;
|
|
|
|
msg = mdp->msg;
|
|
stat = &per_cpu(ptcstats, bcp->cpu);
|
|
stat->d_retries++;
|
|
/*
|
|
* cancel any message from msg+1 to the retry itself
|
|
*/
|
|
for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) {
|
|
if (msg2 > mdp->va_queue_last)
|
|
msg2 = mdp->va_queue_first;
|
|
if (msg2 == msg)
|
|
break;
|
|
|
|
/* same conditions for cancellation as uv_do_reset */
|
|
if ((msg2->replied_to == 0) && (msg2->canceled == 0) &&
|
|
(msg2->sw_ack_vector) && ((msg2->sw_ack_vector &
|
|
msg->sw_ack_vector) == 0) &&
|
|
(msg2->sending_cpu == msg->sending_cpu) &&
|
|
(msg2->msg_type != MSG_NOOP)) {
|
|
slot2 = msg2 - mdp->va_queue_first;
|
|
mmr = uv_read_local_mmr
|
|
(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE);
|
|
msg_res = ((msg2->sw_ack_vector << 8) |
|
|
msg2->sw_ack_vector);
|
|
/*
|
|
* This is a message retry; clear the resources held
|
|
* by the previous message only if they timed out.
|
|
* If it has not timed out we have an unexpected
|
|
* situation to report.
|
|
*/
|
|
if (mmr & (msg_res << 8)) {
|
|
/*
|
|
* is the resource timed out?
|
|
* make everyone ignore the cancelled message.
|
|
*/
|
|
msg2->canceled = 1;
|
|
stat->d_canceled++;
|
|
cancel_count++;
|
|
uv_write_local_mmr(
|
|
UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS,
|
|
(msg_res << 8) | msg_res);
|
|
} else
|
|
printk(KERN_INFO "note bau retry: no effect\n");
|
|
}
|
|
}
|
|
if (!cancel_count)
|
|
stat->d_nocanceled++;
|
|
}
|
|
|
|
/*
|
|
* Do all the things a cpu should do for a TLB shootdown message.
|
|
* Other cpu's may come here at the same time for this message.
|
|
*/
|
|
static void uv_bau_process_message(struct msg_desc *mdp,
|
|
struct bau_control *bcp)
|
|
{
|
|
int msg_ack_count;
|
|
short socket_ack_count = 0;
|
|
struct ptc_stats *stat;
|
|
struct bau_payload_queue_entry *msg;
|
|
struct bau_control *smaster = bcp->socket_master;
|
|
|
|
/*
|
|
* This must be a normal message, or retry of a normal message
|
|
*/
|
|
msg = mdp->msg;
|
|
stat = &per_cpu(ptcstats, bcp->cpu);
|
|
if (msg->address == TLB_FLUSH_ALL) {
|
|
local_flush_tlb();
|
|
stat->d_alltlb++;
|
|
} else {
|
|
__flush_tlb_one(msg->address);
|
|
stat->d_onetlb++;
|
|
}
|
|
stat->d_requestee++;
|
|
|
|
/*
|
|
* One cpu on each uvhub has the additional job on a RETRY
|
|
* of releasing the resource held by the message that is
|
|
* being retried. That message is identified by sending
|
|
* cpu number.
|
|
*/
|
|
if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master)
|
|
uv_bau_process_retry_msg(mdp, bcp);
|
|
|
|
/*
|
|
* This is a sw_ack message, so we have to reply to it.
|
|
* Count each responding cpu on the socket. This avoids
|
|
* pinging the count's cache line back and forth between
|
|
* the sockets.
|
|
*/
|
|
socket_ack_count = atomic_add_short_return(1, (struct atomic_short *)
|
|
&smaster->socket_acknowledge_count[mdp->msg_slot]);
|
|
if (socket_ack_count == bcp->cpus_in_socket) {
|
|
/*
|
|
* Both sockets dump their completed count total into
|
|
* the message's count.
|
|
*/
|
|
smaster->socket_acknowledge_count[mdp->msg_slot] = 0;
|
|
msg_ack_count = atomic_add_short_return(socket_ack_count,
|
|
(struct atomic_short *)&msg->acknowledge_count);
|
|
|
|
if (msg_ack_count == bcp->cpus_in_uvhub) {
|
|
/*
|
|
* All cpus in uvhub saw it; reply
|
|
*/
|
|
uv_reply_to_message(mdp, bcp);
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Determine the first cpu on a uvhub.
|
|
*/
|
|
static int uvhub_to_first_cpu(int uvhub)
|
|
{
|
|
int cpu;
|
|
for_each_present_cpu(cpu)
|
|
if (uvhub == uv_cpu_to_blade_id(cpu))
|
|
return cpu;
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Last resort when we get a large number of destination timeouts is
|
|
* to clear resources held by a given cpu.
|
|
* Do this with IPI so that all messages in the BAU message queue
|
|
* can be identified by their nonzero sw_ack_vector field.
|
|
*
|
|
* This is entered for a single cpu on the uvhub.
|
|
* The sender want's this uvhub to free a specific message's
|
|
* sw_ack resources.
|
|
*/
|
|
static void
|
|
uv_do_reset(void *ptr)
|
|
{
|
|
int i;
|
|
int slot;
|
|
int count = 0;
|
|
unsigned long mmr;
|
|
unsigned long msg_res;
|
|
struct bau_control *bcp;
|
|
struct reset_args *rap;
|
|
struct bau_payload_queue_entry *msg;
|
|
struct ptc_stats *stat;
|
|
|
|
bcp = &per_cpu(bau_control, smp_processor_id());
|
|
rap = (struct reset_args *)ptr;
|
|
stat = &per_cpu(ptcstats, bcp->cpu);
|
|
stat->d_resets++;
|
|
|
|
/*
|
|
* We're looking for the given sender, and
|
|
* will free its sw_ack resource.
|
|
* If all cpu's finally responded after the timeout, its
|
|
* message 'replied_to' was set.
|
|
*/
|
|
for (msg = bcp->va_queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) {
|
|
/* uv_do_reset: same conditions for cancellation as
|
|
uv_bau_process_retry_msg() */
|
|
if ((msg->replied_to == 0) &&
|
|
(msg->canceled == 0) &&
|
|
(msg->sending_cpu == rap->sender) &&
|
|
(msg->sw_ack_vector) &&
|
|
(msg->msg_type != MSG_NOOP)) {
|
|
/*
|
|
* make everyone else ignore this message
|
|
*/
|
|
msg->canceled = 1;
|
|
slot = msg - bcp->va_queue_first;
|
|
count++;
|
|
/*
|
|
* only reset the resource if it is still pending
|
|
*/
|
|
mmr = uv_read_local_mmr
|
|
(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE);
|
|
msg_res = ((msg->sw_ack_vector << 8) |
|
|
msg->sw_ack_vector);
|
|
if (mmr & msg_res) {
|
|
stat->d_rcanceled++;
|
|
uv_write_local_mmr(
|
|
UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS,
|
|
msg_res);
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Use IPI to get all target uvhubs to release resources held by
|
|
* a given sending cpu number.
|
|
*/
|
|
static void uv_reset_with_ipi(struct bau_target_uvhubmask *distribution,
|
|
int sender)
|
|
{
|
|
int uvhub;
|
|
int cpu;
|
|
cpumask_t mask;
|
|
struct reset_args reset_args;
|
|
|
|
reset_args.sender = sender;
|
|
|
|
cpus_clear(mask);
|
|
/* find a single cpu for each uvhub in this distribution mask */
|
|
for (uvhub = 0;
|
|
uvhub < sizeof(struct bau_target_uvhubmask) * BITSPERBYTE;
|
|
uvhub++) {
|
|
if (!bau_uvhub_isset(uvhub, distribution))
|
|
continue;
|
|
/* find a cpu for this uvhub */
|
|
cpu = uvhub_to_first_cpu(uvhub);
|
|
cpu_set(cpu, mask);
|
|
}
|
|
/* IPI all cpus; Preemption is already disabled */
|
|
smp_call_function_many(&mask, uv_do_reset, (void *)&reset_args, 1);
|
|
return;
|
|
}
|
|
|
|
static inline unsigned long
|
|
cycles_2_us(unsigned long long cyc)
|
|
{
|
|
unsigned long long ns;
|
|
unsigned long us;
|
|
ns = (cyc * per_cpu(cyc2ns, smp_processor_id()))
|
|
>> CYC2NS_SCALE_FACTOR;
|
|
us = ns / 1000;
|
|
return us;
|
|
}
|
|
|
|
/*
|
|
* wait for all cpus on this hub to finish their sends and go quiet
|
|
* leaves uvhub_quiesce set so that no new broadcasts are started by
|
|
* bau_flush_send_and_wait()
|
|
*/
|
|
static inline void
|
|
quiesce_local_uvhub(struct bau_control *hmaster)
|
|
{
|
|
atomic_add_short_return(1, (struct atomic_short *)
|
|
&hmaster->uvhub_quiesce);
|
|
}
|
|
|
|
/*
|
|
* mark this quiet-requestor as done
|
|
*/
|
|
static inline void
|
|
end_uvhub_quiesce(struct bau_control *hmaster)
|
|
{
|
|
atomic_add_short_return(-1, (struct atomic_short *)
|
|
&hmaster->uvhub_quiesce);
|
|
}
|
|
|
|
/*
|
|
* Wait for completion of a broadcast software ack message
|
|
* return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP
|
|
*/
|
|
static int uv_wait_completion(struct bau_desc *bau_desc,
|
|
unsigned long mmr_offset, int right_shift, int this_cpu,
|
|
struct bau_control *bcp, struct bau_control *smaster, long try)
|
|
{
|
|
int relaxes = 0;
|
|
unsigned long descriptor_status;
|
|
unsigned long mmr;
|
|
unsigned long mask;
|
|
cycles_t ttime;
|
|
cycles_t timeout_time;
|
|
struct ptc_stats *stat = &per_cpu(ptcstats, this_cpu);
|
|
struct bau_control *hmaster;
|
|
|
|
hmaster = bcp->uvhub_master;
|
|
timeout_time = get_cycles() + bcp->timeout_interval;
|
|
|
|
/* spin on the status MMR, waiting for it to go idle */
|
|
while ((descriptor_status = (((unsigned long)
|
|
uv_read_local_mmr(mmr_offset) >>
|
|
right_shift) & UV_ACT_STATUS_MASK)) !=
|
|
DESC_STATUS_IDLE) {
|
|
/*
|
|
* Our software ack messages may be blocked because there are
|
|
* no swack resources available. As long as none of them
|
|
* has timed out hardware will NACK our message and its
|
|
* state will stay IDLE.
|
|
*/
|
|
if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
|
|
stat->s_stimeout++;
|
|
return FLUSH_GIVEUP;
|
|
} else if (descriptor_status ==
|
|
DESC_STATUS_DESTINATION_TIMEOUT) {
|
|
stat->s_dtimeout++;
|
|
ttime = get_cycles();
|
|
|
|
/*
|
|
* Our retries may be blocked by all destination
|
|
* swack resources being consumed, and a timeout
|
|
* pending. In that case hardware returns the
|
|
* ERROR that looks like a destination timeout.
|
|
*/
|
|
if (cycles_2_us(ttime - bcp->send_message) < BIOS_TO) {
|
|
bcp->conseccompletes = 0;
|
|
return FLUSH_RETRY_PLUGGED;
|
|
}
|
|
|
|
bcp->conseccompletes = 0;
|
|
return FLUSH_RETRY_TIMEOUT;
|
|
} else {
|
|
/*
|
|
* descriptor_status is still BUSY
|
|
*/
|
|
cpu_relax();
|
|
relaxes++;
|
|
if (relaxes >= 10000) {
|
|
relaxes = 0;
|
|
if (get_cycles() > timeout_time) {
|
|
quiesce_local_uvhub(hmaster);
|
|
|
|
/* single-thread the register change */
|
|
spin_lock(&hmaster->masks_lock);
|
|
mmr = uv_read_local_mmr(mmr_offset);
|
|
mask = 0UL;
|
|
mask |= (3UL < right_shift);
|
|
mask = ~mask;
|
|
mmr &= mask;
|
|
uv_write_local_mmr(mmr_offset, mmr);
|
|
spin_unlock(&hmaster->masks_lock);
|
|
end_uvhub_quiesce(hmaster);
|
|
stat->s_busy++;
|
|
return FLUSH_GIVEUP;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
bcp->conseccompletes++;
|
|
return FLUSH_COMPLETE;
|
|
}
|
|
|
|
static inline cycles_t
|
|
sec_2_cycles(unsigned long sec)
|
|
{
|
|
unsigned long ns;
|
|
cycles_t cyc;
|
|
|
|
ns = sec * 1000000000;
|
|
cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
|
|
return cyc;
|
|
}
|
|
|
|
/*
|
|
* conditionally add 1 to *v, unless *v is >= u
|
|
* return 0 if we cannot add 1 to *v because it is >= u
|
|
* return 1 if we can add 1 to *v because it is < u
|
|
* the add is atomic
|
|
*
|
|
* This is close to atomic_add_unless(), but this allows the 'u' value
|
|
* to be lowered below the current 'v'. atomic_add_unless can only stop
|
|
* on equal.
|
|
*/
|
|
static inline int atomic_inc_unless_ge(spinlock_t *lock, atomic_t *v, int u)
|
|
{
|
|
spin_lock(lock);
|
|
if (atomic_read(v) >= u) {
|
|
spin_unlock(lock);
|
|
return 0;
|
|
}
|
|
atomic_inc(v);
|
|
spin_unlock(lock);
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* uv_flush_send_and_wait
|
|
*
|
|
* Send a broadcast and wait for it to complete.
|
|
*
|
|
* The flush_mask contains the cpus the broadcast is to be sent to, plus
|
|
* cpus that are on the local uvhub.
|
|
*
|
|
* Returns NULL if all flushing represented in the mask was done. The mask
|
|
* is zeroed.
|
|
* Returns @flush_mask if some remote flushing remains to be done. The
|
|
* mask will have some bits still set, representing any cpus on the local
|
|
* uvhub (not current cpu) and any on remote uvhubs if the broadcast failed.
|
|
*/
|
|
const struct cpumask *uv_flush_send_and_wait(struct bau_desc *bau_desc,
|
|
struct cpumask *flush_mask,
|
|
struct bau_control *bcp)
|
|
{
|
|
int right_shift;
|
|
int uvhub;
|
|
int bit;
|
|
int completion_status = 0;
|
|
int seq_number = 0;
|
|
long try = 0;
|
|
int cpu = bcp->uvhub_cpu;
|
|
int this_cpu = bcp->cpu;
|
|
int this_uvhub = bcp->uvhub;
|
|
unsigned long mmr_offset;
|
|
unsigned long index;
|
|
cycles_t time1;
|
|
cycles_t time2;
|
|
struct ptc_stats *stat = &per_cpu(ptcstats, bcp->cpu);
|
|
struct bau_control *smaster = bcp->socket_master;
|
|
struct bau_control *hmaster = bcp->uvhub_master;
|
|
|
|
/*
|
|
* Spin here while there are hmaster->max_concurrent or more active
|
|
* descriptors. This is the per-uvhub 'throttle'.
|
|
*/
|
|
if (!atomic_inc_unless_ge(&hmaster->uvhub_lock,
|
|
&hmaster->active_descriptor_count,
|
|
hmaster->max_concurrent)) {
|
|
stat->s_throttles++;
|
|
do {
|
|
cpu_relax();
|
|
} while (!atomic_inc_unless_ge(&hmaster->uvhub_lock,
|
|
&hmaster->active_descriptor_count,
|
|
hmaster->max_concurrent));
|
|
}
|
|
|
|
while (hmaster->uvhub_quiesce)
|
|
cpu_relax();
|
|
|
|
if (cpu < UV_CPUS_PER_ACT_STATUS) {
|
|
mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
|
|
right_shift = cpu * UV_ACT_STATUS_SIZE;
|
|
} else {
|
|
mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
|
|
right_shift =
|
|
((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
|
|
}
|
|
time1 = get_cycles();
|
|
do {
|
|
/*
|
|
* Every message from any given cpu gets a unique message
|
|
* sequence number. But retries use that same number.
|
|
* Our message may have timed out at the destination because
|
|
* all sw-ack resources are in use and there is a timeout
|
|
* pending there. In that case, our last send never got
|
|
* placed into the queue and we need to persist until it
|
|
* does.
|
|
*
|
|
* Make any retry a type MSG_RETRY so that the destination will
|
|
* free any resource held by a previous message from this cpu.
|
|
*/
|
|
if (try == 0) {
|
|
/* use message type set by the caller the first time */
|
|
seq_number = bcp->message_number++;
|
|
} else {
|
|
/* use RETRY type on all the rest; same sequence */
|
|
bau_desc->header.msg_type = MSG_RETRY;
|
|
stat->s_retry_messages++;
|
|
}
|
|
bau_desc->header.sequence = seq_number;
|
|
index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
|
|
bcp->uvhub_cpu;
|
|
bcp->send_message = get_cycles();
|
|
|
|
uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
|
|
|
|
try++;
|
|
completion_status = uv_wait_completion(bau_desc, mmr_offset,
|
|
right_shift, this_cpu, bcp, smaster, try);
|
|
|
|
if (completion_status == FLUSH_RETRY_PLUGGED) {
|
|
/*
|
|
* Our retries may be blocked by all destination swack
|
|
* resources being consumed, and a timeout pending. In
|
|
* that case hardware immediately returns the ERROR
|
|
* that looks like a destination timeout.
|
|
*/
|
|
udelay(TIMEOUT_DELAY);
|
|
bcp->plugged_tries++;
|
|
if (bcp->plugged_tries >= PLUGSB4RESET) {
|
|
bcp->plugged_tries = 0;
|
|
quiesce_local_uvhub(hmaster);
|
|
spin_lock(&hmaster->queue_lock);
|
|
uv_reset_with_ipi(&bau_desc->distribution,
|
|
this_cpu);
|
|
spin_unlock(&hmaster->queue_lock);
|
|
end_uvhub_quiesce(hmaster);
|
|
bcp->ipi_attempts++;
|
|
stat->s_resets_plug++;
|
|
}
|
|
} else if (completion_status == FLUSH_RETRY_TIMEOUT) {
|
|
hmaster->max_concurrent = 1;
|
|
bcp->timeout_tries++;
|
|
udelay(TIMEOUT_DELAY);
|
|
if (bcp->timeout_tries >= TIMEOUTSB4RESET) {
|
|
bcp->timeout_tries = 0;
|
|
quiesce_local_uvhub(hmaster);
|
|
spin_lock(&hmaster->queue_lock);
|
|
uv_reset_with_ipi(&bau_desc->distribution,
|
|
this_cpu);
|
|
spin_unlock(&hmaster->queue_lock);
|
|
end_uvhub_quiesce(hmaster);
|
|
bcp->ipi_attempts++;
|
|
stat->s_resets_timeout++;
|
|
}
|
|
}
|
|
if (bcp->ipi_attempts >= 3) {
|
|
bcp->ipi_attempts = 0;
|
|
completion_status = FLUSH_GIVEUP;
|
|
break;
|
|
}
|
|
cpu_relax();
|
|
} while ((completion_status == FLUSH_RETRY_PLUGGED) ||
|
|
(completion_status == FLUSH_RETRY_TIMEOUT));
|
|
time2 = get_cycles();
|
|
|
|
if ((completion_status == FLUSH_COMPLETE) && (bcp->conseccompletes > 5)
|
|
&& (hmaster->max_concurrent < hmaster->max_concurrent_constant))
|
|
hmaster->max_concurrent++;
|
|
|
|
/*
|
|
* hold any cpu not timing out here; no other cpu currently held by
|
|
* the 'throttle' should enter the activation code
|
|
*/
|
|
while (hmaster->uvhub_quiesce)
|
|
cpu_relax();
|
|
atomic_dec(&hmaster->active_descriptor_count);
|
|
|
|
/* guard against cycles wrap */
|
|
if (time2 > time1)
|
|
stat->s_time += (time2 - time1);
|
|
else
|
|
stat->s_requestor--; /* don't count this one */
|
|
if (completion_status == FLUSH_COMPLETE && try > 1)
|
|
stat->s_retriesok++;
|
|
else if (completion_status == FLUSH_GIVEUP) {
|
|
/*
|
|
* Cause the caller to do an IPI-style TLB shootdown on
|
|
* the target cpu's, all of which are still in the mask.
|
|
*/
|
|
stat->s_giveup++;
|
|
return flush_mask;
|
|
}
|
|
|
|
/*
|
|
* Success, so clear the remote cpu's from the mask so we don't
|
|
* use the IPI method of shootdown on them.
|
|
*/
|
|
for_each_cpu(bit, flush_mask) {
|
|
uvhub = uv_cpu_to_blade_id(bit);
|
|
if (uvhub == this_uvhub)
|
|
continue;
|
|
cpumask_clear_cpu(bit, flush_mask);
|
|
}
|
|
if (!cpumask_empty(flush_mask))
|
|
return flush_mask;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* uv_flush_tlb_others - globally purge translation cache of a virtual
|
|
* address or all TLB's
|
|
* @cpumask: mask of all cpu's in which the address is to be removed
|
|
* @mm: mm_struct containing virtual address range
|
|
* @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
|
|
* @cpu: the current cpu
|
|
*
|
|
* This is the entry point for initiating any UV global TLB shootdown.
|
|
*
|
|
* Purges the translation caches of all specified processors of the given
|
|
* virtual address, or purges all TLB's on specified processors.
|
|
*
|
|
* The caller has derived the cpumask from the mm_struct. This function
|
|
* is called only if there are bits set in the mask. (e.g. flush_tlb_page())
|
|
*
|
|
* The cpumask is converted into a uvhubmask of the uvhubs containing
|
|
* those cpus.
|
|
*
|
|
* Note that this function should be called with preemption disabled.
|
|
*
|
|
* Returns NULL if all remote flushing was done.
|
|
* Returns pointer to cpumask if some remote flushing remains to be
|
|
* done. The returned pointer is valid till preemption is re-enabled.
|
|
*/
|
|
const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
|
|
struct mm_struct *mm,
|
|
unsigned long va, unsigned int cpu)
|
|
{
|
|
int remotes;
|
|
int tcpu;
|
|
int uvhub;
|
|
int locals = 0;
|
|
struct bau_desc *bau_desc;
|
|
struct cpumask *flush_mask;
|
|
struct ptc_stats *stat;
|
|
struct bau_control *bcp;
|
|
|
|
if (nobau)
|
|
return cpumask;
|
|
|
|
bcp = &per_cpu(bau_control, cpu);
|
|
/*
|
|
* Each sending cpu has a per-cpu mask which it fills from the caller's
|
|
* cpu mask. Only remote cpus are converted to uvhubs and copied.
|
|
*/
|
|
flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu);
|
|
/*
|
|
* copy cpumask to flush_mask, removing current cpu
|
|
* (current cpu should already have been flushed by the caller and
|
|
* should never be returned if we return flush_mask)
|
|
*/
|
|
cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
|
|
if (cpu_isset(cpu, *cpumask))
|
|
locals++; /* current cpu was targeted */
|
|
|
|
bau_desc = bcp->descriptor_base;
|
|
bau_desc += UV_ITEMS_PER_DESCRIPTOR * bcp->uvhub_cpu;
|
|
|
|
bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
|
|
remotes = 0;
|
|
for_each_cpu(tcpu, flush_mask) {
|
|
uvhub = uv_cpu_to_blade_id(tcpu);
|
|
if (uvhub == bcp->uvhub) {
|
|
locals++;
|
|
continue;
|
|
}
|
|
bau_uvhub_set(uvhub, &bau_desc->distribution);
|
|
remotes++;
|
|
}
|
|
if (remotes == 0) {
|
|
/*
|
|
* No off_hub flushing; return status for local hub.
|
|
* Return the caller's mask if all were local (the current
|
|
* cpu may be in that mask).
|
|
*/
|
|
if (locals)
|
|
return cpumask;
|
|
else
|
|
return NULL;
|
|
}
|
|
stat = &per_cpu(ptcstats, cpu);
|
|
stat->s_requestor++;
|
|
stat->s_ntargcpu += remotes;
|
|
remotes = bau_uvhub_weight(&bau_desc->distribution);
|
|
stat->s_ntarguvhub += remotes;
|
|
if (remotes >= 16)
|
|
stat->s_ntarguvhub16++;
|
|
else if (remotes >= 8)
|
|
stat->s_ntarguvhub8++;
|
|
else if (remotes >= 4)
|
|
stat->s_ntarguvhub4++;
|
|
else if (remotes >= 2)
|
|
stat->s_ntarguvhub2++;
|
|
else
|
|
stat->s_ntarguvhub1++;
|
|
|
|
bau_desc->payload.address = va;
|
|
bau_desc->payload.sending_cpu = cpu;
|
|
|
|
/*
|
|
* uv_flush_send_and_wait returns null if all cpu's were messaged, or
|
|
* the adjusted flush_mask if any cpu's were not messaged.
|
|
*/
|
|
return uv_flush_send_and_wait(bau_desc, flush_mask, bcp);
|
|
}
|
|
|
|
/*
|
|
* The BAU message interrupt comes here. (registered by set_intr_gate)
|
|
* See entry_64.S
|
|
*
|
|
* We received a broadcast assist message.
|
|
*
|
|
* Interrupts are disabled; this interrupt could represent
|
|
* the receipt of several messages.
|
|
*
|
|
* All cores/threads on this hub get this interrupt.
|
|
* The last one to see it does the software ack.
|
|
* (the resource will not be freed until noninterruptable cpus see this
|
|
* interrupt; hardware may timeout the s/w ack and reply ERROR)
|
|
*/
|
|
void uv_bau_message_interrupt(struct pt_regs *regs)
|
|
{
|
|
int count = 0;
|
|
cycles_t time_start;
|
|
struct bau_payload_queue_entry *msg;
|
|
struct bau_control *bcp;
|
|
struct ptc_stats *stat;
|
|
struct msg_desc msgdesc;
|
|
|
|
time_start = get_cycles();
|
|
bcp = &per_cpu(bau_control, smp_processor_id());
|
|
stat = &per_cpu(ptcstats, smp_processor_id());
|
|
msgdesc.va_queue_first = bcp->va_queue_first;
|
|
msgdesc.va_queue_last = bcp->va_queue_last;
|
|
msg = bcp->bau_msg_head;
|
|
while (msg->sw_ack_vector) {
|
|
count++;
|
|
msgdesc.msg_slot = msg - msgdesc.va_queue_first;
|
|
msgdesc.sw_ack_slot = ffs(msg->sw_ack_vector) - 1;
|
|
msgdesc.msg = msg;
|
|
uv_bau_process_message(&msgdesc, bcp);
|
|
msg++;
|
|
if (msg > msgdesc.va_queue_last)
|
|
msg = msgdesc.va_queue_first;
|
|
bcp->bau_msg_head = msg;
|
|
}
|
|
stat->d_time += (get_cycles() - time_start);
|
|
if (!count)
|
|
stat->d_nomsg++;
|
|
else if (count > 1)
|
|
stat->d_multmsg++;
|
|
ack_APIC_irq();
|
|
}
|
|
|
|
/*
|
|
* uv_enable_timeouts
|
|
*
|
|
* Each target uvhub (i.e. a uvhub that has no cpu's) needs to have
|
|
* shootdown message timeouts enabled. The timeout does not cause
|
|
* an interrupt, but causes an error message to be returned to
|
|
* the sender.
|
|
*/
|
|
static void uv_enable_timeouts(void)
|
|
{
|
|
int uvhub;
|
|
int nuvhubs;
|
|
int pnode;
|
|
unsigned long mmr_image;
|
|
|
|
nuvhubs = uv_num_possible_blades();
|
|
|
|
for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
|
|
if (!uv_blade_nr_possible_cpus(uvhub))
|
|
continue;
|
|
|
|
pnode = uv_blade_to_pnode(uvhub);
|
|
mmr_image =
|
|
uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL);
|
|
/*
|
|
* Set the timeout period and then lock it in, in three
|
|
* steps; captures and locks in the period.
|
|
*
|
|
* To program the period, the SOFT_ACK_MODE must be off.
|
|
*/
|
|
mmr_image &= ~((unsigned long)1 <<
|
|
UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT);
|
|
uv_write_global_mmr64
|
|
(pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
|
|
/*
|
|
* Set the 4-bit period.
|
|
*/
|
|
mmr_image &= ~((unsigned long)0xf <<
|
|
UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT);
|
|
mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD <<
|
|
UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT);
|
|
uv_write_global_mmr64
|
|
(pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
|
|
/*
|
|
* Subsequent reversals of the timebase bit (3) cause an
|
|
* immediate timeout of one or all INTD resources as
|
|
* indicated in bits 2:0 (7 causes all of them to timeout).
|
|
*/
|
|
mmr_image |= ((unsigned long)1 <<
|
|
UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT);
|
|
uv_write_global_mmr64
|
|
(pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
|
|
}
|
|
}
|
|
|
|
static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
|
|
{
|
|
if (*offset < num_possible_cpus())
|
|
return offset;
|
|
return NULL;
|
|
}
|
|
|
|
static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
|
|
{
|
|
(*offset)++;
|
|
if (*offset < num_possible_cpus())
|
|
return offset;
|
|
return NULL;
|
|
}
|
|
|
|
static void uv_ptc_seq_stop(struct seq_file *file, void *data)
|
|
{
|
|
}
|
|
|
|
static inline unsigned long long
|
|
millisec_2_cycles(unsigned long millisec)
|
|
{
|
|
unsigned long ns;
|
|
unsigned long long cyc;
|
|
|
|
ns = millisec * 1000;
|
|
cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
|
|
return cyc;
|
|
}
|
|
|
|
/*
|
|
* Display the statistics thru /proc.
|
|
* 'data' points to the cpu number
|
|
*/
|
|
static int uv_ptc_seq_show(struct seq_file *file, void *data)
|
|
{
|
|
struct ptc_stats *stat;
|
|
int cpu;
|
|
|
|
cpu = *(loff_t *)data;
|
|
|
|
if (!cpu) {
|
|
seq_printf(file,
|
|
"# cpu sent stime numuvhubs numuvhubs16 numuvhubs8 ");
|
|
seq_printf(file,
|
|
"numuvhubs4 numuvhubs2 numuvhubs1 numcpus dto ");
|
|
seq_printf(file,
|
|
"retries rok resetp resett giveup sto bz throt ");
|
|
seq_printf(file,
|
|
"sw_ack recv rtime all ");
|
|
seq_printf(file,
|
|
"one mult none retry canc nocan reset rcan\n");
|
|
}
|
|
if (cpu < num_possible_cpus() && cpu_online(cpu)) {
|
|
stat = &per_cpu(ptcstats, cpu);
|
|
/* source side statistics */
|
|
seq_printf(file,
|
|
"cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
|
|
cpu, stat->s_requestor, cycles_2_us(stat->s_time),
|
|
stat->s_ntarguvhub, stat->s_ntarguvhub16,
|
|
stat->s_ntarguvhub8, stat->s_ntarguvhub4,
|
|
stat->s_ntarguvhub2, stat->s_ntarguvhub1,
|
|
stat->s_ntargcpu, stat->s_dtimeout);
|
|
seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ",
|
|
stat->s_retry_messages, stat->s_retriesok,
|
|
stat->s_resets_plug, stat->s_resets_timeout,
|
|
stat->s_giveup, stat->s_stimeout,
|
|
stat->s_busy, stat->s_throttles);
|
|
/* destination side statistics */
|
|
seq_printf(file,
|
|
"%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n",
|
|
uv_read_global_mmr64(uv_cpu_to_pnode(cpu),
|
|
UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
|
|
stat->d_requestee, cycles_2_us(stat->d_time),
|
|
stat->d_alltlb, stat->d_onetlb, stat->d_multmsg,
|
|
stat->d_nomsg, stat->d_retries, stat->d_canceled,
|
|
stat->d_nocanceled, stat->d_resets,
|
|
stat->d_rcanceled);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* -1: resetf the statistics
|
|
* 0: display meaning of the statistics
|
|
* >0: maximum concurrent active descriptors per uvhub (throttle)
|
|
*/
|
|
static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
|
|
size_t count, loff_t *data)
|
|
{
|
|
int cpu;
|
|
long input_arg;
|
|
char optstr[64];
|
|
struct ptc_stats *stat;
|
|
struct bau_control *bcp;
|
|
|
|
if (count == 0 || count > sizeof(optstr))
|
|
return -EINVAL;
|
|
if (copy_from_user(optstr, user, count))
|
|
return -EFAULT;
|
|
optstr[count - 1] = '\0';
|
|
if (strict_strtol(optstr, 10, &input_arg) < 0) {
|
|
printk(KERN_DEBUG "%s is invalid\n", optstr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (input_arg == 0) {
|
|
printk(KERN_DEBUG "# cpu: cpu number\n");
|
|
printk(KERN_DEBUG "Sender statistics:\n");
|
|
printk(KERN_DEBUG
|
|
"sent: number of shootdown messages sent\n");
|
|
printk(KERN_DEBUG
|
|
"stime: time spent sending messages\n");
|
|
printk(KERN_DEBUG
|
|
"numuvhubs: number of hubs targeted with shootdown\n");
|
|
printk(KERN_DEBUG
|
|
"numuvhubs16: number times 16 or more hubs targeted\n");
|
|
printk(KERN_DEBUG
|
|
"numuvhubs8: number times 8 or more hubs targeted\n");
|
|
printk(KERN_DEBUG
|
|
"numuvhubs4: number times 4 or more hubs targeted\n");
|
|
printk(KERN_DEBUG
|
|
"numuvhubs2: number times 2 or more hubs targeted\n");
|
|
printk(KERN_DEBUG
|
|
"numuvhubs1: number times 1 hub targeted\n");
|
|
printk(KERN_DEBUG
|
|
"numcpus: number of cpus targeted with shootdown\n");
|
|
printk(KERN_DEBUG
|
|
"dto: number of destination timeouts\n");
|
|
printk(KERN_DEBUG
|
|
"retries: destination timeout retries sent\n");
|
|
printk(KERN_DEBUG
|
|
"rok: : destination timeouts successfully retried\n");
|
|
printk(KERN_DEBUG
|
|
"resetp: ipi-style resource resets for plugs\n");
|
|
printk(KERN_DEBUG
|
|
"resett: ipi-style resource resets for timeouts\n");
|
|
printk(KERN_DEBUG
|
|
"giveup: fall-backs to ipi-style shootdowns\n");
|
|
printk(KERN_DEBUG
|
|
"sto: number of source timeouts\n");
|
|
printk(KERN_DEBUG
|
|
"bz: number of stay-busy's\n");
|
|
printk(KERN_DEBUG
|
|
"throt: number times spun in throttle\n");
|
|
printk(KERN_DEBUG "Destination side statistics:\n");
|
|
printk(KERN_DEBUG
|
|
"sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
|
|
printk(KERN_DEBUG
|
|
"recv: shootdown messages received\n");
|
|
printk(KERN_DEBUG
|
|
"rtime: time spent processing messages\n");
|
|
printk(KERN_DEBUG
|
|
"all: shootdown all-tlb messages\n");
|
|
printk(KERN_DEBUG
|
|
"one: shootdown one-tlb messages\n");
|
|
printk(KERN_DEBUG
|
|
"mult: interrupts that found multiple messages\n");
|
|
printk(KERN_DEBUG
|
|
"none: interrupts that found no messages\n");
|
|
printk(KERN_DEBUG
|
|
"retry: number of retry messages processed\n");
|
|
printk(KERN_DEBUG
|
|
"canc: number messages canceled by retries\n");
|
|
printk(KERN_DEBUG
|
|
"nocan: number retries that found nothing to cancel\n");
|
|
printk(KERN_DEBUG
|
|
"reset: number of ipi-style reset requests processed\n");
|
|
printk(KERN_DEBUG
|
|
"rcan: number messages canceled by reset requests\n");
|
|
} else if (input_arg == -1) {
|
|
for_each_present_cpu(cpu) {
|
|
stat = &per_cpu(ptcstats, cpu);
|
|
memset(stat, 0, sizeof(struct ptc_stats));
|
|
}
|
|
} else {
|
|
uv_bau_max_concurrent = input_arg;
|
|
bcp = &per_cpu(bau_control, smp_processor_id());
|
|
if (uv_bau_max_concurrent < 1 ||
|
|
uv_bau_max_concurrent > bcp->cpus_in_uvhub) {
|
|
printk(KERN_DEBUG
|
|
"Error: BAU max concurrent %d; %d is invalid\n",
|
|
bcp->max_concurrent, uv_bau_max_concurrent);
|
|
return -EINVAL;
|
|
}
|
|
printk(KERN_DEBUG "Set BAU max concurrent:%d\n",
|
|
uv_bau_max_concurrent);
|
|
for_each_present_cpu(cpu) {
|
|
bcp = &per_cpu(bau_control, cpu);
|
|
bcp->max_concurrent = uv_bau_max_concurrent;
|
|
}
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static const struct seq_operations uv_ptc_seq_ops = {
|
|
.start = uv_ptc_seq_start,
|
|
.next = uv_ptc_seq_next,
|
|
.stop = uv_ptc_seq_stop,
|
|
.show = uv_ptc_seq_show
|
|
};
|
|
|
|
static int uv_ptc_proc_open(struct inode *inode, struct file *file)
|
|
{
|
|
return seq_open(file, &uv_ptc_seq_ops);
|
|
}
|
|
|
|
static const struct file_operations proc_uv_ptc_operations = {
|
|
.open = uv_ptc_proc_open,
|
|
.read = seq_read,
|
|
.write = uv_ptc_proc_write,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release,
|
|
};
|
|
|
|
static int __init uv_ptc_init(void)
|
|
{
|
|
struct proc_dir_entry *proc_uv_ptc;
|
|
|
|
if (!is_uv_system())
|
|
return 0;
|
|
|
|
proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
|
|
&proc_uv_ptc_operations);
|
|
if (!proc_uv_ptc) {
|
|
printk(KERN_ERR "unable to create %s proc entry\n",
|
|
UV_PTC_BASENAME);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* initialize the sending side's sending buffers
|
|
*/
|
|
static void
|
|
uv_activation_descriptor_init(int node, int pnode)
|
|
{
|
|
int i;
|
|
int cpu;
|
|
unsigned long pa;
|
|
unsigned long m;
|
|
unsigned long n;
|
|
struct bau_desc *bau_desc;
|
|
struct bau_desc *bd2;
|
|
struct bau_control *bcp;
|
|
|
|
/*
|
|
* each bau_desc is 64 bytes; there are 8 (UV_ITEMS_PER_DESCRIPTOR)
|
|
* per cpu; and up to 32 (UV_ADP_SIZE) cpu's per uvhub
|
|
*/
|
|
bau_desc = (struct bau_desc *)kmalloc_node(sizeof(struct bau_desc)*
|
|
UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR, GFP_KERNEL, node);
|
|
BUG_ON(!bau_desc);
|
|
|
|
pa = uv_gpa(bau_desc); /* need the real nasid*/
|
|
n = pa >> uv_nshift;
|
|
m = pa & uv_mmask;
|
|
|
|
uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE,
|
|
(n << UV_DESC_BASE_PNODE_SHIFT | m));
|
|
|
|
/*
|
|
* initializing all 8 (UV_ITEMS_PER_DESCRIPTOR) descriptors for each
|
|
* cpu even though we only use the first one; one descriptor can
|
|
* describe a broadcast to 256 uv hubs.
|
|
*/
|
|
for (i = 0, bd2 = bau_desc; i < (UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR);
|
|
i++, bd2++) {
|
|
memset(bd2, 0, sizeof(struct bau_desc));
|
|
bd2->header.sw_ack_flag = 1;
|
|
/*
|
|
* base_dest_nodeid is the nasid (pnode<<1) of the first uvhub
|
|
* in the partition. The bit map will indicate uvhub numbers,
|
|
* which are 0-N in a partition. Pnodes are unique system-wide.
|
|
*/
|
|
bd2->header.base_dest_nodeid = uv_partition_base_pnode << 1;
|
|
bd2->header.dest_subnodeid = 0x10; /* the LB */
|
|
bd2->header.command = UV_NET_ENDPOINT_INTD;
|
|
bd2->header.int_both = 1;
|
|
/*
|
|
* all others need to be set to zero:
|
|
* fairness chaining multilevel count replied_to
|
|
*/
|
|
}
|
|
for_each_present_cpu(cpu) {
|
|
if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu)))
|
|
continue;
|
|
bcp = &per_cpu(bau_control, cpu);
|
|
bcp->descriptor_base = bau_desc;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* initialize the destination side's receiving buffers
|
|
* entered for each uvhub in the partition
|
|
* - node is first node (kernel memory notion) on the uvhub
|
|
* - pnode is the uvhub's physical identifier
|
|
*/
|
|
static void
|
|
uv_payload_queue_init(int node, int pnode)
|
|
{
|
|
int pn;
|
|
int cpu;
|
|
char *cp;
|
|
unsigned long pa;
|
|
struct bau_payload_queue_entry *pqp;
|
|
struct bau_payload_queue_entry *pqp_malloc;
|
|
struct bau_control *bcp;
|
|
|
|
pqp = (struct bau_payload_queue_entry *) kmalloc_node(
|
|
(DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry),
|
|
GFP_KERNEL, node);
|
|
BUG_ON(!pqp);
|
|
pqp_malloc = pqp;
|
|
|
|
cp = (char *)pqp + 31;
|
|
pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
|
|
|
|
for_each_present_cpu(cpu) {
|
|
if (pnode != uv_cpu_to_pnode(cpu))
|
|
continue;
|
|
/* for every cpu on this pnode: */
|
|
bcp = &per_cpu(bau_control, cpu);
|
|
bcp->va_queue_first = pqp;
|
|
bcp->bau_msg_head = pqp;
|
|
bcp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
|
|
}
|
|
/*
|
|
* need the pnode of where the memory was really allocated
|
|
*/
|
|
pa = uv_gpa(pqp);
|
|
pn = pa >> uv_nshift;
|
|
uv_write_global_mmr64(pnode,
|
|
UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
|
|
((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) |
|
|
uv_physnodeaddr(pqp));
|
|
uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
|
|
uv_physnodeaddr(pqp));
|
|
uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
|
|
(unsigned long)
|
|
uv_physnodeaddr(pqp + (DEST_Q_SIZE - 1)));
|
|
/* in effect, all msg_type's are set to MSG_NOOP */
|
|
memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Initialization of each UV hub's structures
|
|
*/
|
|
static void __init uv_init_uvhub(int uvhub, int vector)
|
|
{
|
|
int node;
|
|
int pnode;
|
|
unsigned long apicid;
|
|
|
|
node = uvhub_to_first_node(uvhub);
|
|
pnode = uv_blade_to_pnode(uvhub);
|
|
uv_activation_descriptor_init(node, pnode);
|
|
uv_payload_queue_init(node, pnode);
|
|
/*
|
|
* the below initialization can't be in firmware because the
|
|
* messaging IRQ will be determined by the OS
|
|
*/
|
|
apicid = uvhub_to_first_apicid(uvhub);
|
|
uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
|
|
((apicid << 32) | vector));
|
|
}
|
|
|
|
/*
|
|
* initialize the bau_control structure for each cpu
|
|
*/
|
|
static void uv_init_per_cpu(int nuvhubs)
|
|
{
|
|
int i, j, k;
|
|
int cpu;
|
|
int pnode;
|
|
int uvhub;
|
|
short socket = 0;
|
|
struct bau_control *bcp;
|
|
struct uvhub_desc *bdp;
|
|
struct socket_desc *sdp;
|
|
struct bau_control *hmaster = NULL;
|
|
struct bau_control *smaster = NULL;
|
|
struct socket_desc {
|
|
short num_cpus;
|
|
short cpu_number[16];
|
|
};
|
|
struct uvhub_desc {
|
|
short num_sockets;
|
|
short num_cpus;
|
|
short uvhub;
|
|
short pnode;
|
|
struct socket_desc socket[2];
|
|
};
|
|
struct uvhub_desc *uvhub_descs;
|
|
|
|
uvhub_descs = (struct uvhub_desc *)
|
|
kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL);
|
|
memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc));
|
|
for_each_present_cpu(cpu) {
|
|
bcp = &per_cpu(bau_control, cpu);
|
|
memset(bcp, 0, sizeof(struct bau_control));
|
|
spin_lock_init(&bcp->masks_lock);
|
|
bcp->max_concurrent = uv_bau_max_concurrent;
|
|
pnode = uv_cpu_hub_info(cpu)->pnode;
|
|
uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
|
|
bdp = &uvhub_descs[uvhub];
|
|
bdp->num_cpus++;
|
|
bdp->uvhub = uvhub;
|
|
bdp->pnode = pnode;
|
|
/* time interval to catch a hardware stay-busy bug */
|
|
bcp->timeout_interval = millisec_2_cycles(3);
|
|
/* kludge: assume uv_hub.h is constant */
|
|
socket = (cpu_physical_id(cpu)>>5)&1;
|
|
if (socket >= bdp->num_sockets)
|
|
bdp->num_sockets = socket+1;
|
|
sdp = &bdp->socket[socket];
|
|
sdp->cpu_number[sdp->num_cpus] = cpu;
|
|
sdp->num_cpus++;
|
|
}
|
|
socket = 0;
|
|
for_each_possible_blade(uvhub) {
|
|
bdp = &uvhub_descs[uvhub];
|
|
for (i = 0; i < bdp->num_sockets; i++) {
|
|
sdp = &bdp->socket[i];
|
|
for (j = 0; j < sdp->num_cpus; j++) {
|
|
cpu = sdp->cpu_number[j];
|
|
bcp = &per_cpu(bau_control, cpu);
|
|
bcp->cpu = cpu;
|
|
if (j == 0) {
|
|
smaster = bcp;
|
|
if (i == 0)
|
|
hmaster = bcp;
|
|
}
|
|
bcp->cpus_in_uvhub = bdp->num_cpus;
|
|
bcp->cpus_in_socket = sdp->num_cpus;
|
|
bcp->socket_master = smaster;
|
|
bcp->uvhub_master = hmaster;
|
|
for (k = 0; k < DEST_Q_SIZE; k++)
|
|
bcp->socket_acknowledge_count[k] = 0;
|
|
bcp->uvhub_cpu =
|
|
uv_cpu_hub_info(cpu)->blade_processor_id;
|
|
}
|
|
socket++;
|
|
}
|
|
}
|
|
kfree(uvhub_descs);
|
|
}
|
|
|
|
/*
|
|
* Initialization of BAU-related structures
|
|
*/
|
|
static int __init uv_bau_init(void)
|
|
{
|
|
int uvhub;
|
|
int pnode;
|
|
int nuvhubs;
|
|
int cur_cpu;
|
|
int vector;
|
|
unsigned long mmr;
|
|
|
|
if (!is_uv_system())
|
|
return 0;
|
|
|
|
if (nobau)
|
|
return 0;
|
|
|
|
for_each_possible_cpu(cur_cpu)
|
|
zalloc_cpumask_var_node(&per_cpu(uv_flush_tlb_mask, cur_cpu),
|
|
GFP_KERNEL, cpu_to_node(cur_cpu));
|
|
|
|
uv_bau_max_concurrent = MAX_BAU_CONCURRENT;
|
|
uv_nshift = uv_hub_info->m_val;
|
|
uv_mmask = (1UL << uv_hub_info->m_val) - 1;
|
|
nuvhubs = uv_num_possible_blades();
|
|
|
|
uv_init_per_cpu(nuvhubs);
|
|
|
|
uv_partition_base_pnode = 0x7fffffff;
|
|
for (uvhub = 0; uvhub < nuvhubs; uvhub++)
|
|
if (uv_blade_nr_possible_cpus(uvhub) &&
|
|
(uv_blade_to_pnode(uvhub) < uv_partition_base_pnode))
|
|
uv_partition_base_pnode = uv_blade_to_pnode(uvhub);
|
|
|
|
vector = UV_BAU_MESSAGE;
|
|
for_each_possible_blade(uvhub)
|
|
if (uv_blade_nr_possible_cpus(uvhub))
|
|
uv_init_uvhub(uvhub, vector);
|
|
|
|
uv_enable_timeouts();
|
|
alloc_intr_gate(vector, uv_bau_message_intr1);
|
|
|
|
for_each_possible_blade(uvhub) {
|
|
pnode = uv_blade_to_pnode(uvhub);
|
|
/* INIT the bau */
|
|
uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_ACTIVATION_CONTROL,
|
|
((unsigned long)1 << 63));
|
|
mmr = 1; /* should be 1 to broadcast to both sockets */
|
|
uv_write_global_mmr64(pnode, UVH_BAU_DATA_BROADCAST, mmr);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
core_initcall(uv_bau_init);
|
|
core_initcall(uv_ptc_init);
|