kernel_optimize_test/fs/xfs/scrub/common.c
Eric Sandeen 250d4b4c40 xfs: remove unused header files
There are many, many xfs header files which are included but
unneeded (or included twice) in the xfs code, so remove them.

nb: xfs_linux.h includes about 9 headers for everyone, so those
explicit includes get removed by this.  I'm not sure what the
preference is, but if we wanted explicit includes everywhere,
a followup patch could remove those xfs_*.h includes from
xfs_linux.h and move them into the files that need them.
Or it could be left as-is.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2019-06-28 19:30:43 -07:00

916 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2017 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <darrick.wong@oracle.com>
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_btree.h"
#include "xfs_log_format.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_inode.h"
#include "xfs_icache.h"
#include "xfs_alloc.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc.h"
#include "xfs_ialloc_btree.h"
#include "xfs_refcount_btree.h"
#include "xfs_rmap.h"
#include "xfs_rmap_btree.h"
#include "xfs_log.h"
#include "xfs_trans_priv.h"
#include "xfs_attr.h"
#include "xfs_reflink.h"
#include "scrub/scrub.h"
#include "scrub/common.h"
#include "scrub/trace.h"
#include "scrub/repair.h"
#include "scrub/health.h"
/* Common code for the metadata scrubbers. */
/*
* Handling operational errors.
*
* The *_process_error() family of functions are used to process error return
* codes from functions called as part of a scrub operation.
*
* If there's no error, we return true to tell the caller that it's ok
* to move on to the next check in its list.
*
* For non-verifier errors (e.g. ENOMEM) we return false to tell the
* caller that something bad happened, and we preserve *error so that
* the caller can return the *error up the stack to userspace.
*
* Verifier errors (EFSBADCRC/EFSCORRUPTED) are recorded by setting
* OFLAG_CORRUPT in sm_flags and the *error is cleared. In other words,
* we track verifier errors (and failed scrub checks) via OFLAG_CORRUPT,
* not via return codes. We return false to tell the caller that
* something bad happened. Since the error has been cleared, the caller
* will (presumably) return that zero and scrubbing will move on to
* whatever's next.
*
* ftrace can be used to record the precise metadata location and the
* approximate code location of the failed operation.
*/
/* Check for operational errors. */
static bool
__xchk_process_error(
struct xfs_scrub *sc,
xfs_agnumber_t agno,
xfs_agblock_t bno,
int *error,
__u32 errflag,
void *ret_ip)
{
switch (*error) {
case 0:
return true;
case -EDEADLOCK:
/* Used to restart an op with deadlock avoidance. */
trace_xchk_deadlock_retry(sc->ip, sc->sm, *error);
break;
case -EFSBADCRC:
case -EFSCORRUPTED:
/* Note the badness but don't abort. */
sc->sm->sm_flags |= errflag;
*error = 0;
/* fall through */
default:
trace_xchk_op_error(sc, agno, bno, *error,
ret_ip);
break;
}
return false;
}
bool
xchk_process_error(
struct xfs_scrub *sc,
xfs_agnumber_t agno,
xfs_agblock_t bno,
int *error)
{
return __xchk_process_error(sc, agno, bno, error,
XFS_SCRUB_OFLAG_CORRUPT, __return_address);
}
bool
xchk_xref_process_error(
struct xfs_scrub *sc,
xfs_agnumber_t agno,
xfs_agblock_t bno,
int *error)
{
return __xchk_process_error(sc, agno, bno, error,
XFS_SCRUB_OFLAG_XFAIL, __return_address);
}
/* Check for operational errors for a file offset. */
static bool
__xchk_fblock_process_error(
struct xfs_scrub *sc,
int whichfork,
xfs_fileoff_t offset,
int *error,
__u32 errflag,
void *ret_ip)
{
switch (*error) {
case 0:
return true;
case -EDEADLOCK:
/* Used to restart an op with deadlock avoidance. */
trace_xchk_deadlock_retry(sc->ip, sc->sm, *error);
break;
case -EFSBADCRC:
case -EFSCORRUPTED:
/* Note the badness but don't abort. */
sc->sm->sm_flags |= errflag;
*error = 0;
/* fall through */
default:
trace_xchk_file_op_error(sc, whichfork, offset, *error,
ret_ip);
break;
}
return false;
}
bool
xchk_fblock_process_error(
struct xfs_scrub *sc,
int whichfork,
xfs_fileoff_t offset,
int *error)
{
return __xchk_fblock_process_error(sc, whichfork, offset, error,
XFS_SCRUB_OFLAG_CORRUPT, __return_address);
}
bool
xchk_fblock_xref_process_error(
struct xfs_scrub *sc,
int whichfork,
xfs_fileoff_t offset,
int *error)
{
return __xchk_fblock_process_error(sc, whichfork, offset, error,
XFS_SCRUB_OFLAG_XFAIL, __return_address);
}
/*
* Handling scrub corruption/optimization/warning checks.
*
* The *_set_{corrupt,preen,warning}() family of functions are used to
* record the presence of metadata that is incorrect (corrupt), could be
* optimized somehow (preen), or should be flagged for administrative
* review but is not incorrect (warn).
*
* ftrace can be used to record the precise metadata location and
* approximate code location of the failed check.
*/
/* Record a block which could be optimized. */
void
xchk_block_set_preen(
struct xfs_scrub *sc,
struct xfs_buf *bp)
{
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
trace_xchk_block_preen(sc, bp->b_bn, __return_address);
}
/*
* Record an inode which could be optimized. The trace data will
* include the block given by bp if bp is given; otherwise it will use
* the block location of the inode record itself.
*/
void
xchk_ino_set_preen(
struct xfs_scrub *sc,
xfs_ino_t ino)
{
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
trace_xchk_ino_preen(sc, ino, __return_address);
}
/* Record something being wrong with the filesystem primary superblock. */
void
xchk_set_corrupt(
struct xfs_scrub *sc)
{
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
trace_xchk_fs_error(sc, 0, __return_address);
}
/* Record a corrupt block. */
void
xchk_block_set_corrupt(
struct xfs_scrub *sc,
struct xfs_buf *bp)
{
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
trace_xchk_block_error(sc, bp->b_bn, __return_address);
}
/* Record a corruption while cross-referencing. */
void
xchk_block_xref_set_corrupt(
struct xfs_scrub *sc,
struct xfs_buf *bp)
{
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
trace_xchk_block_error(sc, bp->b_bn, __return_address);
}
/*
* Record a corrupt inode. The trace data will include the block given
* by bp if bp is given; otherwise it will use the block location of the
* inode record itself.
*/
void
xchk_ino_set_corrupt(
struct xfs_scrub *sc,
xfs_ino_t ino)
{
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
trace_xchk_ino_error(sc, ino, __return_address);
}
/* Record a corruption while cross-referencing with an inode. */
void
xchk_ino_xref_set_corrupt(
struct xfs_scrub *sc,
xfs_ino_t ino)
{
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
trace_xchk_ino_error(sc, ino, __return_address);
}
/* Record corruption in a block indexed by a file fork. */
void
xchk_fblock_set_corrupt(
struct xfs_scrub *sc,
int whichfork,
xfs_fileoff_t offset)
{
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
}
/* Record a corruption while cross-referencing a fork block. */
void
xchk_fblock_xref_set_corrupt(
struct xfs_scrub *sc,
int whichfork,
xfs_fileoff_t offset)
{
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
}
/*
* Warn about inodes that need administrative review but is not
* incorrect.
*/
void
xchk_ino_set_warning(
struct xfs_scrub *sc,
xfs_ino_t ino)
{
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
trace_xchk_ino_warning(sc, ino, __return_address);
}
/* Warn about a block indexed by a file fork that needs review. */
void
xchk_fblock_set_warning(
struct xfs_scrub *sc,
int whichfork,
xfs_fileoff_t offset)
{
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
trace_xchk_fblock_warning(sc, whichfork, offset, __return_address);
}
/* Signal an incomplete scrub. */
void
xchk_set_incomplete(
struct xfs_scrub *sc)
{
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_INCOMPLETE;
trace_xchk_incomplete(sc, __return_address);
}
/*
* rmap scrubbing -- compute the number of blocks with a given owner,
* at least according to the reverse mapping data.
*/
struct xchk_rmap_ownedby_info {
const struct xfs_owner_info *oinfo;
xfs_filblks_t *blocks;
};
STATIC int
xchk_count_rmap_ownedby_irec(
struct xfs_btree_cur *cur,
struct xfs_rmap_irec *rec,
void *priv)
{
struct xchk_rmap_ownedby_info *sroi = priv;
bool irec_attr;
bool oinfo_attr;
irec_attr = rec->rm_flags & XFS_RMAP_ATTR_FORK;
oinfo_attr = sroi->oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK;
if (rec->rm_owner != sroi->oinfo->oi_owner)
return 0;
if (XFS_RMAP_NON_INODE_OWNER(rec->rm_owner) || irec_attr == oinfo_attr)
(*sroi->blocks) += rec->rm_blockcount;
return 0;
}
/*
* Calculate the number of blocks the rmap thinks are owned by something.
* The caller should pass us an rmapbt cursor.
*/
int
xchk_count_rmap_ownedby_ag(
struct xfs_scrub *sc,
struct xfs_btree_cur *cur,
const struct xfs_owner_info *oinfo,
xfs_filblks_t *blocks)
{
struct xchk_rmap_ownedby_info sroi = {
.oinfo = oinfo,
.blocks = blocks,
};
*blocks = 0;
return xfs_rmap_query_all(cur, xchk_count_rmap_ownedby_irec,
&sroi);
}
/*
* AG scrubbing
*
* These helpers facilitate locking an allocation group's header
* buffers, setting up cursors for all btrees that are present, and
* cleaning everything up once we're through.
*/
/* Decide if we want to return an AG header read failure. */
static inline bool
want_ag_read_header_failure(
struct xfs_scrub *sc,
unsigned int type)
{
/* Return all AG header read failures when scanning btrees. */
if (sc->sm->sm_type != XFS_SCRUB_TYPE_AGF &&
sc->sm->sm_type != XFS_SCRUB_TYPE_AGFL &&
sc->sm->sm_type != XFS_SCRUB_TYPE_AGI)
return true;
/*
* If we're scanning a given type of AG header, we only want to
* see read failures from that specific header. We'd like the
* other headers to cross-check them, but this isn't required.
*/
if (sc->sm->sm_type == type)
return true;
return false;
}
/*
* Grab all the headers for an AG.
*
* The headers should be released by xchk_ag_free, but as a fail
* safe we attach all the buffers we grab to the scrub transaction so
* they'll all be freed when we cancel it.
*/
int
xchk_ag_read_headers(
struct xfs_scrub *sc,
xfs_agnumber_t agno,
struct xfs_buf **agi,
struct xfs_buf **agf,
struct xfs_buf **agfl)
{
struct xfs_mount *mp = sc->mp;
int error;
error = xfs_ialloc_read_agi(mp, sc->tp, agno, agi);
if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGI))
goto out;
error = xfs_alloc_read_agf(mp, sc->tp, agno, 0, agf);
if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGF))
goto out;
error = xfs_alloc_read_agfl(mp, sc->tp, agno, agfl);
if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGFL))
goto out;
error = 0;
out:
return error;
}
/* Release all the AG btree cursors. */
void
xchk_ag_btcur_free(
struct xchk_ag *sa)
{
if (sa->refc_cur)
xfs_btree_del_cursor(sa->refc_cur, XFS_BTREE_ERROR);
if (sa->rmap_cur)
xfs_btree_del_cursor(sa->rmap_cur, XFS_BTREE_ERROR);
if (sa->fino_cur)
xfs_btree_del_cursor(sa->fino_cur, XFS_BTREE_ERROR);
if (sa->ino_cur)
xfs_btree_del_cursor(sa->ino_cur, XFS_BTREE_ERROR);
if (sa->cnt_cur)
xfs_btree_del_cursor(sa->cnt_cur, XFS_BTREE_ERROR);
if (sa->bno_cur)
xfs_btree_del_cursor(sa->bno_cur, XFS_BTREE_ERROR);
sa->refc_cur = NULL;
sa->rmap_cur = NULL;
sa->fino_cur = NULL;
sa->ino_cur = NULL;
sa->bno_cur = NULL;
sa->cnt_cur = NULL;
}
/* Initialize all the btree cursors for an AG. */
int
xchk_ag_btcur_init(
struct xfs_scrub *sc,
struct xchk_ag *sa)
{
struct xfs_mount *mp = sc->mp;
xfs_agnumber_t agno = sa->agno;
xchk_perag_get(sc->mp, sa);
if (sa->agf_bp &&
xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_BNO)) {
/* Set up a bnobt cursor for cross-referencing. */
sa->bno_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp,
agno, XFS_BTNUM_BNO);
if (!sa->bno_cur)
goto err;
}
if (sa->agf_bp &&
xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_CNT)) {
/* Set up a cntbt cursor for cross-referencing. */
sa->cnt_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp,
agno, XFS_BTNUM_CNT);
if (!sa->cnt_cur)
goto err;
}
/* Set up a inobt cursor for cross-referencing. */
if (sa->agi_bp &&
xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_INO)) {
sa->ino_cur = xfs_inobt_init_cursor(mp, sc->tp, sa->agi_bp,
agno, XFS_BTNUM_INO);
if (!sa->ino_cur)
goto err;
}
/* Set up a finobt cursor for cross-referencing. */
if (sa->agi_bp && xfs_sb_version_hasfinobt(&mp->m_sb) &&
xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_FINO)) {
sa->fino_cur = xfs_inobt_init_cursor(mp, sc->tp, sa->agi_bp,
agno, XFS_BTNUM_FINO);
if (!sa->fino_cur)
goto err;
}
/* Set up a rmapbt cursor for cross-referencing. */
if (sa->agf_bp && xfs_sb_version_hasrmapbt(&mp->m_sb) &&
xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_RMAP)) {
sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp,
agno);
if (!sa->rmap_cur)
goto err;
}
/* Set up a refcountbt cursor for cross-referencing. */
if (sa->agf_bp && xfs_sb_version_hasreflink(&mp->m_sb) &&
xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_REFC)) {
sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp,
sa->agf_bp, agno);
if (!sa->refc_cur)
goto err;
}
return 0;
err:
return -ENOMEM;
}
/* Release the AG header context and btree cursors. */
void
xchk_ag_free(
struct xfs_scrub *sc,
struct xchk_ag *sa)
{
xchk_ag_btcur_free(sa);
if (sa->agfl_bp) {
xfs_trans_brelse(sc->tp, sa->agfl_bp);
sa->agfl_bp = NULL;
}
if (sa->agf_bp) {
xfs_trans_brelse(sc->tp, sa->agf_bp);
sa->agf_bp = NULL;
}
if (sa->agi_bp) {
xfs_trans_brelse(sc->tp, sa->agi_bp);
sa->agi_bp = NULL;
}
if (sa->pag) {
xfs_perag_put(sa->pag);
sa->pag = NULL;
}
sa->agno = NULLAGNUMBER;
}
/*
* For scrub, grab the AGI and the AGF headers, in that order. Locking
* order requires us to get the AGI before the AGF. We use the
* transaction to avoid deadlocking on crosslinked metadata buffers;
* either the caller passes one in (bmap scrub) or we have to create a
* transaction ourselves.
*/
int
xchk_ag_init(
struct xfs_scrub *sc,
xfs_agnumber_t agno,
struct xchk_ag *sa)
{
int error;
sa->agno = agno;
error = xchk_ag_read_headers(sc, agno, &sa->agi_bp,
&sa->agf_bp, &sa->agfl_bp);
if (error)
return error;
return xchk_ag_btcur_init(sc, sa);
}
/*
* Grab the per-ag structure if we haven't already gotten it. Teardown of the
* xchk_ag will release it for us.
*/
void
xchk_perag_get(
struct xfs_mount *mp,
struct xchk_ag *sa)
{
if (!sa->pag)
sa->pag = xfs_perag_get(mp, sa->agno);
}
/* Per-scrubber setup functions */
/*
* Grab an empty transaction so that we can re-grab locked buffers if
* one of our btrees turns out to be cyclic.
*
* If we're going to repair something, we need to ask for the largest possible
* log reservation so that we can handle the worst case scenario for metadata
* updates while rebuilding a metadata item. We also need to reserve as many
* blocks in the head transaction as we think we're going to need to rebuild
* the metadata object.
*/
int
xchk_trans_alloc(
struct xfs_scrub *sc,
uint resblks)
{
if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)
return xfs_trans_alloc(sc->mp, &M_RES(sc->mp)->tr_itruncate,
resblks, 0, 0, &sc->tp);
return xfs_trans_alloc_empty(sc->mp, &sc->tp);
}
/* Set us up with a transaction and an empty context. */
int
xchk_setup_fs(
struct xfs_scrub *sc,
struct xfs_inode *ip)
{
uint resblks;
resblks = xrep_calc_ag_resblks(sc);
return xchk_trans_alloc(sc, resblks);
}
/* Set us up with AG headers and btree cursors. */
int
xchk_setup_ag_btree(
struct xfs_scrub *sc,
struct xfs_inode *ip,
bool force_log)
{
struct xfs_mount *mp = sc->mp;
int error;
/*
* If the caller asks us to checkpont the log, do so. This
* expensive operation should be performed infrequently and only
* as a last resort. Any caller that sets force_log should
* document why they need to do so.
*/
if (force_log) {
error = xchk_checkpoint_log(mp);
if (error)
return error;
}
error = xchk_setup_fs(sc, ip);
if (error)
return error;
return xchk_ag_init(sc, sc->sm->sm_agno, &sc->sa);
}
/* Push everything out of the log onto disk. */
int
xchk_checkpoint_log(
struct xfs_mount *mp)
{
int error;
error = xfs_log_force(mp, XFS_LOG_SYNC);
if (error)
return error;
xfs_ail_push_all_sync(mp->m_ail);
return 0;
}
/*
* Given an inode and the scrub control structure, grab either the
* inode referenced in the control structure or the inode passed in.
* The inode is not locked.
*/
int
xchk_get_inode(
struct xfs_scrub *sc,
struct xfs_inode *ip_in)
{
struct xfs_imap imap;
struct xfs_mount *mp = sc->mp;
struct xfs_inode *ip = NULL;
int error;
/* We want to scan the inode we already had opened. */
if (sc->sm->sm_ino == 0 || sc->sm->sm_ino == ip_in->i_ino) {
sc->ip = ip_in;
return 0;
}
/* Look up the inode, see if the generation number matches. */
if (xfs_internal_inum(mp, sc->sm->sm_ino))
return -ENOENT;
error = xfs_iget(mp, NULL, sc->sm->sm_ino,
XFS_IGET_UNTRUSTED | XFS_IGET_DONTCACHE, 0, &ip);
switch (error) {
case -ENOENT:
/* Inode doesn't exist, just bail out. */
return error;
case 0:
/* Got an inode, continue. */
break;
case -EINVAL:
/*
* -EINVAL with IGET_UNTRUSTED could mean one of several
* things: userspace gave us an inode number that doesn't
* correspond to fs space, or doesn't have an inobt entry;
* or it could simply mean that the inode buffer failed the
* read verifiers.
*
* Try just the inode mapping lookup -- if it succeeds, then
* the inode buffer verifier failed and something needs fixing.
* Otherwise, we really couldn't find it so tell userspace
* that it no longer exists.
*/
error = xfs_imap(sc->mp, sc->tp, sc->sm->sm_ino, &imap,
XFS_IGET_UNTRUSTED | XFS_IGET_DONTCACHE);
if (error)
return -ENOENT;
error = -EFSCORRUPTED;
/* fall through */
default:
trace_xchk_op_error(sc,
XFS_INO_TO_AGNO(mp, sc->sm->sm_ino),
XFS_INO_TO_AGBNO(mp, sc->sm->sm_ino),
error, __return_address);
return error;
}
if (VFS_I(ip)->i_generation != sc->sm->sm_gen) {
xfs_irele(ip);
return -ENOENT;
}
sc->ip = ip;
return 0;
}
/* Set us up to scrub a file's contents. */
int
xchk_setup_inode_contents(
struct xfs_scrub *sc,
struct xfs_inode *ip,
unsigned int resblks)
{
int error;
error = xchk_get_inode(sc, ip);
if (error)
return error;
/* Got the inode, lock it and we're ready to go. */
sc->ilock_flags = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
xfs_ilock(sc->ip, sc->ilock_flags);
error = xchk_trans_alloc(sc, resblks);
if (error)
goto out;
sc->ilock_flags |= XFS_ILOCK_EXCL;
xfs_ilock(sc->ip, XFS_ILOCK_EXCL);
out:
/* scrub teardown will unlock and release the inode for us */
return error;
}
/*
* Predicate that decides if we need to evaluate the cross-reference check.
* If there was an error accessing the cross-reference btree, just delete
* the cursor and skip the check.
*/
bool
xchk_should_check_xref(
struct xfs_scrub *sc,
int *error,
struct xfs_btree_cur **curpp)
{
/* No point in xref if we already know we're corrupt. */
if (xchk_skip_xref(sc->sm))
return false;
if (*error == 0)
return true;
if (curpp) {
/* If we've already given up on xref, just bail out. */
if (!*curpp)
return false;
/* xref error, delete cursor and bail out. */
xfs_btree_del_cursor(*curpp, XFS_BTREE_ERROR);
*curpp = NULL;
}
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL;
trace_xchk_xref_error(sc, *error, __return_address);
/*
* Errors encountered during cross-referencing with another
* data structure should not cause this scrubber to abort.
*/
*error = 0;
return false;
}
/* Run the structure verifiers on in-memory buffers to detect bad memory. */
void
xchk_buffer_recheck(
struct xfs_scrub *sc,
struct xfs_buf *bp)
{
xfs_failaddr_t fa;
if (bp->b_ops == NULL) {
xchk_block_set_corrupt(sc, bp);
return;
}
if (bp->b_ops->verify_struct == NULL) {
xchk_set_incomplete(sc);
return;
}
fa = bp->b_ops->verify_struct(bp);
if (!fa)
return;
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
trace_xchk_block_error(sc, bp->b_bn, fa);
}
/*
* Scrub the attr/data forks of a metadata inode. The metadata inode must be
* pointed to by sc->ip and the ILOCK must be held.
*/
int
xchk_metadata_inode_forks(
struct xfs_scrub *sc)
{
__u32 smtype;
bool shared;
int error;
if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)
return 0;
/* Metadata inodes don't live on the rt device. */
if (sc->ip->i_d.di_flags & XFS_DIFLAG_REALTIME) {
xchk_ino_set_corrupt(sc, sc->ip->i_ino);
return 0;
}
/* They should never participate in reflink. */
if (xfs_is_reflink_inode(sc->ip)) {
xchk_ino_set_corrupt(sc, sc->ip->i_ino);
return 0;
}
/* They also should never have extended attributes. */
if (xfs_inode_hasattr(sc->ip)) {
xchk_ino_set_corrupt(sc, sc->ip->i_ino);
return 0;
}
/* Invoke the data fork scrubber. */
smtype = sc->sm->sm_type;
sc->sm->sm_type = XFS_SCRUB_TYPE_BMBTD;
error = xchk_bmap_data(sc);
sc->sm->sm_type = smtype;
if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
return error;
/* Look for incorrect shared blocks. */
if (xfs_sb_version_hasreflink(&sc->mp->m_sb)) {
error = xfs_reflink_inode_has_shared_extents(sc->tp, sc->ip,
&shared);
if (!xchk_fblock_process_error(sc, XFS_DATA_FORK, 0,
&error))
return error;
if (shared)
xchk_ino_set_corrupt(sc, sc->ip->i_ino);
}
return error;
}
/*
* Try to lock an inode in violation of the usual locking order rules. For
* example, trying to get the IOLOCK while in transaction context, or just
* plain breaking AG-order or inode-order inode locking rules. Either way,
* the only way to avoid an ABBA deadlock is to use trylock and back off if
* we can't.
*/
int
xchk_ilock_inverted(
struct xfs_inode *ip,
uint lock_mode)
{
int i;
for (i = 0; i < 20; i++) {
if (xfs_ilock_nowait(ip, lock_mode))
return 0;
delay(1);
}
return -EDEADLOCK;
}
/* Pause background reaping of resources. */
void
xchk_stop_reaping(
struct xfs_scrub *sc)
{
sc->flags |= XCHK_REAPING_DISABLED;
xfs_stop_block_reaping(sc->mp);
}
/* Restart background reaping of resources. */
void
xchk_start_reaping(
struct xfs_scrub *sc)
{
xfs_start_block_reaping(sc->mp);
sc->flags &= ~XCHK_REAPING_DISABLED;
}