forked from luck/tmp_suning_uos_patched
657991fb06
commit bfb3aa735f82c8d98b32a669934ee7d6b346264d upstream.
An outgoing CPU is marked offline in a stop-machine handler and most
of that CPU's services stop at that point, including IRQ work queues.
However, that CPU must take another pass through the scheduler and through
a number of CPU-hotplug notifiers, many of which contain RCU readers.
In the past, these readers were not a problem because the outgoing CPU
has interrupts disabled, so that rcu_read_unlock_special() would not
be invoked, and thus RCU would never attempt to queue IRQ work on the
outgoing CPU.
This changed with the advent of the CONFIG_RCU_STRICT_GRACE_PERIOD
Kconfig option, in which rcu_read_unlock_special() is invoked upon exit
from almost all RCU read-side critical sections. Worse yet, because
interrupts are disabled, rcu_read_unlock_special() cannot immediately
report a quiescent state and will therefore attempt to defer this
reporting, for example, by queueing IRQ work. Which fails with a splat
because the CPU is already marked as being offline.
But it turns out that there is no need to report this quiescent state
because rcu_report_dead() will do this job shortly after the outgoing
CPU makes its final dive into the idle loop. This commit therefore
makes rcu_read_unlock_special() refrain from queuing IRQ work onto
outgoing CPUs.
Fixes:
|
||
---|---|---|
.. | ||
Kconfig | ||
Kconfig.debug | ||
Makefile | ||
rcu_segcblist.c | ||
rcu_segcblist.h | ||
rcu.h | ||
rcuscale.c | ||
rcutorture.c | ||
refscale.c | ||
srcutiny.c | ||
srcutree.c | ||
sync.c | ||
tasks.h | ||
tiny.c | ||
tree_exp.h | ||
tree_plugin.h | ||
tree_stall.h | ||
tree.c | ||
tree.h | ||
update.c |