kernel_optimize_test/net/mac80211/wep.c
Ivo van Doorn 1c01442058 mac80211: Replace ieee80211_tx_control->key_idx with ieee80211_key_conf
The hw_key_idx inside the ieee80211_key_conf structure does
not provide all the information drivers might need to perform
hardware encryption.

This is in particular true for rt2x00 who needs to know the
key algorithm and whether it is a shared or pairwise key.

By passing the ieee80211_key_conf pointer it assures us that
drivers can make full use of all information that it should know
about a particular key.

Additionally this patch updates all drivers to grab the hw_key_idx from
the ieee80211_key_conf structure.

v2: Removed bogus u16 cast
v3: Add warning about ieee80211_tx_control pointers
v4: Update warning about ieee80211_tx_control pointers

Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com>
Acked-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-05-07 15:02:11 -04:00

374 lines
9.4 KiB
C

/*
* Software WEP encryption implementation
* Copyright 2002, Jouni Malinen <jkmaline@cc.hut.fi>
* Copyright 2003, Instant802 Networks, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/netdevice.h>
#include <linux/types.h>
#include <linux/random.h>
#include <linux/compiler.h>
#include <linux/crc32.h>
#include <linux/crypto.h>
#include <linux/err.h>
#include <linux/mm.h>
#include <linux/scatterlist.h>
#include <net/mac80211.h>
#include "ieee80211_i.h"
#include "wep.h"
int ieee80211_wep_init(struct ieee80211_local *local)
{
/* start WEP IV from a random value */
get_random_bytes(&local->wep_iv, WEP_IV_LEN);
local->wep_tx_tfm = crypto_alloc_blkcipher("ecb(arc4)", 0,
CRYPTO_ALG_ASYNC);
if (IS_ERR(local->wep_tx_tfm))
return -ENOMEM;
local->wep_rx_tfm = crypto_alloc_blkcipher("ecb(arc4)", 0,
CRYPTO_ALG_ASYNC);
if (IS_ERR(local->wep_rx_tfm)) {
crypto_free_blkcipher(local->wep_tx_tfm);
return -ENOMEM;
}
return 0;
}
void ieee80211_wep_free(struct ieee80211_local *local)
{
crypto_free_blkcipher(local->wep_tx_tfm);
crypto_free_blkcipher(local->wep_rx_tfm);
}
static inline int ieee80211_wep_weak_iv(u32 iv, int keylen)
{
/* Fluhrer, Mantin, and Shamir have reported weaknesses in the
* key scheduling algorithm of RC4. At least IVs (KeyByte + 3,
* 0xff, N) can be used to speedup attacks, so avoid using them. */
if ((iv & 0xff00) == 0xff00) {
u8 B = (iv >> 16) & 0xff;
if (B >= 3 && B < 3 + keylen)
return 1;
}
return 0;
}
static void ieee80211_wep_get_iv(struct ieee80211_local *local,
struct ieee80211_key *key, u8 *iv)
{
local->wep_iv++;
if (ieee80211_wep_weak_iv(local->wep_iv, key->conf.keylen))
local->wep_iv += 0x0100;
if (!iv)
return;
*iv++ = (local->wep_iv >> 16) & 0xff;
*iv++ = (local->wep_iv >> 8) & 0xff;
*iv++ = local->wep_iv & 0xff;
*iv++ = key->conf.keyidx << 6;
}
static u8 *ieee80211_wep_add_iv(struct ieee80211_local *local,
struct sk_buff *skb,
struct ieee80211_key *key)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
u16 fc;
int hdrlen;
u8 *newhdr;
fc = le16_to_cpu(hdr->frame_control);
fc |= IEEE80211_FCTL_PROTECTED;
hdr->frame_control = cpu_to_le16(fc);
if ((skb_headroom(skb) < WEP_IV_LEN ||
skb_tailroom(skb) < WEP_ICV_LEN)) {
I802_DEBUG_INC(local->tx_expand_skb_head);
if (unlikely(pskb_expand_head(skb, WEP_IV_LEN, WEP_ICV_LEN,
GFP_ATOMIC)))
return NULL;
}
hdrlen = ieee80211_get_hdrlen(fc);
newhdr = skb_push(skb, WEP_IV_LEN);
memmove(newhdr, newhdr + WEP_IV_LEN, hdrlen);
ieee80211_wep_get_iv(local, key, newhdr + hdrlen);
return newhdr + hdrlen;
}
static void ieee80211_wep_remove_iv(struct ieee80211_local *local,
struct sk_buff *skb,
struct ieee80211_key *key)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
u16 fc;
int hdrlen;
fc = le16_to_cpu(hdr->frame_control);
hdrlen = ieee80211_get_hdrlen(fc);
memmove(skb->data + WEP_IV_LEN, skb->data, hdrlen);
skb_pull(skb, WEP_IV_LEN);
}
/* Perform WEP encryption using given key. data buffer must have tailroom
* for 4-byte ICV. data_len must not include this ICV. Note: this function
* does _not_ add IV. data = RC4(data | CRC32(data)) */
void ieee80211_wep_encrypt_data(struct crypto_blkcipher *tfm, u8 *rc4key,
size_t klen, u8 *data, size_t data_len)
{
struct blkcipher_desc desc = { .tfm = tfm };
struct scatterlist sg;
__le32 *icv;
icv = (__le32 *)(data + data_len);
*icv = cpu_to_le32(~crc32_le(~0, data, data_len));
crypto_blkcipher_setkey(tfm, rc4key, klen);
sg_init_one(&sg, data, data_len + WEP_ICV_LEN);
crypto_blkcipher_encrypt(&desc, &sg, &sg, sg.length);
}
/* Perform WEP encryption on given skb. 4 bytes of extra space (IV) in the
* beginning of the buffer 4 bytes of extra space (ICV) in the end of the
* buffer will be added. Both IV and ICV will be transmitted, so the
* payload length increases with 8 bytes.
*
* WEP frame payload: IV + TX key idx, RC4(data), ICV = RC4(CRC32(data))
*/
int ieee80211_wep_encrypt(struct ieee80211_local *local, struct sk_buff *skb,
struct ieee80211_key *key)
{
u32 klen;
u8 *rc4key, *iv;
size_t len;
if (!key || key->conf.alg != ALG_WEP)
return -1;
klen = 3 + key->conf.keylen;
rc4key = kmalloc(klen, GFP_ATOMIC);
if (!rc4key)
return -1;
iv = ieee80211_wep_add_iv(local, skb, key);
if (!iv) {
kfree(rc4key);
return -1;
}
len = skb->len - (iv + WEP_IV_LEN - skb->data);
/* Prepend 24-bit IV to RC4 key */
memcpy(rc4key, iv, 3);
/* Copy rest of the WEP key (the secret part) */
memcpy(rc4key + 3, key->conf.key, key->conf.keylen);
/* Add room for ICV */
skb_put(skb, WEP_ICV_LEN);
ieee80211_wep_encrypt_data(local->wep_tx_tfm, rc4key, klen,
iv + WEP_IV_LEN, len);
kfree(rc4key);
return 0;
}
/* Perform WEP decryption using given key. data buffer includes encrypted
* payload, including 4-byte ICV, but _not_ IV. data_len must not include ICV.
* Return 0 on success and -1 on ICV mismatch. */
int ieee80211_wep_decrypt_data(struct crypto_blkcipher *tfm, u8 *rc4key,
size_t klen, u8 *data, size_t data_len)
{
struct blkcipher_desc desc = { .tfm = tfm };
struct scatterlist sg;
__le32 crc;
crypto_blkcipher_setkey(tfm, rc4key, klen);
sg_init_one(&sg, data, data_len + WEP_ICV_LEN);
crypto_blkcipher_decrypt(&desc, &sg, &sg, sg.length);
crc = cpu_to_le32(~crc32_le(~0, data, data_len));
if (memcmp(&crc, data + data_len, WEP_ICV_LEN) != 0)
/* ICV mismatch */
return -1;
return 0;
}
/* Perform WEP decryption on given skb. Buffer includes whole WEP part of
* the frame: IV (4 bytes), encrypted payload (including SNAP header),
* ICV (4 bytes). skb->len includes both IV and ICV.
*
* Returns 0 if frame was decrypted successfully and ICV was correct and -1 on
* failure. If frame is OK, IV and ICV will be removed, i.e., decrypted payload
* is moved to the beginning of the skb and skb length will be reduced.
*/
int ieee80211_wep_decrypt(struct ieee80211_local *local, struct sk_buff *skb,
struct ieee80211_key *key)
{
u32 klen;
u8 *rc4key;
u8 keyidx;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
u16 fc;
int hdrlen;
size_t len;
int ret = 0;
fc = le16_to_cpu(hdr->frame_control);
if (!(fc & IEEE80211_FCTL_PROTECTED))
return -1;
hdrlen = ieee80211_get_hdrlen(fc);
if (skb->len < 8 + hdrlen)
return -1;
len = skb->len - hdrlen - 8;
keyidx = skb->data[hdrlen + 3] >> 6;
if (!key || keyidx != key->conf.keyidx || key->conf.alg != ALG_WEP)
return -1;
klen = 3 + key->conf.keylen;
rc4key = kmalloc(klen, GFP_ATOMIC);
if (!rc4key)
return -1;
/* Prepend 24-bit IV to RC4 key */
memcpy(rc4key, skb->data + hdrlen, 3);
/* Copy rest of the WEP key (the secret part) */
memcpy(rc4key + 3, key->conf.key, key->conf.keylen);
if (ieee80211_wep_decrypt_data(local->wep_rx_tfm, rc4key, klen,
skb->data + hdrlen + WEP_IV_LEN,
len)) {
if (net_ratelimit())
printk(KERN_DEBUG "WEP decrypt failed (ICV)\n");
ret = -1;
}
kfree(rc4key);
/* Trim ICV */
skb_trim(skb, skb->len - WEP_ICV_LEN);
/* Remove IV */
memmove(skb->data + WEP_IV_LEN, skb->data, hdrlen);
skb_pull(skb, WEP_IV_LEN);
return ret;
}
u8 * ieee80211_wep_is_weak_iv(struct sk_buff *skb, struct ieee80211_key *key)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
u16 fc;
int hdrlen;
u8 *ivpos;
u32 iv;
fc = le16_to_cpu(hdr->frame_control);
if (!(fc & IEEE80211_FCTL_PROTECTED))
return NULL;
hdrlen = ieee80211_get_hdrlen(fc);
ivpos = skb->data + hdrlen;
iv = (ivpos[0] << 16) | (ivpos[1] << 8) | ivpos[2];
if (ieee80211_wep_weak_iv(iv, key->conf.keylen))
return ivpos;
return NULL;
}
ieee80211_rx_result
ieee80211_crypto_wep_decrypt(struct ieee80211_rx_data *rx)
{
if ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA &&
((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
(rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH))
return RX_CONTINUE;
if (!(rx->status->flag & RX_FLAG_DECRYPTED)) {
if (ieee80211_wep_decrypt(rx->local, rx->skb, rx->key)) {
#ifdef CONFIG_MAC80211_DEBUG
if (net_ratelimit())
printk(KERN_DEBUG "%s: RX WEP frame, decrypt "
"failed\n", rx->dev->name);
#endif /* CONFIG_MAC80211_DEBUG */
return RX_DROP_UNUSABLE;
}
} else if (!(rx->status->flag & RX_FLAG_IV_STRIPPED)) {
ieee80211_wep_remove_iv(rx->local, rx->skb, rx->key);
/* remove ICV */
skb_trim(rx->skb, rx->skb->len - 4);
}
return RX_CONTINUE;
}
static int wep_encrypt_skb(struct ieee80211_tx_data *tx, struct sk_buff *skb)
{
if (!(tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) {
if (ieee80211_wep_encrypt(tx->local, skb, tx->key))
return -1;
} else {
tx->control->hw_key = &tx->key->conf;
if (tx->key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) {
if (!ieee80211_wep_add_iv(tx->local, skb, tx->key))
return -1;
}
}
return 0;
}
ieee80211_tx_result
ieee80211_crypto_wep_encrypt(struct ieee80211_tx_data *tx)
{
tx->control->iv_len = WEP_IV_LEN;
tx->control->icv_len = WEP_ICV_LEN;
ieee80211_tx_set_protected(tx);
if (wep_encrypt_skb(tx, tx->skb) < 0) {
I802_DEBUG_INC(tx->local->tx_handlers_drop_wep);
return TX_DROP;
}
if (tx->extra_frag) {
int i;
for (i = 0; i < tx->num_extra_frag; i++) {
if (wep_encrypt_skb(tx, tx->extra_frag[i]) < 0) {
I802_DEBUG_INC(tx->local->
tx_handlers_drop_wep);
return TX_DROP;
}
}
}
return TX_CONTINUE;
}