kernel_optimize_test/drivers/scsi/ses.c
Linus Torvalds ba6d10ab80 SCSI misc on 20190709
This is mostly update of the usual drivers: qla2xxx, hpsa, lpfc, ufs,
 mpt3sas, ibmvscsi, megaraid_sas, bnx2fc and hisi_sas as well as the
 removal of the osst driver (I heard from Willem privately that he
 would like the driver removed because all his test hardware has
 failed).  Plus number of minor changes, spelling fixes and other
 trivia.
 
 Signed-off-by: James E.J. Bottomley <jejb@linux.ibm.com>
 -----BEGIN PGP SIGNATURE-----
 
 iJwEABMIAEQWIQTnYEDbdso9F2cI+arnQslM7pishQUCXSTl4yYcamFtZXMuYm90
 dG9tbGV5QGhhbnNlbnBhcnRuZXJzaGlwLmNvbQAKCRDnQslM7pishdcxAQDCJVbd
 fPUX76/V1ldupunF97+3DTharxxbst+VnkOnCwD8D4c0KFFFOI9+F36cnMGCPegE
 fjy17dQLvsJ4GsidHy8=
 =aS5B
 -----END PGP SIGNATURE-----

Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi

Pull SCSI updates from James Bottomley:
 "This is mostly update of the usual drivers: qla2xxx, hpsa, lpfc, ufs,
  mpt3sas, ibmvscsi, megaraid_sas, bnx2fc and hisi_sas as well as the
  removal of the osst driver (I heard from Willem privately that he
  would like the driver removed because all his test hardware has
  failed). Plus number of minor changes, spelling fixes and other
  trivia.

  The big merge conflict this time around is the SPDX licence tags.
  Following discussion on linux-next, we believe our version to be more
  accurate than the one in the tree, so the resolution is to take our
  version for all the SPDX conflicts"

Note on the SPDX license tag conversion conflicts: the SCSI tree had
done its own SPDX conversion, which in some cases conflicted with the
treewide ones done by Thomas & co.

In almost all cases, the conflicts were purely syntactic: the SCSI tree
used the old-style SPDX tags ("GPL-2.0" and "GPL-2.0+") while the
treewide conversion had used the new-style ones ("GPL-2.0-only" and
"GPL-2.0-or-later").

In these cases I picked the new-style one.

In a few cases, the SPDX conversion was actually different, though.  As
explained by James above, and in more detail in a pre-pull-request
thread:

 "The other problem is actually substantive: In the libsas code Luben
  Tuikov originally specified gpl 2.0 only by dint of stating:

  * This file is licensed under GPLv2.

  In all the libsas files, but then muddied the water by quoting GPLv2
  verbatim (which includes the or later than language). So for these
  files Christoph did the conversion to v2 only SPDX tags and Thomas
  converted to v2 or later tags"

So in those cases, where the spdx tag substantially mattered, I took the
SCSI tree conversion of it, but then also took the opportunity to turn
the old-style "GPL-2.0" into a new-style "GPL-2.0-only" tag.

Similarly, when there were whitespace differences or other differences
to the comments around the copyright notices, I took the version from
the SCSI tree as being the more specific conversion.

Finally, in the spdx conversions that had no conflicts (because the
treewide ones hadn't been done for those files), I just took the SCSI
tree version as-is, even if it was old-style.  The old-style conversions
are perfectly valid, even if the "-only" and "-or-later" versions are
perhaps more descriptive.

* tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi: (185 commits)
  scsi: qla2xxx: move IO flush to the front of NVME rport unregistration
  scsi: qla2xxx: Fix NVME cmd and LS cmd timeout race condition
  scsi: qla2xxx: on session delete, return nvme cmd
  scsi: qla2xxx: Fix kernel crash after disconnecting NVMe devices
  scsi: megaraid_sas: Update driver version to 07.710.06.00-rc1
  scsi: megaraid_sas: Introduce various Aero performance modes
  scsi: megaraid_sas: Use high IOPS queues based on IO workload
  scsi: megaraid_sas: Set affinity for high IOPS reply queues
  scsi: megaraid_sas: Enable coalescing for high IOPS queues
  scsi: megaraid_sas: Add support for High IOPS queues
  scsi: megaraid_sas: Add support for MPI toolbox commands
  scsi: megaraid_sas: Offload Aero RAID5/6 division calculations to driver
  scsi: megaraid_sas: RAID1 PCI bandwidth limit algorithm is applicable for only Ventura
  scsi: megaraid_sas: megaraid_sas: Add check for count returned by HOST_DEVICE_LIST DCMD
  scsi: megaraid_sas: Handle sequence JBOD map failure at driver level
  scsi: megaraid_sas: Don't send FPIO to RL Bypass queue
  scsi: megaraid_sas: In probe context, retry IOC INIT once if firmware is in fault
  scsi: megaraid_sas: Release Mutex lock before OCR in case of DCMD timeout
  scsi: megaraid_sas: Call disable_irq from process IRQ poll
  scsi: megaraid_sas: Remove few debug counters from IO path
  ...
2019-07-11 15:14:01 -07:00

880 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* SCSI Enclosure Services
*
* Copyright (C) 2008 James Bottomley <James.Bottomley@HansenPartnership.com>
*/
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/enclosure.h>
#include <asm/unaligned.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_driver.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_transport_sas.h>
struct ses_device {
unsigned char *page1;
unsigned char *page1_types;
unsigned char *page2;
unsigned char *page10;
short page1_len;
short page1_num_types;
short page2_len;
short page10_len;
};
struct ses_component {
u64 addr;
};
static bool ses_page2_supported(struct enclosure_device *edev)
{
struct ses_device *ses_dev = edev->scratch;
return (ses_dev->page2 != NULL);
}
static int ses_probe(struct device *dev)
{
struct scsi_device *sdev = to_scsi_device(dev);
int err = -ENODEV;
if (sdev->type != TYPE_ENCLOSURE)
goto out;
err = 0;
sdev_printk(KERN_NOTICE, sdev, "Attached Enclosure device\n");
out:
return err;
}
#define SES_TIMEOUT (30 * HZ)
#define SES_RETRIES 3
static void init_device_slot_control(unsigned char *dest_desc,
struct enclosure_component *ecomp,
unsigned char *status)
{
memcpy(dest_desc, status, 4);
dest_desc[0] = 0;
/* only clear byte 1 for ENCLOSURE_COMPONENT_DEVICE */
if (ecomp->type == ENCLOSURE_COMPONENT_DEVICE)
dest_desc[1] = 0;
dest_desc[2] &= 0xde;
dest_desc[3] &= 0x3c;
}
static int ses_recv_diag(struct scsi_device *sdev, int page_code,
void *buf, int bufflen)
{
int ret;
unsigned char cmd[] = {
RECEIVE_DIAGNOSTIC,
1, /* Set PCV bit */
page_code,
bufflen >> 8,
bufflen & 0xff,
0
};
unsigned char recv_page_code;
ret = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buf, bufflen,
NULL, SES_TIMEOUT, SES_RETRIES, NULL);
if (unlikely(ret))
return ret;
recv_page_code = ((unsigned char *)buf)[0];
if (likely(recv_page_code == page_code))
return ret;
/* successful diagnostic but wrong page code. This happens to some
* USB devices, just print a message and pretend there was an error */
sdev_printk(KERN_ERR, sdev,
"Wrong diagnostic page; asked for %d got %u\n",
page_code, recv_page_code);
return -EINVAL;
}
static int ses_send_diag(struct scsi_device *sdev, int page_code,
void *buf, int bufflen)
{
u32 result;
unsigned char cmd[] = {
SEND_DIAGNOSTIC,
0x10, /* Set PF bit */
0,
bufflen >> 8,
bufflen & 0xff,
0
};
result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, buf, bufflen,
NULL, SES_TIMEOUT, SES_RETRIES, NULL);
if (result)
sdev_printk(KERN_ERR, sdev, "SEND DIAGNOSTIC result: %8x\n",
result);
return result;
}
static int ses_set_page2_descriptor(struct enclosure_device *edev,
struct enclosure_component *ecomp,
unsigned char *desc)
{
int i, j, count = 0, descriptor = ecomp->number;
struct scsi_device *sdev = to_scsi_device(edev->edev.parent);
struct ses_device *ses_dev = edev->scratch;
unsigned char *type_ptr = ses_dev->page1_types;
unsigned char *desc_ptr = ses_dev->page2 + 8;
/* Clear everything */
memset(desc_ptr, 0, ses_dev->page2_len - 8);
for (i = 0; i < ses_dev->page1_num_types; i++, type_ptr += 4) {
for (j = 0; j < type_ptr[1]; j++) {
desc_ptr += 4;
if (type_ptr[0] != ENCLOSURE_COMPONENT_DEVICE &&
type_ptr[0] != ENCLOSURE_COMPONENT_ARRAY_DEVICE)
continue;
if (count++ == descriptor) {
memcpy(desc_ptr, desc, 4);
/* set select */
desc_ptr[0] |= 0x80;
/* clear reserved, just in case */
desc_ptr[0] &= 0xf0;
}
}
}
return ses_send_diag(sdev, 2, ses_dev->page2, ses_dev->page2_len);
}
static unsigned char *ses_get_page2_descriptor(struct enclosure_device *edev,
struct enclosure_component *ecomp)
{
int i, j, count = 0, descriptor = ecomp->number;
struct scsi_device *sdev = to_scsi_device(edev->edev.parent);
struct ses_device *ses_dev = edev->scratch;
unsigned char *type_ptr = ses_dev->page1_types;
unsigned char *desc_ptr = ses_dev->page2 + 8;
if (ses_recv_diag(sdev, 2, ses_dev->page2, ses_dev->page2_len) < 0)
return NULL;
for (i = 0; i < ses_dev->page1_num_types; i++, type_ptr += 4) {
for (j = 0; j < type_ptr[1]; j++) {
desc_ptr += 4;
if (type_ptr[0] != ENCLOSURE_COMPONENT_DEVICE &&
type_ptr[0] != ENCLOSURE_COMPONENT_ARRAY_DEVICE)
continue;
if (count++ == descriptor)
return desc_ptr;
}
}
return NULL;
}
/* For device slot and array device slot elements, byte 3 bit 6
* is "fault sensed" while byte 3 bit 5 is "fault reqstd". As this
* code stands these bits are shifted 4 positions right so in
* sysfs they will appear as bits 2 and 1 respectively. Strange. */
static void ses_get_fault(struct enclosure_device *edev,
struct enclosure_component *ecomp)
{
unsigned char *desc;
if (!ses_page2_supported(edev)) {
ecomp->fault = 0;
return;
}
desc = ses_get_page2_descriptor(edev, ecomp);
if (desc)
ecomp->fault = (desc[3] & 0x60) >> 4;
}
static int ses_set_fault(struct enclosure_device *edev,
struct enclosure_component *ecomp,
enum enclosure_component_setting val)
{
unsigned char desc[4];
unsigned char *desc_ptr;
if (!ses_page2_supported(edev))
return -EINVAL;
desc_ptr = ses_get_page2_descriptor(edev, ecomp);
if (!desc_ptr)
return -EIO;
init_device_slot_control(desc, ecomp, desc_ptr);
switch (val) {
case ENCLOSURE_SETTING_DISABLED:
desc[3] &= 0xdf;
break;
case ENCLOSURE_SETTING_ENABLED:
desc[3] |= 0x20;
break;
default:
/* SES doesn't do the SGPIO blink settings */
return -EINVAL;
}
return ses_set_page2_descriptor(edev, ecomp, desc);
}
static void ses_get_status(struct enclosure_device *edev,
struct enclosure_component *ecomp)
{
unsigned char *desc;
if (!ses_page2_supported(edev)) {
ecomp->status = 0;
return;
}
desc = ses_get_page2_descriptor(edev, ecomp);
if (desc)
ecomp->status = (desc[0] & 0x0f);
}
static void ses_get_locate(struct enclosure_device *edev,
struct enclosure_component *ecomp)
{
unsigned char *desc;
if (!ses_page2_supported(edev)) {
ecomp->locate = 0;
return;
}
desc = ses_get_page2_descriptor(edev, ecomp);
if (desc)
ecomp->locate = (desc[2] & 0x02) ? 1 : 0;
}
static int ses_set_locate(struct enclosure_device *edev,
struct enclosure_component *ecomp,
enum enclosure_component_setting val)
{
unsigned char desc[4];
unsigned char *desc_ptr;
if (!ses_page2_supported(edev))
return -EINVAL;
desc_ptr = ses_get_page2_descriptor(edev, ecomp);
if (!desc_ptr)
return -EIO;
init_device_slot_control(desc, ecomp, desc_ptr);
switch (val) {
case ENCLOSURE_SETTING_DISABLED:
desc[2] &= 0xfd;
break;
case ENCLOSURE_SETTING_ENABLED:
desc[2] |= 0x02;
break;
default:
/* SES doesn't do the SGPIO blink settings */
return -EINVAL;
}
return ses_set_page2_descriptor(edev, ecomp, desc);
}
static int ses_set_active(struct enclosure_device *edev,
struct enclosure_component *ecomp,
enum enclosure_component_setting val)
{
unsigned char desc[4];
unsigned char *desc_ptr;
if (!ses_page2_supported(edev))
return -EINVAL;
desc_ptr = ses_get_page2_descriptor(edev, ecomp);
if (!desc_ptr)
return -EIO;
init_device_slot_control(desc, ecomp, desc_ptr);
switch (val) {
case ENCLOSURE_SETTING_DISABLED:
desc[2] &= 0x7f;
ecomp->active = 0;
break;
case ENCLOSURE_SETTING_ENABLED:
desc[2] |= 0x80;
ecomp->active = 1;
break;
default:
/* SES doesn't do the SGPIO blink settings */
return -EINVAL;
}
return ses_set_page2_descriptor(edev, ecomp, desc);
}
static int ses_show_id(struct enclosure_device *edev, char *buf)
{
struct ses_device *ses_dev = edev->scratch;
unsigned long long id = get_unaligned_be64(ses_dev->page1+8+4);
return sprintf(buf, "%#llx\n", id);
}
static void ses_get_power_status(struct enclosure_device *edev,
struct enclosure_component *ecomp)
{
unsigned char *desc;
if (!ses_page2_supported(edev)) {
ecomp->power_status = 0;
return;
}
desc = ses_get_page2_descriptor(edev, ecomp);
if (desc)
ecomp->power_status = (desc[3] & 0x10) ? 0 : 1;
}
static int ses_set_power_status(struct enclosure_device *edev,
struct enclosure_component *ecomp,
int val)
{
unsigned char desc[4];
unsigned char *desc_ptr;
if (!ses_page2_supported(edev))
return -EINVAL;
desc_ptr = ses_get_page2_descriptor(edev, ecomp);
if (!desc_ptr)
return -EIO;
init_device_slot_control(desc, ecomp, desc_ptr);
switch (val) {
/* power = 1 is device_off = 0 and vice versa */
case 0:
desc[3] |= 0x10;
break;
case 1:
desc[3] &= 0xef;
break;
default:
return -EINVAL;
}
ecomp->power_status = val;
return ses_set_page2_descriptor(edev, ecomp, desc);
}
static struct enclosure_component_callbacks ses_enclosure_callbacks = {
.get_fault = ses_get_fault,
.set_fault = ses_set_fault,
.get_status = ses_get_status,
.get_locate = ses_get_locate,
.set_locate = ses_set_locate,
.get_power_status = ses_get_power_status,
.set_power_status = ses_set_power_status,
.set_active = ses_set_active,
.show_id = ses_show_id,
};
struct ses_host_edev {
struct Scsi_Host *shost;
struct enclosure_device *edev;
};
#if 0
int ses_match_host(struct enclosure_device *edev, void *data)
{
struct ses_host_edev *sed = data;
struct scsi_device *sdev;
if (!scsi_is_sdev_device(edev->edev.parent))
return 0;
sdev = to_scsi_device(edev->edev.parent);
if (sdev->host != sed->shost)
return 0;
sed->edev = edev;
return 1;
}
#endif /* 0 */
static void ses_process_descriptor(struct enclosure_component *ecomp,
unsigned char *desc)
{
int eip = desc[0] & 0x10;
int invalid = desc[0] & 0x80;
enum scsi_protocol proto = desc[0] & 0x0f;
u64 addr = 0;
int slot = -1;
struct ses_component *scomp = ecomp->scratch;
unsigned char *d;
if (invalid)
return;
switch (proto) {
case SCSI_PROTOCOL_FCP:
if (eip) {
d = desc + 4;
slot = d[3];
}
break;
case SCSI_PROTOCOL_SAS:
if (eip) {
d = desc + 4;
slot = d[3];
d = desc + 8;
} else
d = desc + 4;
/* only take the phy0 addr */
addr = (u64)d[12] << 56 |
(u64)d[13] << 48 |
(u64)d[14] << 40 |
(u64)d[15] << 32 |
(u64)d[16] << 24 |
(u64)d[17] << 16 |
(u64)d[18] << 8 |
(u64)d[19];
break;
default:
/* FIXME: Need to add more protocols than just SAS */
break;
}
ecomp->slot = slot;
scomp->addr = addr;
}
struct efd {
u64 addr;
struct device *dev;
};
static int ses_enclosure_find_by_addr(struct enclosure_device *edev,
void *data)
{
struct efd *efd = data;
int i;
struct ses_component *scomp;
if (!edev->component[0].scratch)
return 0;
for (i = 0; i < edev->components; i++) {
scomp = edev->component[i].scratch;
if (scomp->addr != efd->addr)
continue;
if (enclosure_add_device(edev, i, efd->dev) == 0)
kobject_uevent(&efd->dev->kobj, KOBJ_CHANGE);
return 1;
}
return 0;
}
#define INIT_ALLOC_SIZE 32
static void ses_enclosure_data_process(struct enclosure_device *edev,
struct scsi_device *sdev,
int create)
{
u32 result;
unsigned char *buf = NULL, *type_ptr, *desc_ptr, *addl_desc_ptr = NULL;
int i, j, page7_len, len, components;
struct ses_device *ses_dev = edev->scratch;
int types = ses_dev->page1_num_types;
unsigned char *hdr_buf = kzalloc(INIT_ALLOC_SIZE, GFP_KERNEL);
if (!hdr_buf)
goto simple_populate;
/* re-read page 10 */
if (ses_dev->page10)
ses_recv_diag(sdev, 10, ses_dev->page10, ses_dev->page10_len);
/* Page 7 for the descriptors is optional */
result = ses_recv_diag(sdev, 7, hdr_buf, INIT_ALLOC_SIZE);
if (result)
goto simple_populate;
page7_len = len = (hdr_buf[2] << 8) + hdr_buf[3] + 4;
/* add 1 for trailing '\0' we'll use */
buf = kzalloc(len + 1, GFP_KERNEL);
if (!buf)
goto simple_populate;
result = ses_recv_diag(sdev, 7, buf, len);
if (result) {
simple_populate:
kfree(buf);
buf = NULL;
desc_ptr = NULL;
len = 0;
page7_len = 0;
} else {
desc_ptr = buf + 8;
len = (desc_ptr[2] << 8) + desc_ptr[3];
/* skip past overall descriptor */
desc_ptr += len + 4;
}
if (ses_dev->page10)
addl_desc_ptr = ses_dev->page10 + 8;
type_ptr = ses_dev->page1_types;
components = 0;
for (i = 0; i < types; i++, type_ptr += 4) {
for (j = 0; j < type_ptr[1]; j++) {
char *name = NULL;
struct enclosure_component *ecomp;
if (desc_ptr) {
if (desc_ptr >= buf + page7_len) {
desc_ptr = NULL;
} else {
len = (desc_ptr[2] << 8) + desc_ptr[3];
desc_ptr += 4;
/* Add trailing zero - pushes into
* reserved space */
desc_ptr[len] = '\0';
name = desc_ptr;
}
}
if (type_ptr[0] == ENCLOSURE_COMPONENT_DEVICE ||
type_ptr[0] == ENCLOSURE_COMPONENT_ARRAY_DEVICE) {
if (create)
ecomp = enclosure_component_alloc(
edev,
components++,
type_ptr[0],
name);
else
ecomp = &edev->component[components++];
if (!IS_ERR(ecomp)) {
if (addl_desc_ptr)
ses_process_descriptor(
ecomp,
addl_desc_ptr);
if (create)
enclosure_component_register(
ecomp);
}
}
if (desc_ptr)
desc_ptr += len;
if (addl_desc_ptr &&
/* only find additional descriptions for specific devices */
(type_ptr[0] == ENCLOSURE_COMPONENT_DEVICE ||
type_ptr[0] == ENCLOSURE_COMPONENT_ARRAY_DEVICE ||
type_ptr[0] == ENCLOSURE_COMPONENT_SAS_EXPANDER ||
/* these elements are optional */
type_ptr[0] == ENCLOSURE_COMPONENT_SCSI_TARGET_PORT ||
type_ptr[0] == ENCLOSURE_COMPONENT_SCSI_INITIATOR_PORT ||
type_ptr[0] == ENCLOSURE_COMPONENT_CONTROLLER_ELECTRONICS))
addl_desc_ptr += addl_desc_ptr[1] + 2;
}
}
kfree(buf);
kfree(hdr_buf);
}
static void ses_match_to_enclosure(struct enclosure_device *edev,
struct scsi_device *sdev,
int refresh)
{
struct scsi_device *edev_sdev = to_scsi_device(edev->edev.parent);
struct efd efd = {
.addr = 0,
};
if (refresh)
ses_enclosure_data_process(edev, edev_sdev, 0);
if (scsi_is_sas_rphy(sdev->sdev_target->dev.parent))
efd.addr = sas_get_address(sdev);
if (efd.addr) {
efd.dev = &sdev->sdev_gendev;
enclosure_for_each_device(ses_enclosure_find_by_addr, &efd);
}
}
static int ses_intf_add(struct device *cdev,
struct class_interface *intf)
{
struct scsi_device *sdev = to_scsi_device(cdev->parent);
struct scsi_device *tmp_sdev;
unsigned char *buf = NULL, *hdr_buf, *type_ptr, page;
struct ses_device *ses_dev;
u32 result;
int i, types, len, components = 0;
int err = -ENOMEM;
int num_enclosures;
struct enclosure_device *edev;
struct ses_component *scomp = NULL;
if (!scsi_device_enclosure(sdev)) {
/* not an enclosure, but might be in one */
struct enclosure_device *prev = NULL;
while ((edev = enclosure_find(&sdev->host->shost_gendev, prev)) != NULL) {
ses_match_to_enclosure(edev, sdev, 1);
prev = edev;
}
return -ENODEV;
}
/* TYPE_ENCLOSURE prints a message in probe */
if (sdev->type != TYPE_ENCLOSURE)
sdev_printk(KERN_NOTICE, sdev, "Embedded Enclosure Device\n");
ses_dev = kzalloc(sizeof(*ses_dev), GFP_KERNEL);
hdr_buf = kzalloc(INIT_ALLOC_SIZE, GFP_KERNEL);
if (!hdr_buf || !ses_dev)
goto err_init_free;
page = 1;
result = ses_recv_diag(sdev, page, hdr_buf, INIT_ALLOC_SIZE);
if (result)
goto recv_failed;
len = (hdr_buf[2] << 8) + hdr_buf[3] + 4;
buf = kzalloc(len, GFP_KERNEL);
if (!buf)
goto err_free;
result = ses_recv_diag(sdev, page, buf, len);
if (result)
goto recv_failed;
types = 0;
/* we always have one main enclosure and the rest are referred
* to as secondary subenclosures */
num_enclosures = buf[1] + 1;
/* begin at the enclosure descriptor */
type_ptr = buf + 8;
/* skip all the enclosure descriptors */
for (i = 0; i < num_enclosures && type_ptr < buf + len; i++) {
types += type_ptr[2];
type_ptr += type_ptr[3] + 4;
}
ses_dev->page1_types = type_ptr;
ses_dev->page1_num_types = types;
for (i = 0; i < types && type_ptr < buf + len; i++, type_ptr += 4) {
if (type_ptr[0] == ENCLOSURE_COMPONENT_DEVICE ||
type_ptr[0] == ENCLOSURE_COMPONENT_ARRAY_DEVICE)
components += type_ptr[1];
}
ses_dev->page1 = buf;
ses_dev->page1_len = len;
buf = NULL;
page = 2;
result = ses_recv_diag(sdev, page, hdr_buf, INIT_ALLOC_SIZE);
if (result)
goto page2_not_supported;
len = (hdr_buf[2] << 8) + hdr_buf[3] + 4;
buf = kzalloc(len, GFP_KERNEL);
if (!buf)
goto err_free;
/* make sure getting page 2 actually works */
result = ses_recv_diag(sdev, 2, buf, len);
if (result)
goto recv_failed;
ses_dev->page2 = buf;
ses_dev->page2_len = len;
buf = NULL;
/* The additional information page --- allows us
* to match up the devices */
page = 10;
result = ses_recv_diag(sdev, page, hdr_buf, INIT_ALLOC_SIZE);
if (!result) {
len = (hdr_buf[2] << 8) + hdr_buf[3] + 4;
buf = kzalloc(len, GFP_KERNEL);
if (!buf)
goto err_free;
result = ses_recv_diag(sdev, page, buf, len);
if (result)
goto recv_failed;
ses_dev->page10 = buf;
ses_dev->page10_len = len;
buf = NULL;
}
page2_not_supported:
scomp = kcalloc(components, sizeof(struct ses_component), GFP_KERNEL);
if (!scomp)
goto err_free;
edev = enclosure_register(cdev->parent, dev_name(&sdev->sdev_gendev),
components, &ses_enclosure_callbacks);
if (IS_ERR(edev)) {
err = PTR_ERR(edev);
goto err_free;
}
kfree(hdr_buf);
edev->scratch = ses_dev;
for (i = 0; i < components; i++)
edev->component[i].scratch = scomp + i;
ses_enclosure_data_process(edev, sdev, 1);
/* see if there are any devices matching before
* we found the enclosure */
shost_for_each_device(tmp_sdev, sdev->host) {
if (tmp_sdev->lun != 0 || scsi_device_enclosure(tmp_sdev))
continue;
ses_match_to_enclosure(edev, tmp_sdev, 0);
}
return 0;
recv_failed:
sdev_printk(KERN_ERR, sdev, "Failed to get diagnostic page 0x%x\n",
page);
err = -ENODEV;
err_free:
kfree(buf);
kfree(scomp);
kfree(ses_dev->page10);
kfree(ses_dev->page2);
kfree(ses_dev->page1);
err_init_free:
kfree(ses_dev);
kfree(hdr_buf);
sdev_printk(KERN_ERR, sdev, "Failed to bind enclosure %d\n", err);
return err;
}
static int ses_remove(struct device *dev)
{
return 0;
}
static void ses_intf_remove_component(struct scsi_device *sdev)
{
struct enclosure_device *edev, *prev = NULL;
while ((edev = enclosure_find(&sdev->host->shost_gendev, prev)) != NULL) {
prev = edev;
if (!enclosure_remove_device(edev, &sdev->sdev_gendev))
break;
}
if (edev)
put_device(&edev->edev);
}
static void ses_intf_remove_enclosure(struct scsi_device *sdev)
{
struct enclosure_device *edev;
struct ses_device *ses_dev;
/* exact match to this enclosure */
edev = enclosure_find(&sdev->sdev_gendev, NULL);
if (!edev)
return;
ses_dev = edev->scratch;
edev->scratch = NULL;
kfree(ses_dev->page10);
kfree(ses_dev->page1);
kfree(ses_dev->page2);
kfree(ses_dev);
kfree(edev->component[0].scratch);
put_device(&edev->edev);
enclosure_unregister(edev);
}
static void ses_intf_remove(struct device *cdev,
struct class_interface *intf)
{
struct scsi_device *sdev = to_scsi_device(cdev->parent);
if (!scsi_device_enclosure(sdev))
ses_intf_remove_component(sdev);
else
ses_intf_remove_enclosure(sdev);
}
static struct class_interface ses_interface = {
.add_dev = ses_intf_add,
.remove_dev = ses_intf_remove,
};
static struct scsi_driver ses_template = {
.gendrv = {
.name = "ses",
.owner = THIS_MODULE,
.probe = ses_probe,
.remove = ses_remove,
},
};
static int __init ses_init(void)
{
int err;
err = scsi_register_interface(&ses_interface);
if (err)
return err;
err = scsi_register_driver(&ses_template.gendrv);
if (err)
goto out_unreg;
return 0;
out_unreg:
scsi_unregister_interface(&ses_interface);
return err;
}
static void __exit ses_exit(void)
{
scsi_unregister_driver(&ses_template.gendrv);
scsi_unregister_interface(&ses_interface);
}
module_init(ses_init);
module_exit(ses_exit);
MODULE_ALIAS_SCSI_DEVICE(TYPE_ENCLOSURE);
MODULE_AUTHOR("James Bottomley");
MODULE_DESCRIPTION("SCSI Enclosure Services (ses) driver");
MODULE_LICENSE("GPL v2");