kernel_optimize_test/drivers/isdn/hisax/avm_a1.c
David Howells 7d12e780e0 IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead
of passing regs around manually through all ~1800 interrupt handlers in the
Linux kernel.

The regs pointer is used in few places, but it potentially costs both stack
space and code to pass it around.  On the FRV arch, removing the regs parameter
from all the genirq function results in a 20% speed up of the IRQ exit path
(ie: from leaving timer_interrupt() to leaving do_IRQ()).

Where appropriate, an arch may override the generic storage facility and do
something different with the variable.  On FRV, for instance, the address is
maintained in GR28 at all times inside the kernel as part of general exception
handling.

Having looked over the code, it appears that the parameter may be handed down
through up to twenty or so layers of functions.  Consider a USB character
device attached to a USB hub, attached to a USB controller that posts its
interrupts through a cascaded auxiliary interrupt controller.  A character
device driver may want to pass regs to the sysrq handler through the input
layer which adds another few layers of parameter passing.

I've build this code with allyesconfig for x86_64 and i386.  I've runtested the
main part of the code on FRV and i386, though I can't test most of the drivers.
I've also done partial conversion for powerpc and MIPS - these at least compile
with minimal configurations.

This will affect all archs.  Mostly the changes should be relatively easy.
Take do_IRQ(), store the regs pointer at the beginning, saving the old one:

	struct pt_regs *old_regs = set_irq_regs(regs);

And put the old one back at the end:

	set_irq_regs(old_regs);

Don't pass regs through to generic_handle_irq() or __do_IRQ().

In timer_interrupt(), this sort of change will be necessary:

	-	update_process_times(user_mode(regs));
	-	profile_tick(CPU_PROFILING, regs);
	+	update_process_times(user_mode(get_irq_regs()));
	+	profile_tick(CPU_PROFILING);

I'd like to move update_process_times()'s use of get_irq_regs() into itself,
except that i386, alone of the archs, uses something other than user_mode().

Some notes on the interrupt handling in the drivers:

 (*) input_dev() is now gone entirely.  The regs pointer is no longer stored in
     the input_dev struct.

 (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking.  It does
     something different depending on whether it's been supplied with a regs
     pointer or not.

 (*) Various IRQ handler function pointers have been moved to type
     irq_handler_t.

Signed-Off-By: David Howells <dhowells@redhat.com>
(cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 15:10:12 +01:00

318 lines
8.3 KiB
C

/* $Id: avm_a1.c,v 2.15.2.4 2004/01/13 21:46:03 keil Exp $
*
* low level stuff for AVM A1 (Fritz) isdn cards
*
* Author Karsten Keil
* Copyright by Karsten Keil <keil@isdn4linux.de>
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
*/
#include <linux/init.h>
#include "hisax.h"
#include "isac.h"
#include "hscx.h"
#include "isdnl1.h"
extern const char *CardType[];
static const char *avm_revision = "$Revision: 2.15.2.4 $";
#define AVM_A1_STAT_ISAC 0x01
#define AVM_A1_STAT_HSCX 0x02
#define AVM_A1_STAT_TIMER 0x04
#define byteout(addr,val) outb(val,addr)
#define bytein(addr) inb(addr)
static inline u_char
readreg(unsigned int adr, u_char off)
{
return (bytein(adr + off));
}
static inline void
writereg(unsigned int adr, u_char off, u_char data)
{
byteout(adr + off, data);
}
static inline void
read_fifo(unsigned int adr, u_char * data, int size)
{
insb(adr, data, size);
}
static void
write_fifo(unsigned int adr, u_char * data, int size)
{
outsb(adr, data, size);
}
/* Interface functions */
static u_char
ReadISAC(struct IsdnCardState *cs, u_char offset)
{
return (readreg(cs->hw.avm.isac, offset));
}
static void
WriteISAC(struct IsdnCardState *cs, u_char offset, u_char value)
{
writereg(cs->hw.avm.isac, offset, value);
}
static void
ReadISACfifo(struct IsdnCardState *cs, u_char * data, int size)
{
read_fifo(cs->hw.avm.isacfifo, data, size);
}
static void
WriteISACfifo(struct IsdnCardState *cs, u_char * data, int size)
{
write_fifo(cs->hw.avm.isacfifo, data, size);
}
static u_char
ReadHSCX(struct IsdnCardState *cs, int hscx, u_char offset)
{
return (readreg(cs->hw.avm.hscx[hscx], offset));
}
static void
WriteHSCX(struct IsdnCardState *cs, int hscx, u_char offset, u_char value)
{
writereg(cs->hw.avm.hscx[hscx], offset, value);
}
/*
* fast interrupt HSCX stuff goes here
*/
#define READHSCX(cs, nr, reg) readreg(cs->hw.avm.hscx[nr], reg)
#define WRITEHSCX(cs, nr, reg, data) writereg(cs->hw.avm.hscx[nr], reg, data)
#define READHSCXFIFO(cs, nr, ptr, cnt) read_fifo(cs->hw.avm.hscxfifo[nr], ptr, cnt)
#define WRITEHSCXFIFO(cs, nr, ptr, cnt) write_fifo(cs->hw.avm.hscxfifo[nr], ptr, cnt)
#include "hscx_irq.c"
static irqreturn_t
avm_a1_interrupt(int intno, void *dev_id)
{
struct IsdnCardState *cs = dev_id;
u_char val, sval;
u_long flags;
spin_lock_irqsave(&cs->lock, flags);
while (((sval = bytein(cs->hw.avm.cfg_reg)) & 0xf) != 0x7) {
if (!(sval & AVM_A1_STAT_TIMER)) {
byteout(cs->hw.avm.cfg_reg, 0x1E);
sval = bytein(cs->hw.avm.cfg_reg);
} else if (cs->debug & L1_DEB_INTSTAT)
debugl1(cs, "avm IntStatus %x", sval);
if (!(sval & AVM_A1_STAT_HSCX)) {
val = readreg(cs->hw.avm.hscx[1], HSCX_ISTA);
if (val)
hscx_int_main(cs, val);
}
if (!(sval & AVM_A1_STAT_ISAC)) {
val = readreg(cs->hw.avm.isac, ISAC_ISTA);
if (val)
isac_interrupt(cs, val);
}
}
writereg(cs->hw.avm.hscx[0], HSCX_MASK, 0xFF);
writereg(cs->hw.avm.hscx[1], HSCX_MASK, 0xFF);
writereg(cs->hw.avm.isac, ISAC_MASK, 0xFF);
writereg(cs->hw.avm.isac, ISAC_MASK, 0x0);
writereg(cs->hw.avm.hscx[0], HSCX_MASK, 0x0);
writereg(cs->hw.avm.hscx[1], HSCX_MASK, 0x0);
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_HANDLED;
}
static inline void
release_ioregs(struct IsdnCardState *cs, int mask)
{
release_region(cs->hw.avm.cfg_reg, 8);
if (mask & 1)
release_region(cs->hw.avm.isac + 32, 32);
if (mask & 2)
release_region(cs->hw.avm.isacfifo, 1);
if (mask & 4)
release_region(cs->hw.avm.hscx[0] + 32, 32);
if (mask & 8)
release_region(cs->hw.avm.hscxfifo[0], 1);
if (mask & 0x10)
release_region(cs->hw.avm.hscx[1] + 32, 32);
if (mask & 0x20)
release_region(cs->hw.avm.hscxfifo[1], 1);
}
static int
AVM_card_msg(struct IsdnCardState *cs, int mt, void *arg)
{
u_long flags;
switch (mt) {
case CARD_RESET:
return(0);
case CARD_RELEASE:
release_ioregs(cs, 0x3f);
return(0);
case CARD_INIT:
spin_lock_irqsave(&cs->lock, flags);
inithscxisac(cs, 1);
byteout(cs->hw.avm.cfg_reg, 0x16);
byteout(cs->hw.avm.cfg_reg, 0x1E);
inithscxisac(cs, 2);
spin_unlock_irqrestore(&cs->lock, flags);
return(0);
case CARD_TEST:
return(0);
}
return(0);
}
int __devinit
setup_avm_a1(struct IsdnCard *card)
{
u_char val;
struct IsdnCardState *cs = card->cs;
char tmp[64];
strcpy(tmp, avm_revision);
printk(KERN_INFO "HiSax: AVM driver Rev. %s\n", HiSax_getrev(tmp));
if (cs->typ != ISDN_CTYPE_A1)
return (0);
cs->hw.avm.cfg_reg = card->para[1] + 0x1800;
cs->hw.avm.isac = card->para[1] + 0x1400 - 0x20;
cs->hw.avm.hscx[0] = card->para[1] + 0x400 - 0x20;
cs->hw.avm.hscx[1] = card->para[1] + 0xc00 - 0x20;
cs->hw.avm.isacfifo = card->para[1] + 0x1000;
cs->hw.avm.hscxfifo[0] = card->para[1];
cs->hw.avm.hscxfifo[1] = card->para[1] + 0x800;
cs->irq = card->para[0];
if (!request_region(cs->hw.avm.cfg_reg, 8, "avm cfg")) {
printk(KERN_WARNING
"HiSax: %s config port %x-%x already in use\n",
CardType[card->typ],
cs->hw.avm.cfg_reg,
cs->hw.avm.cfg_reg + 8);
return (0);
}
if (!request_region(cs->hw.avm.isac + 32, 32, "HiSax isac")) {
printk(KERN_WARNING
"HiSax: %s isac ports %x-%x already in use\n",
CardType[cs->typ],
cs->hw.avm.isac + 32,
cs->hw.avm.isac + 64);
release_ioregs(cs, 0);
return (0);
}
if (!request_region(cs->hw.avm.isacfifo, 1, "HiSax isac fifo")) {
printk(KERN_WARNING
"HiSax: %s isac fifo port %x already in use\n",
CardType[cs->typ],
cs->hw.avm.isacfifo);
release_ioregs(cs, 1);
return (0);
}
if (!request_region(cs->hw.avm.hscx[0] + 32, 32, "HiSax hscx A")) {
printk(KERN_WARNING
"HiSax: %s hscx A ports %x-%x already in use\n",
CardType[cs->typ],
cs->hw.avm.hscx[0] + 32,
cs->hw.avm.hscx[0] + 64);
release_ioregs(cs, 3);
return (0);
}
if (!request_region(cs->hw.avm.hscxfifo[0], 1, "HiSax hscx A fifo")) {
printk(KERN_WARNING
"HiSax: %s hscx A fifo port %x already in use\n",
CardType[cs->typ],
cs->hw.avm.hscxfifo[0]);
release_ioregs(cs, 7);
return (0);
}
if (!request_region(cs->hw.avm.hscx[1] + 32, 32, "HiSax hscx B")) {
printk(KERN_WARNING
"HiSax: %s hscx B ports %x-%x already in use\n",
CardType[cs->typ],
cs->hw.avm.hscx[1] + 32,
cs->hw.avm.hscx[1] + 64);
release_ioregs(cs, 0xf);
return (0);
}
if (!request_region(cs->hw.avm.hscxfifo[1], 1, "HiSax hscx B fifo")) {
printk(KERN_WARNING
"HiSax: %s hscx B fifo port %x already in use\n",
CardType[cs->typ],
cs->hw.avm.hscxfifo[1]);
release_ioregs(cs, 0x1f);
return (0);
}
byteout(cs->hw.avm.cfg_reg, 0x0);
HZDELAY(HZ / 5 + 1);
byteout(cs->hw.avm.cfg_reg, 0x1);
HZDELAY(HZ / 5 + 1);
byteout(cs->hw.avm.cfg_reg, 0x0);
HZDELAY(HZ / 5 + 1);
val = cs->irq;
if (val == 9)
val = 2;
byteout(cs->hw.avm.cfg_reg + 1, val);
HZDELAY(HZ / 5 + 1);
byteout(cs->hw.avm.cfg_reg, 0x0);
HZDELAY(HZ / 5 + 1);
val = bytein(cs->hw.avm.cfg_reg);
printk(KERN_INFO "AVM A1: Byte at %x is %x\n",
cs->hw.avm.cfg_reg, val);
val = bytein(cs->hw.avm.cfg_reg + 3);
printk(KERN_INFO "AVM A1: Byte at %x is %x\n",
cs->hw.avm.cfg_reg + 3, val);
val = bytein(cs->hw.avm.cfg_reg + 2);
printk(KERN_INFO "AVM A1: Byte at %x is %x\n",
cs->hw.avm.cfg_reg + 2, val);
val = bytein(cs->hw.avm.cfg_reg);
printk(KERN_INFO "AVM A1: Byte at %x is %x\n",
cs->hw.avm.cfg_reg, val);
printk(KERN_INFO
"HiSax: %s config irq:%d cfg:0x%X\n",
CardType[cs->typ], cs->irq,
cs->hw.avm.cfg_reg);
printk(KERN_INFO
"HiSax: isac:0x%X/0x%X\n",
cs->hw.avm.isac + 32, cs->hw.avm.isacfifo);
printk(KERN_INFO
"HiSax: hscx A:0x%X/0x%X hscx B:0x%X/0x%X\n",
cs->hw.avm.hscx[0] + 32, cs->hw.avm.hscxfifo[0],
cs->hw.avm.hscx[1] + 32, cs->hw.avm.hscxfifo[1]);
cs->readisac = &ReadISAC;
cs->writeisac = &WriteISAC;
cs->readisacfifo = &ReadISACfifo;
cs->writeisacfifo = &WriteISACfifo;
cs->BC_Read_Reg = &ReadHSCX;
cs->BC_Write_Reg = &WriteHSCX;
cs->BC_Send_Data = &hscx_fill_fifo;
setup_isac(cs);
cs->cardmsg = &AVM_card_msg;
cs->irq_func = &avm_a1_interrupt;
ISACVersion(cs, "AVM A1:");
if (HscxVersion(cs, "AVM A1:")) {
printk(KERN_WARNING
"AVM A1: wrong HSCX versions check IO address\n");
release_ioregs(cs, 0x3f);
return (0);
}
return (1);
}