kernel_optimize_test/mm/slab.h
Christoph Lameter 2c59dd6544 slab: Common Kmalloc cache determination
Extract the optimized lookup functions from slub and put them into
slab_common.c. Then make slab use these functions as well.

Joonsoo notes that this fixes some issues with constant folding which
also reduces the code size for slub.

https://lkml.org/lkml/2012/10/20/82

Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
2013-02-01 12:32:08 +02:00

242 lines
6.5 KiB
C

#ifndef MM_SLAB_H
#define MM_SLAB_H
/*
* Internal slab definitions
*/
/*
* State of the slab allocator.
*
* This is used to describe the states of the allocator during bootup.
* Allocators use this to gradually bootstrap themselves. Most allocators
* have the problem that the structures used for managing slab caches are
* allocated from slab caches themselves.
*/
enum slab_state {
DOWN, /* No slab functionality yet */
PARTIAL, /* SLUB: kmem_cache_node available */
PARTIAL_ARRAYCACHE, /* SLAB: kmalloc size for arraycache available */
PARTIAL_L3, /* SLAB: kmalloc size for l3 struct available */
UP, /* Slab caches usable but not all extras yet */
FULL /* Everything is working */
};
extern enum slab_state slab_state;
/* The slab cache mutex protects the management structures during changes */
extern struct mutex slab_mutex;
/* The list of all slab caches on the system */
extern struct list_head slab_caches;
/* The slab cache that manages slab cache information */
extern struct kmem_cache *kmem_cache;
unsigned long calculate_alignment(unsigned long flags,
unsigned long align, unsigned long size);
#ifndef CONFIG_SLOB
/* Kmalloc array related functions */
void create_kmalloc_caches(unsigned long);
/* Find the kmalloc slab corresponding for a certain size */
struct kmem_cache *kmalloc_slab(size_t, gfp_t);
#endif
/* Functions provided by the slab allocators */
extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
unsigned long flags);
extern void create_boot_cache(struct kmem_cache *, const char *name,
size_t size, unsigned long flags);
struct mem_cgroup;
#ifdef CONFIG_SLUB
struct kmem_cache *
__kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
size_t align, unsigned long flags, void (*ctor)(void *));
#else
static inline struct kmem_cache *
__kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
size_t align, unsigned long flags, void (*ctor)(void *))
{ return NULL; }
#endif
/* Legal flag mask for kmem_cache_create(), for various configurations */
#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
#if defined(CONFIG_DEBUG_SLAB)
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
#elif defined(CONFIG_SLUB_DEBUG)
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
SLAB_TRACE | SLAB_DEBUG_FREE)
#else
#define SLAB_DEBUG_FLAGS (0)
#endif
#if defined(CONFIG_SLAB)
#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
#elif defined(CONFIG_SLUB)
#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
SLAB_TEMPORARY | SLAB_NOTRACK)
#else
#define SLAB_CACHE_FLAGS (0)
#endif
#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
int __kmem_cache_shutdown(struct kmem_cache *);
struct seq_file;
struct file;
struct slabinfo {
unsigned long active_objs;
unsigned long num_objs;
unsigned long active_slabs;
unsigned long num_slabs;
unsigned long shared_avail;
unsigned int limit;
unsigned int batchcount;
unsigned int shared;
unsigned int objects_per_slab;
unsigned int cache_order;
};
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
size_t count, loff_t *ppos);
#ifdef CONFIG_MEMCG_KMEM
static inline bool is_root_cache(struct kmem_cache *s)
{
return !s->memcg_params || s->memcg_params->is_root_cache;
}
static inline bool cache_match_memcg(struct kmem_cache *cachep,
struct mem_cgroup *memcg)
{
return (is_root_cache(cachep) && !memcg) ||
(cachep->memcg_params->memcg == memcg);
}
static inline void memcg_bind_pages(struct kmem_cache *s, int order)
{
if (!is_root_cache(s))
atomic_add(1 << order, &s->memcg_params->nr_pages);
}
static inline void memcg_release_pages(struct kmem_cache *s, int order)
{
if (is_root_cache(s))
return;
if (atomic_sub_and_test((1 << order), &s->memcg_params->nr_pages))
mem_cgroup_destroy_cache(s);
}
static inline bool slab_equal_or_root(struct kmem_cache *s,
struct kmem_cache *p)
{
return (p == s) ||
(s->memcg_params && (p == s->memcg_params->root_cache));
}
/*
* We use suffixes to the name in memcg because we can't have caches
* created in the system with the same name. But when we print them
* locally, better refer to them with the base name
*/
static inline const char *cache_name(struct kmem_cache *s)
{
if (!is_root_cache(s))
return s->memcg_params->root_cache->name;
return s->name;
}
static inline struct kmem_cache *cache_from_memcg(struct kmem_cache *s, int idx)
{
return s->memcg_params->memcg_caches[idx];
}
static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
{
if (is_root_cache(s))
return s;
return s->memcg_params->root_cache;
}
#else
static inline bool is_root_cache(struct kmem_cache *s)
{
return true;
}
static inline bool cache_match_memcg(struct kmem_cache *cachep,
struct mem_cgroup *memcg)
{
return true;
}
static inline void memcg_bind_pages(struct kmem_cache *s, int order)
{
}
static inline void memcg_release_pages(struct kmem_cache *s, int order)
{
}
static inline bool slab_equal_or_root(struct kmem_cache *s,
struct kmem_cache *p)
{
return true;
}
static inline const char *cache_name(struct kmem_cache *s)
{
return s->name;
}
static inline struct kmem_cache *cache_from_memcg(struct kmem_cache *s, int idx)
{
return NULL;
}
static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
{
return s;
}
#endif
static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
{
struct kmem_cache *cachep;
struct page *page;
/*
* When kmemcg is not being used, both assignments should return the
* same value. but we don't want to pay the assignment price in that
* case. If it is not compiled in, the compiler should be smart enough
* to not do even the assignment. In that case, slab_equal_or_root
* will also be a constant.
*/
if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
return s;
page = virt_to_head_page(x);
cachep = page->slab_cache;
if (slab_equal_or_root(cachep, s))
return cachep;
pr_err("%s: Wrong slab cache. %s but object is from %s\n",
__FUNCTION__, cachep->name, s->name);
WARN_ON_ONCE(1);
return s;
}
#endif