kernel_optimize_test/arch/arm64/kernel/setup.c
Al Stone 37655163ce ARM64 / ACPI: Get RSDP and ACPI boot-time tables
As we want to get ACPI tables to parse and then use the information
for system initialization, we should get the RSDP (Root System
Description Pointer) first, it then locates Extended Root Description
Table (XSDT) which contains all the 64-bit physical address that
pointer to other boot-time tables.

Introduce acpi.c and its related head file in this patch to provide
fundamental needs of extern variables and functions for ACPI core,
and then get boot-time tables as needed.
  - asm/acenv.h for arch specific ACPICA environments and
    implementation, It is needed unconditionally by ACPI core;
  - asm/acpi.h for arch specific variables and functions needed by
    ACPI driver core;
  - acpi.c for ARM64 related ACPI implementation for ACPI driver
    core;

acpi_boot_table_init() is introduced to get RSDP and boot-time tables,
it will be called in setup_arch() before paging_init(), so we should
use eary_memremap() mechanism here to get the RSDP and all the table
pointers.

FADT Major.Minor version was introduced in ACPI 5.1, it is the same
as ACPI version.

In ACPI 5.1, some major gaps are fixed for ARM, such as updates in
MADT table for GIC and SMP init, without those updates, we can not
get the MPIDR for SMP init, and GICv2/3 related init information, so
we can't boot arm64 ACPI properly with table versions predating 5.1.

If firmware provides ACPI tables with ACPI version less than 5.1,
OS has no way to retrieve the configuration data that is necessary
to init SMP boot protocol and the GIC properly, so disable ACPI if
we get an FADT table with version less that 5.1 when acpi_boot_table_init()
called.

CC: Catalin Marinas <catalin.marinas@arm.com>
CC: Will Deacon <will.deacon@arm.com>
CC: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Tested-by: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Tested-by: Yijing Wang <wangyijing@huawei.com>
Tested-by: Mark Langsdorf <mlangsdo@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Tested-by: Timur Tabi <timur@codeaurora.org>
Tested-by: Robert Richter <rrichter@cavium.com>
Acked-by: Robert Richter <rrichter@cavium.com>
Acked-by: Olof Johansson <olof@lixom.net>
Acked-by: Grant Likely <grant.likely@linaro.org>
Signed-off-by: Al Stone <al.stone@linaro.org>
Signed-off-by: Graeme Gregory <graeme.gregory@linaro.org>
Signed-off-by: Tomasz Nowicki <tomasz.nowicki@linaro.org>
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-03-25 11:49:30 +00:00

555 lines
13 KiB
C

/*
* Based on arch/arm/kernel/setup.c
*
* Copyright (C) 1995-2001 Russell King
* Copyright (C) 2012 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/acpi.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/stddef.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/utsname.h>
#include <linux/initrd.h>
#include <linux/console.h>
#include <linux/cache.h>
#include <linux/bootmem.h>
#include <linux/seq_file.h>
#include <linux/screen_info.h>
#include <linux/init.h>
#include <linux/kexec.h>
#include <linux/crash_dump.h>
#include <linux/root_dev.h>
#include <linux/clk-provider.h>
#include <linux/cpu.h>
#include <linux/interrupt.h>
#include <linux/smp.h>
#include <linux/fs.h>
#include <linux/proc_fs.h>
#include <linux/memblock.h>
#include <linux/of_iommu.h>
#include <linux/of_fdt.h>
#include <linux/of_platform.h>
#include <linux/efi.h>
#include <linux/personality.h>
#include <asm/acpi.h>
#include <asm/fixmap.h>
#include <asm/cpu.h>
#include <asm/cputype.h>
#include <asm/elf.h>
#include <asm/cputable.h>
#include <asm/cpufeature.h>
#include <asm/cpu_ops.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/smp_plat.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/traps.h>
#include <asm/memblock.h>
#include <asm/psci.h>
#include <asm/efi.h>
unsigned int processor_id;
EXPORT_SYMBOL(processor_id);
unsigned long elf_hwcap __read_mostly;
EXPORT_SYMBOL_GPL(elf_hwcap);
#ifdef CONFIG_COMPAT
#define COMPAT_ELF_HWCAP_DEFAULT \
(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
COMPAT_HWCAP_LPAE)
unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
unsigned int compat_elf_hwcap2 __read_mostly;
#endif
DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
static const char *cpu_name;
phys_addr_t __fdt_pointer __initdata;
/*
* Standard memory resources
*/
static struct resource mem_res[] = {
{
.name = "Kernel code",
.start = 0,
.end = 0,
.flags = IORESOURCE_MEM
},
{
.name = "Kernel data",
.start = 0,
.end = 0,
.flags = IORESOURCE_MEM
}
};
#define kernel_code mem_res[0]
#define kernel_data mem_res[1]
void __init early_print(const char *str, ...)
{
char buf[256];
va_list ap;
va_start(ap, str);
vsnprintf(buf, sizeof(buf), str, ap);
va_end(ap);
printk("%s", buf);
}
void __init smp_setup_processor_id(void)
{
u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
cpu_logical_map(0) = mpidr;
/*
* clear __my_cpu_offset on boot CPU to avoid hang caused by
* using percpu variable early, for example, lockdep will
* access percpu variable inside lock_release
*/
set_my_cpu_offset(0);
pr_info("Booting Linux on physical CPU 0x%lx\n", (unsigned long)mpidr);
}
bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
{
return phys_id == cpu_logical_map(cpu);
}
struct mpidr_hash mpidr_hash;
#ifdef CONFIG_SMP
/**
* smp_build_mpidr_hash - Pre-compute shifts required at each affinity
* level in order to build a linear index from an
* MPIDR value. Resulting algorithm is a collision
* free hash carried out through shifting and ORing
*/
static void __init smp_build_mpidr_hash(void)
{
u32 i, affinity, fs[4], bits[4], ls;
u64 mask = 0;
/*
* Pre-scan the list of MPIDRS and filter out bits that do
* not contribute to affinity levels, ie they never toggle.
*/
for_each_possible_cpu(i)
mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
pr_debug("mask of set bits %#llx\n", mask);
/*
* Find and stash the last and first bit set at all affinity levels to
* check how many bits are required to represent them.
*/
for (i = 0; i < 4; i++) {
affinity = MPIDR_AFFINITY_LEVEL(mask, i);
/*
* Find the MSB bit and LSB bits position
* to determine how many bits are required
* to express the affinity level.
*/
ls = fls(affinity);
fs[i] = affinity ? ffs(affinity) - 1 : 0;
bits[i] = ls - fs[i];
}
/*
* An index can be created from the MPIDR_EL1 by isolating the
* significant bits at each affinity level and by shifting
* them in order to compress the 32 bits values space to a
* compressed set of values. This is equivalent to hashing
* the MPIDR_EL1 through shifting and ORing. It is a collision free
* hash though not minimal since some levels might contain a number
* of CPUs that is not an exact power of 2 and their bit
* representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}.
*/
mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0];
mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0];
mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] -
(bits[1] + bits[0]);
mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) +
fs[3] - (bits[2] + bits[1] + bits[0]);
mpidr_hash.mask = mask;
mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0];
pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n",
mpidr_hash.shift_aff[0],
mpidr_hash.shift_aff[1],
mpidr_hash.shift_aff[2],
mpidr_hash.shift_aff[3],
mpidr_hash.mask,
mpidr_hash.bits);
/*
* 4x is an arbitrary value used to warn on a hash table much bigger
* than expected on most systems.
*/
if (mpidr_hash_size() > 4 * num_possible_cpus())
pr_warn("Large number of MPIDR hash buckets detected\n");
__flush_dcache_area(&mpidr_hash, sizeof(struct mpidr_hash));
}
#endif
static void __init setup_processor(void)
{
struct cpu_info *cpu_info;
u64 features, block;
u32 cwg;
int cls;
cpu_info = lookup_processor_type(read_cpuid_id());
if (!cpu_info) {
printk("CPU configuration botched (ID %08x), unable to continue.\n",
read_cpuid_id());
while (1);
}
cpu_name = cpu_info->cpu_name;
printk("CPU: %s [%08x] revision %d\n",
cpu_name, read_cpuid_id(), read_cpuid_id() & 15);
sprintf(init_utsname()->machine, ELF_PLATFORM);
elf_hwcap = 0;
cpuinfo_store_boot_cpu();
/*
* Check for sane CTR_EL0.CWG value.
*/
cwg = cache_type_cwg();
cls = cache_line_size();
if (!cwg)
pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
cls);
if (L1_CACHE_BYTES < cls)
pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
L1_CACHE_BYTES, cls);
/*
* ID_AA64ISAR0_EL1 contains 4-bit wide signed feature blocks.
* The blocks we test below represent incremental functionality
* for non-negative values. Negative values are reserved.
*/
features = read_cpuid(ID_AA64ISAR0_EL1);
block = (features >> 4) & 0xf;
if (!(block & 0x8)) {
switch (block) {
default:
case 2:
elf_hwcap |= HWCAP_PMULL;
case 1:
elf_hwcap |= HWCAP_AES;
case 0:
break;
}
}
block = (features >> 8) & 0xf;
if (block && !(block & 0x8))
elf_hwcap |= HWCAP_SHA1;
block = (features >> 12) & 0xf;
if (block && !(block & 0x8))
elf_hwcap |= HWCAP_SHA2;
block = (features >> 16) & 0xf;
if (block && !(block & 0x8))
elf_hwcap |= HWCAP_CRC32;
#ifdef CONFIG_COMPAT
/*
* ID_ISAR5_EL1 carries similar information as above, but pertaining to
* the Aarch32 32-bit execution state.
*/
features = read_cpuid(ID_ISAR5_EL1);
block = (features >> 4) & 0xf;
if (!(block & 0x8)) {
switch (block) {
default:
case 2:
compat_elf_hwcap2 |= COMPAT_HWCAP2_PMULL;
case 1:
compat_elf_hwcap2 |= COMPAT_HWCAP2_AES;
case 0:
break;
}
}
block = (features >> 8) & 0xf;
if (block && !(block & 0x8))
compat_elf_hwcap2 |= COMPAT_HWCAP2_SHA1;
block = (features >> 12) & 0xf;
if (block && !(block & 0x8))
compat_elf_hwcap2 |= COMPAT_HWCAP2_SHA2;
block = (features >> 16) & 0xf;
if (block && !(block & 0x8))
compat_elf_hwcap2 |= COMPAT_HWCAP2_CRC32;
#endif
}
static void __init setup_machine_fdt(phys_addr_t dt_phys)
{
if (!dt_phys || !early_init_dt_scan(phys_to_virt(dt_phys))) {
early_print("\n"
"Error: invalid device tree blob at physical address 0x%p (virtual address 0x%p)\n"
"The dtb must be 8-byte aligned and passed in the first 512MB of memory\n"
"\nPlease check your bootloader.\n",
dt_phys, phys_to_virt(dt_phys));
while (true)
cpu_relax();
}
dump_stack_set_arch_desc("%s (DT)", of_flat_dt_get_machine_name());
}
static void __init request_standard_resources(void)
{
struct memblock_region *region;
struct resource *res;
kernel_code.start = virt_to_phys(_text);
kernel_code.end = virt_to_phys(_etext - 1);
kernel_data.start = virt_to_phys(_sdata);
kernel_data.end = virt_to_phys(_end - 1);
for_each_memblock(memory, region) {
res = alloc_bootmem_low(sizeof(*res));
res->name = "System RAM";
res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
request_resource(&iomem_resource, res);
if (kernel_code.start >= res->start &&
kernel_code.end <= res->end)
request_resource(res, &kernel_code);
if (kernel_data.start >= res->start &&
kernel_data.end <= res->end)
request_resource(res, &kernel_data);
}
}
u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID };
void __init setup_arch(char **cmdline_p)
{
setup_processor();
setup_machine_fdt(__fdt_pointer);
init_mm.start_code = (unsigned long) _text;
init_mm.end_code = (unsigned long) _etext;
init_mm.end_data = (unsigned long) _edata;
init_mm.brk = (unsigned long) _end;
*cmdline_p = boot_command_line;
early_fixmap_init();
early_ioremap_init();
parse_early_param();
/*
* Unmask asynchronous aborts after bringing up possible earlycon.
* (Report possible System Errors once we can report this occurred)
*/
local_async_enable();
efi_init();
arm64_memblock_init();
/* Parse the ACPI tables for possible boot-time configuration */
acpi_boot_table_init();
paging_init();
request_standard_resources();
early_ioremap_reset();
unflatten_device_tree();
psci_init();
cpu_read_bootcpu_ops();
#ifdef CONFIG_SMP
smp_init_cpus();
smp_build_mpidr_hash();
#endif
#ifdef CONFIG_VT
#if defined(CONFIG_VGA_CONSOLE)
conswitchp = &vga_con;
#elif defined(CONFIG_DUMMY_CONSOLE)
conswitchp = &dummy_con;
#endif
#endif
}
static int __init arm64_device_init(void)
{
of_iommu_init();
of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL);
return 0;
}
arch_initcall_sync(arm64_device_init);
static int __init topology_init(void)
{
int i;
for_each_possible_cpu(i) {
struct cpu *cpu = &per_cpu(cpu_data.cpu, i);
cpu->hotpluggable = 1;
register_cpu(cpu, i);
}
return 0;
}
subsys_initcall(topology_init);
static const char *hwcap_str[] = {
"fp",
"asimd",
"evtstrm",
"aes",
"pmull",
"sha1",
"sha2",
"crc32",
NULL
};
#ifdef CONFIG_COMPAT
static const char *compat_hwcap_str[] = {
"swp",
"half",
"thumb",
"26bit",
"fastmult",
"fpa",
"vfp",
"edsp",
"java",
"iwmmxt",
"crunch",
"thumbee",
"neon",
"vfpv3",
"vfpv3d16",
"tls",
"vfpv4",
"idiva",
"idivt",
"vfpd32",
"lpae",
"evtstrm"
};
static const char *compat_hwcap2_str[] = {
"aes",
"pmull",
"sha1",
"sha2",
"crc32",
NULL
};
#endif /* CONFIG_COMPAT */
static int c_show(struct seq_file *m, void *v)
{
int i, j;
for_each_online_cpu(i) {
struct cpuinfo_arm64 *cpuinfo = &per_cpu(cpu_data, i);
u32 midr = cpuinfo->reg_midr;
/*
* glibc reads /proc/cpuinfo to determine the number of
* online processors, looking for lines beginning with
* "processor". Give glibc what it expects.
*/
#ifdef CONFIG_SMP
seq_printf(m, "processor\t: %d\n", i);
#endif
/*
* Dump out the common processor features in a single line.
* Userspace should read the hwcaps with getauxval(AT_HWCAP)
* rather than attempting to parse this, but there's a body of
* software which does already (at least for 32-bit).
*/
seq_puts(m, "Features\t:");
if (personality(current->personality) == PER_LINUX32) {
#ifdef CONFIG_COMPAT
for (j = 0; compat_hwcap_str[j]; j++)
if (compat_elf_hwcap & (1 << j))
seq_printf(m, " %s", compat_hwcap_str[j]);
for (j = 0; compat_hwcap2_str[j]; j++)
if (compat_elf_hwcap2 & (1 << j))
seq_printf(m, " %s", compat_hwcap2_str[j]);
#endif /* CONFIG_COMPAT */
} else {
for (j = 0; hwcap_str[j]; j++)
if (elf_hwcap & (1 << j))
seq_printf(m, " %s", hwcap_str[j]);
}
seq_puts(m, "\n");
seq_printf(m, "CPU implementer\t: 0x%02x\n",
MIDR_IMPLEMENTOR(midr));
seq_printf(m, "CPU architecture: 8\n");
seq_printf(m, "CPU variant\t: 0x%x\n", MIDR_VARIANT(midr));
seq_printf(m, "CPU part\t: 0x%03x\n", MIDR_PARTNUM(midr));
seq_printf(m, "CPU revision\t: %d\n\n", MIDR_REVISION(midr));
}
return 0;
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
return *pos < 1 ? (void *)1 : NULL;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
++*pos;
return NULL;
}
static void c_stop(struct seq_file *m, void *v)
{
}
const struct seq_operations cpuinfo_op = {
.start = c_start,
.next = c_next,
.stop = c_stop,
.show = c_show
};