forked from luck/tmp_suning_uos_patched
0f9d467ff1
[ Upstream commit 7fcb86185978661c9188397d474f90364745b8d9 ]
The module doesn't load automatically. Fix it by adding the missing
MODULE_TABLE().
Fixes: 7b0b551dbc
("rtc: fsl-ftm-alarm: add FTM alarm driver")
Signed-off-by: Michael Walle <michael@walle.cc>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20210414084006.17933-1-michael@walle.cc
Signed-off-by: Sasha Levin <sashal@kernel.org>
340 lines
8.2 KiB
C
340 lines
8.2 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Freescale FlexTimer Module (FTM) alarm device driver.
|
|
*
|
|
* Copyright 2014 Freescale Semiconductor, Inc.
|
|
* Copyright 2019-2020 NXP
|
|
*
|
|
*/
|
|
|
|
#include <linux/device.h>
|
|
#include <linux/err.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/module.h>
|
|
#include <linux/fsl/ftm.h>
|
|
#include <linux/rtc.h>
|
|
#include <linux/time.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/pm_wakeirq.h>
|
|
|
|
#define FTM_SC_CLK(c) ((c) << FTM_SC_CLK_MASK_SHIFT)
|
|
|
|
/*
|
|
* Select Fixed frequency clock (32KHz) as clock source
|
|
* of FlexTimer Module
|
|
*/
|
|
#define FTM_SC_CLKS_FIXED_FREQ 0x02
|
|
#define FIXED_FREQ_CLK 32000
|
|
|
|
/* Select 128 (2^7) as divider factor */
|
|
#define MAX_FREQ_DIV (1 << FTM_SC_PS_MASK)
|
|
|
|
/* Maximum counter value in FlexTimer's CNT registers */
|
|
#define MAX_COUNT_VAL 0xffff
|
|
|
|
struct ftm_rtc {
|
|
struct rtc_device *rtc_dev;
|
|
void __iomem *base;
|
|
bool big_endian;
|
|
u32 alarm_freq;
|
|
};
|
|
|
|
static inline u32 rtc_readl(struct ftm_rtc *dev, u32 reg)
|
|
{
|
|
if (dev->big_endian)
|
|
return ioread32be(dev->base + reg);
|
|
else
|
|
return ioread32(dev->base + reg);
|
|
}
|
|
|
|
static inline void rtc_writel(struct ftm_rtc *dev, u32 reg, u32 val)
|
|
{
|
|
if (dev->big_endian)
|
|
iowrite32be(val, dev->base + reg);
|
|
else
|
|
iowrite32(val, dev->base + reg);
|
|
}
|
|
|
|
static inline void ftm_counter_enable(struct ftm_rtc *rtc)
|
|
{
|
|
u32 val;
|
|
|
|
/* select and enable counter clock source */
|
|
val = rtc_readl(rtc, FTM_SC);
|
|
val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
|
|
val |= (FTM_SC_PS_MASK | FTM_SC_CLK(FTM_SC_CLKS_FIXED_FREQ));
|
|
rtc_writel(rtc, FTM_SC, val);
|
|
}
|
|
|
|
static inline void ftm_counter_disable(struct ftm_rtc *rtc)
|
|
{
|
|
u32 val;
|
|
|
|
/* disable counter clock source */
|
|
val = rtc_readl(rtc, FTM_SC);
|
|
val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
|
|
rtc_writel(rtc, FTM_SC, val);
|
|
}
|
|
|
|
static inline void ftm_irq_acknowledge(struct ftm_rtc *rtc)
|
|
{
|
|
unsigned int timeout = 100;
|
|
|
|
/*
|
|
*Fix errata A-007728 for flextimer
|
|
* If the FTM counter reaches the FTM_MOD value between
|
|
* the reading of the TOF bit and the writing of 0 to
|
|
* the TOF bit, the process of clearing the TOF bit
|
|
* does not work as expected when FTMx_CONF[NUMTOF] != 0
|
|
* and the current TOF count is less than FTMx_CONF[NUMTOF].
|
|
* If the above condition is met, the TOF bit remains set.
|
|
* If the TOF interrupt is enabled (FTMx_SC[TOIE] = 1),the
|
|
* TOF interrupt also remains asserted.
|
|
*
|
|
* Above is the errata discription
|
|
*
|
|
* In one word: software clearing TOF bit not works when
|
|
* FTMx_CONF[NUMTOF] was seted as nonzero and FTM counter
|
|
* reaches the FTM_MOD value.
|
|
*
|
|
* The workaround is clearing TOF bit until it works
|
|
* (FTM counter doesn't always reache the FTM_MOD anyway),
|
|
* which may cost some cycles.
|
|
*/
|
|
while ((FTM_SC_TOF & rtc_readl(rtc, FTM_SC)) && timeout--)
|
|
rtc_writel(rtc, FTM_SC, rtc_readl(rtc, FTM_SC) & (~FTM_SC_TOF));
|
|
}
|
|
|
|
static inline void ftm_irq_enable(struct ftm_rtc *rtc)
|
|
{
|
|
u32 val;
|
|
|
|
val = rtc_readl(rtc, FTM_SC);
|
|
val |= FTM_SC_TOIE;
|
|
rtc_writel(rtc, FTM_SC, val);
|
|
}
|
|
|
|
static inline void ftm_irq_disable(struct ftm_rtc *rtc)
|
|
{
|
|
u32 val;
|
|
|
|
val = rtc_readl(rtc, FTM_SC);
|
|
val &= ~FTM_SC_TOIE;
|
|
rtc_writel(rtc, FTM_SC, val);
|
|
}
|
|
|
|
static inline void ftm_reset_counter(struct ftm_rtc *rtc)
|
|
{
|
|
/*
|
|
* The CNT register contains the FTM counter value.
|
|
* Reset clears the CNT register. Writing any value to COUNT
|
|
* updates the counter with its initial value, CNTIN.
|
|
*/
|
|
rtc_writel(rtc, FTM_CNT, 0x00);
|
|
}
|
|
|
|
static void ftm_clean_alarm(struct ftm_rtc *rtc)
|
|
{
|
|
ftm_counter_disable(rtc);
|
|
|
|
rtc_writel(rtc, FTM_CNTIN, 0x00);
|
|
rtc_writel(rtc, FTM_MOD, ~0U);
|
|
|
|
ftm_reset_counter(rtc);
|
|
}
|
|
|
|
static irqreturn_t ftm_rtc_alarm_interrupt(int irq, void *dev)
|
|
{
|
|
struct ftm_rtc *rtc = dev;
|
|
|
|
rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
|
|
|
|
ftm_irq_acknowledge(rtc);
|
|
ftm_irq_disable(rtc);
|
|
ftm_clean_alarm(rtc);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int ftm_rtc_alarm_irq_enable(struct device *dev,
|
|
unsigned int enabled)
|
|
{
|
|
struct ftm_rtc *rtc = dev_get_drvdata(dev);
|
|
|
|
if (enabled)
|
|
ftm_irq_enable(rtc);
|
|
else
|
|
ftm_irq_disable(rtc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Note:
|
|
* The function is not really getting time from the RTC
|
|
* since FlexTimer is not a RTC device, but we need to
|
|
* get time to setup alarm, so we are using system time
|
|
* for now.
|
|
*/
|
|
static int ftm_rtc_read_time(struct device *dev, struct rtc_time *tm)
|
|
{
|
|
rtc_time64_to_tm(ktime_get_real_seconds(), tm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ftm_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* 1. Select fixed frequency clock (32KHz) as clock source;
|
|
* 2. Select 128 (2^7) as divider factor;
|
|
* So clock is 250 Hz (32KHz/128).
|
|
*
|
|
* 3. FlexTimer's CNT register is a 32bit register,
|
|
* but the register's 16 bit as counter value,it's other 16 bit
|
|
* is reserved.So minimum counter value is 0x0,maximum counter
|
|
* value is 0xffff.
|
|
* So max alarm value is 262 (65536 / 250) seconds
|
|
*/
|
|
static int ftm_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
|
|
{
|
|
time64_t alm_time;
|
|
unsigned long long cycle;
|
|
struct ftm_rtc *rtc = dev_get_drvdata(dev);
|
|
|
|
alm_time = rtc_tm_to_time64(&alm->time);
|
|
|
|
ftm_clean_alarm(rtc);
|
|
cycle = (alm_time - ktime_get_real_seconds()) * rtc->alarm_freq;
|
|
if (cycle > MAX_COUNT_VAL) {
|
|
pr_err("Out of alarm range {0~262} seconds.\n");
|
|
return -ERANGE;
|
|
}
|
|
|
|
ftm_irq_disable(rtc);
|
|
|
|
/*
|
|
* The counter increments until the value of MOD is reached,
|
|
* at which point the counter is reloaded with the value of CNTIN.
|
|
* The TOF (the overflow flag) bit is set when the FTM counter
|
|
* changes from MOD to CNTIN. So we should using the cycle - 1.
|
|
*/
|
|
rtc_writel(rtc, FTM_MOD, cycle - 1);
|
|
|
|
ftm_counter_enable(rtc);
|
|
ftm_irq_enable(rtc);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
static const struct rtc_class_ops ftm_rtc_ops = {
|
|
.read_time = ftm_rtc_read_time,
|
|
.read_alarm = ftm_rtc_read_alarm,
|
|
.set_alarm = ftm_rtc_set_alarm,
|
|
.alarm_irq_enable = ftm_rtc_alarm_irq_enable,
|
|
};
|
|
|
|
static int ftm_rtc_probe(struct platform_device *pdev)
|
|
{
|
|
int irq;
|
|
int ret;
|
|
struct ftm_rtc *rtc;
|
|
|
|
rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
|
|
if (unlikely(!rtc)) {
|
|
dev_err(&pdev->dev, "cannot alloc memory for rtc\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
platform_set_drvdata(pdev, rtc);
|
|
|
|
rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
|
|
if (IS_ERR(rtc->rtc_dev))
|
|
return PTR_ERR(rtc->rtc_dev);
|
|
|
|
rtc->base = devm_platform_ioremap_resource(pdev, 0);
|
|
if (IS_ERR(rtc->base)) {
|
|
dev_err(&pdev->dev, "cannot ioremap resource for rtc\n");
|
|
return PTR_ERR(rtc->base);
|
|
}
|
|
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq < 0)
|
|
return irq;
|
|
|
|
ret = devm_request_irq(&pdev->dev, irq, ftm_rtc_alarm_interrupt,
|
|
0, dev_name(&pdev->dev), rtc);
|
|
if (ret < 0) {
|
|
dev_err(&pdev->dev, "failed to request irq\n");
|
|
return ret;
|
|
}
|
|
|
|
rtc->big_endian =
|
|
device_property_read_bool(&pdev->dev, "big-endian");
|
|
|
|
rtc->alarm_freq = (u32)FIXED_FREQ_CLK / (u32)MAX_FREQ_DIV;
|
|
rtc->rtc_dev->ops = &ftm_rtc_ops;
|
|
|
|
device_init_wakeup(&pdev->dev, true);
|
|
ret = dev_pm_set_wake_irq(&pdev->dev, irq);
|
|
if (ret)
|
|
dev_err(&pdev->dev, "failed to enable irq wake\n");
|
|
|
|
ret = rtc_register_device(rtc->rtc_dev);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "can't register rtc device\n");
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id ftm_rtc_match[] = {
|
|
{ .compatible = "fsl,ls1012a-ftm-alarm", },
|
|
{ .compatible = "fsl,ls1021a-ftm-alarm", },
|
|
{ .compatible = "fsl,ls1028a-ftm-alarm", },
|
|
{ .compatible = "fsl,ls1043a-ftm-alarm", },
|
|
{ .compatible = "fsl,ls1046a-ftm-alarm", },
|
|
{ .compatible = "fsl,ls1088a-ftm-alarm", },
|
|
{ .compatible = "fsl,ls208xa-ftm-alarm", },
|
|
{ .compatible = "fsl,lx2160a-ftm-alarm", },
|
|
{ },
|
|
};
|
|
MODULE_DEVICE_TABLE(of, ftm_rtc_match);
|
|
|
|
static const struct acpi_device_id ftm_imx_acpi_ids[] = {
|
|
{"NXP0014",},
|
|
{ }
|
|
};
|
|
MODULE_DEVICE_TABLE(acpi, ftm_imx_acpi_ids);
|
|
|
|
static struct platform_driver ftm_rtc_driver = {
|
|
.probe = ftm_rtc_probe,
|
|
.driver = {
|
|
.name = "ftm-alarm",
|
|
.of_match_table = ftm_rtc_match,
|
|
.acpi_match_table = ACPI_PTR(ftm_imx_acpi_ids),
|
|
},
|
|
};
|
|
|
|
static int __init ftm_alarm_init(void)
|
|
{
|
|
return platform_driver_register(&ftm_rtc_driver);
|
|
}
|
|
|
|
device_initcall(ftm_alarm_init);
|
|
|
|
MODULE_DESCRIPTION("NXP/Freescale FlexTimer alarm driver");
|
|
MODULE_AUTHOR("Biwen Li <biwen.li@nxp.com>");
|
|
MODULE_LICENSE("GPL");
|