kernel_optimize_test/arch/microblaze/mm/init.c
Michal Simek da5ab11cdf memblock, microblaze: Fix memblock API change fallout
Adopt Microblaze to the memblock API changes, to fix this
build failure:

  CC      arch/microblaze/mm/init.o
 arch/microblaze/mm/init.c: In function 'mm_cmdline_setup':
 arch/microblaze/mm/init.c:236: error: 'struct memblock_type' has no member named 'region'
 ...

Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: linux-mm@kvack.org
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
LKML-Reference: <4C8B2A9A.1040303@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-09-11 10:30:28 +02:00

360 lines
9.3 KiB
C

/*
* Copyright (C) 2007-2008 Michal Simek <monstr@monstr.eu>
* Copyright (C) 2006 Atmark Techno, Inc.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/bootmem.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/memblock.h>
#include <linux/mm.h> /* mem_init */
#include <linux/initrd.h>
#include <linux/pagemap.h>
#include <linux/pfn.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <asm/page.h>
#include <asm/mmu_context.h>
#include <asm/pgalloc.h>
#include <asm/sections.h>
#include <asm/tlb.h>
/* Use for MMU and noMMU because of PCI generic code */
int mem_init_done;
#ifndef CONFIG_MMU
unsigned int __page_offset;
EXPORT_SYMBOL(__page_offset);
#else
DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
static int init_bootmem_done;
#endif /* CONFIG_MMU */
char *klimit = _end;
/*
* Initialize the bootmem system and give it all the memory we
* have available.
*/
unsigned long memory_start;
EXPORT_SYMBOL(memory_start);
unsigned long memory_end; /* due to mm/nommu.c */
unsigned long memory_size;
EXPORT_SYMBOL(memory_size);
/*
* paging_init() sets up the page tables - in fact we've already done this.
*/
static void __init paging_init(void)
{
unsigned long zones_size[MAX_NR_ZONES];
/* Clean every zones */
memset(zones_size, 0, sizeof(zones_size));
/*
* old: we can DMA to/from any address.put all page into ZONE_DMA
* We use only ZONE_NORMAL
*/
zones_size[ZONE_NORMAL] = max_mapnr;
free_area_init(zones_size);
}
void __init setup_memory(void)
{
unsigned long map_size;
struct memblock_region *reg;
#ifndef CONFIG_MMU
u32 kernel_align_start, kernel_align_size;
/* Find main memory where is the kernel */
for_each_memblock(memory, reg) {
memory_start = (u32)reg->base;
memory_end = (u32) reg->base + reg->size;
if ((memory_start <= (u32)_text) &&
((u32)_text <= memory_end)) {
memory_size = memory_end - memory_start;
PAGE_OFFSET = memory_start;
printk(KERN_INFO "%s: Main mem: 0x%x-0x%x, "
"size 0x%08x\n", __func__, (u32) memory_start,
(u32) memory_end, (u32) memory_size);
break;
}
}
if (!memory_start || !memory_end) {
panic("%s: Missing memory setting 0x%08x-0x%08x\n",
__func__, (u32) memory_start, (u32) memory_end);
}
/* reservation of region where is the kernel */
kernel_align_start = PAGE_DOWN((u32)_text);
/* ALIGN can be remove because _end in vmlinux.lds.S is align */
kernel_align_size = PAGE_UP((u32)klimit) - kernel_align_start;
memblock_reserve(kernel_align_start, kernel_align_size);
printk(KERN_INFO "%s: kernel addr=0x%08x-0x%08x size=0x%08x\n",
__func__, kernel_align_start, kernel_align_start
+ kernel_align_size, kernel_align_size);
#endif
/*
* Kernel:
* start: base phys address of kernel - page align
* end: base phys address of kernel - page align
*
* min_low_pfn - the first page (mm/bootmem.c - node_boot_start)
* max_low_pfn
* max_mapnr - the first unused page (mm/bootmem.c - node_low_pfn)
* num_physpages - number of all pages
*/
/* memory start is from the kernel end (aligned) to higher addr */
min_low_pfn = memory_start >> PAGE_SHIFT; /* minimum for allocation */
/* RAM is assumed contiguous */
num_physpages = max_mapnr = memory_size >> PAGE_SHIFT;
max_pfn = max_low_pfn = memory_end >> PAGE_SHIFT;
printk(KERN_INFO "%s: max_mapnr: %#lx\n", __func__, max_mapnr);
printk(KERN_INFO "%s: min_low_pfn: %#lx\n", __func__, min_low_pfn);
printk(KERN_INFO "%s: max_low_pfn: %#lx\n", __func__, max_low_pfn);
/*
* Find an area to use for the bootmem bitmap.
* We look for the first area which is at least
* 128kB in length (128kB is enough for a bitmap
* for 4GB of memory, using 4kB pages), plus 1 page
* (in case the address isn't page-aligned).
*/
map_size = init_bootmem_node(NODE_DATA(0),
PFN_UP(TOPHYS((u32)klimit)), min_low_pfn, max_low_pfn);
memblock_reserve(PFN_UP(TOPHYS((u32)klimit)) << PAGE_SHIFT, map_size);
/* free bootmem is whole main memory */
free_bootmem(memory_start, memory_size);
/* reserve allocate blocks */
for_each_memblock(reserved, reg) {
pr_debug("reserved - 0x%08x-0x%08x\n",
(u32) reg->base, (u32) reg->size);
reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
}
#ifdef CONFIG_MMU
init_bootmem_done = 1;
#endif
paging_init();
}
void free_init_pages(char *what, unsigned long begin, unsigned long end)
{
unsigned long addr;
for (addr = begin; addr < end; addr += PAGE_SIZE) {
ClearPageReserved(virt_to_page(addr));
init_page_count(virt_to_page(addr));
free_page(addr);
totalram_pages++;
}
printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
}
#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
int pages = 0;
for (; start < end; start += PAGE_SIZE) {
ClearPageReserved(virt_to_page(start));
init_page_count(virt_to_page(start));
free_page(start);
totalram_pages++;
pages++;
}
printk(KERN_NOTICE "Freeing initrd memory: %dk freed\n",
(int)(pages * (PAGE_SIZE / 1024)));
}
#endif
void free_initmem(void)
{
free_init_pages("unused kernel memory",
(unsigned long)(&__init_begin),
(unsigned long)(&__init_end));
}
void __init mem_init(void)
{
high_memory = (void *)__va(memory_end);
/* this will put all memory onto the freelists */
totalram_pages += free_all_bootmem();
printk(KERN_INFO "Memory: %luk/%luk available\n",
nr_free_pages() << (PAGE_SHIFT-10),
num_physpages << (PAGE_SHIFT-10));
mem_init_done = 1;
}
#ifndef CONFIG_MMU
int page_is_ram(unsigned long pfn)
{
return __range_ok(pfn, 0);
}
#else
int page_is_ram(unsigned long pfn)
{
return pfn < max_low_pfn;
}
/*
* Check for command-line options that affect what MMU_init will do.
*/
static void mm_cmdline_setup(void)
{
unsigned long maxmem = 0;
char *p = cmd_line;
/* Look for mem= option on command line */
p = strstr(cmd_line, "mem=");
if (p) {
p += 4;
maxmem = memparse(p, &p);
if (maxmem && memory_size > maxmem) {
memory_size = maxmem;
memory_end = memory_start + memory_size;
memblock.memory.regions[0].size = memory_size;
}
}
}
/*
* MMU_init_hw does the chip-specific initialization of the MMU hardware.
*/
static void __init mmu_init_hw(void)
{
/*
* The Zone Protection Register (ZPR) defines how protection will
* be applied to every page which is a member of a given zone. At
* present, we utilize only two of the zones.
* The zone index bits (of ZSEL) in the PTE are used for software
* indicators, except the LSB. For user access, zone 1 is used,
* for kernel access, zone 0 is used. We set all but zone 1
* to zero, allowing only kernel access as indicated in the PTE.
* For zone 1, we set a 01 binary (a value of 10 will not work)
* to allow user access as indicated in the PTE. This also allows
* kernel access as indicated in the PTE.
*/
__asm__ __volatile__ ("ori r11, r0, 0x10000000;" \
"mts rzpr, r11;"
: : : "r11");
}
/*
* MMU_init sets up the basic memory mappings for the kernel,
* including both RAM and possibly some I/O regions,
* and sets up the page tables and the MMU hardware ready to go.
*/
/* called from head.S */
asmlinkage void __init mmu_init(void)
{
unsigned int kstart, ksize;
if (!memblock.reserved.cnt) {
printk(KERN_EMERG "Error memory count\n");
machine_restart(NULL);
}
if ((u32) memblock.memory.regions[0].size < 0x1000000) {
printk(KERN_EMERG "Memory must be greater than 16MB\n");
machine_restart(NULL);
}
/* Find main memory where the kernel is */
memory_start = (u32) memblock.memory.regions[0].base;
memory_end = (u32) memblock.memory.regions[0].base +
(u32) memblock.memory.regions[0].size;
memory_size = memory_end - memory_start;
mm_cmdline_setup(); /* FIXME parse args from command line - not used */
/*
* Map out the kernel text/data/bss from the available physical
* memory.
*/
kstart = __pa(CONFIG_KERNEL_START); /* kernel start */
/* kernel size */
ksize = PAGE_ALIGN(((u32)_end - (u32)CONFIG_KERNEL_START));
memblock_reserve(kstart, ksize);
#if defined(CONFIG_BLK_DEV_INITRD)
/* Remove the init RAM disk from the available memory. */
/* if (initrd_start) {
mem_pieces_remove(&phys_avail, __pa(initrd_start),
initrd_end - initrd_start, 1);
}*/
#endif /* CONFIG_BLK_DEV_INITRD */
/* Initialize the MMU hardware */
mmu_init_hw();
/* Map in all of RAM starting at CONFIG_KERNEL_START */
mapin_ram();
#ifdef HIGHMEM_START_BOOL
ioremap_base = HIGHMEM_START;
#else
ioremap_base = 0xfe000000UL; /* for now, could be 0xfffff000 */
#endif /* CONFIG_HIGHMEM */
ioremap_bot = ioremap_base;
/* Initialize the context management stuff */
mmu_context_init();
}
/* This is only called until mem_init is done. */
void __init *early_get_page(void)
{
void *p;
if (init_bootmem_done) {
p = alloc_bootmem_pages(PAGE_SIZE);
} else {
/*
* Mem start + 32MB -> here is limit
* because of mem mapping from head.S
*/
p = __va(memblock_alloc_base(PAGE_SIZE, PAGE_SIZE,
memory_start + 0x2000000));
}
return p;
}
#endif /* CONFIG_MMU */
void * __init_refok alloc_maybe_bootmem(size_t size, gfp_t mask)
{
if (mem_init_done)
return kmalloc(size, mask);
else
return alloc_bootmem(size);
}
void * __init_refok zalloc_maybe_bootmem(size_t size, gfp_t mask)
{
void *p;
if (mem_init_done)
p = kzalloc(size, mask);
else {
p = alloc_bootmem(size);
if (p)
memset(p, 0, size);
}
return p;
}