kernel_optimize_test/kernel/time/Kconfig
Thomas Gleixner 1fb497dd00 posix-cpu-timers: Provide mechanisms to defer timer handling to task_work
Running posix CPU timers in hard interrupt context has a few downsides:

 - For PREEMPT_RT it cannot work as the expiry code needs to take
   sighand lock, which is a 'sleeping spinlock' in RT. The original RT
   approach of offloading the posix CPU timer handling into a high
   priority thread was clumsy and provided no real benefit in general.

 - For fine grained accounting it's just wrong to run this in context of
   the timer interrupt because that way a process specific CPU time is
   accounted to the timer interrupt.

 - Long running timer interrupts caused by a large amount of expiring
   timers which can be created and armed by unpriviledged user space.

There is no hard requirement to expire them in interrupt context.

If the signal is targeted at the task itself then it won't be delivered
before the task returns to user space anyway. If the signal is targeted at
a supervisor process then it might be slightly delayed, but posix CPU
timers are inaccurate anyway due to the fact that they are tied to the
tick.

Provide infrastructure to schedule task work which allows splitting the
posix CPU timer code into a quick check in interrupt context and a thread
context expiry and signal delivery function. This has to be enabled by
architectures as it requires that the architecture specific KVM
implementation handles pending task work before exiting to guest mode.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20200730102337.783470146@linutronix.de
2020-08-06 16:50:59 +02:00

178 lines
5.0 KiB
Plaintext

# SPDX-License-Identifier: GPL-2.0-only
#
# Timer subsystem related configuration options
#
# Options selectable by arch Kconfig
# Watchdog function for clocksources to detect instabilities
config CLOCKSOURCE_WATCHDOG
bool
# Architecture has extra clocksource data
config ARCH_CLOCKSOURCE_DATA
bool
# Architecture has extra clocksource init called from registration
config ARCH_CLOCKSOURCE_INIT
bool
# Clocksources require validation of the clocksource against the last
# cycle update - x86/TSC misfeature
config CLOCKSOURCE_VALIDATE_LAST_CYCLE
bool
# Timekeeping vsyscall support
config GENERIC_TIME_VSYSCALL
bool
# Old style timekeeping
config ARCH_USES_GETTIMEOFFSET
bool
# The generic clock events infrastructure
config GENERIC_CLOCKEVENTS
bool
# Architecture can handle broadcast in a driver-agnostic way
config ARCH_HAS_TICK_BROADCAST
bool
# Clockevents broadcasting infrastructure
config GENERIC_CLOCKEVENTS_BROADCAST
bool
depends on GENERIC_CLOCKEVENTS
# Automatically adjust the min. reprogramming time for
# clock event device
config GENERIC_CLOCKEVENTS_MIN_ADJUST
bool
# Generic update of CMOS clock
config GENERIC_CMOS_UPDATE
bool
# Select to handle posix CPU timers from task_work
# and not from the timer interrupt context
config HAVE_POSIX_CPU_TIMERS_TASK_WORK
bool
config POSIX_CPU_TIMERS_TASK_WORK
bool
default y if POSIX_TIMERS && HAVE_POSIX_CPU_TIMERS_TASK_WORK
if GENERIC_CLOCKEVENTS
menu "Timers subsystem"
# Core internal switch. Selected by NO_HZ_COMMON / HIGH_RES_TIMERS. This is
# only related to the tick functionality. Oneshot clockevent devices
# are supported independent of this.
config TICK_ONESHOT
bool
config NO_HZ_COMMON
bool
depends on !ARCH_USES_GETTIMEOFFSET && GENERIC_CLOCKEVENTS
select TICK_ONESHOT
choice
prompt "Timer tick handling"
default NO_HZ_IDLE if NO_HZ
config HZ_PERIODIC
bool "Periodic timer ticks (constant rate, no dynticks)"
help
This option keeps the tick running periodically at a constant
rate, even when the CPU doesn't need it.
config NO_HZ_IDLE
bool "Idle dynticks system (tickless idle)"
depends on !ARCH_USES_GETTIMEOFFSET && GENERIC_CLOCKEVENTS
select NO_HZ_COMMON
help
This option enables a tickless idle system: timer interrupts
will only trigger on an as-needed basis when the system is idle.
This is usually interesting for energy saving.
Most of the time you want to say Y here.
config NO_HZ_FULL
bool "Full dynticks system (tickless)"
# NO_HZ_COMMON dependency
depends on !ARCH_USES_GETTIMEOFFSET && GENERIC_CLOCKEVENTS
# We need at least one periodic CPU for timekeeping
depends on SMP
depends on HAVE_CONTEXT_TRACKING
# VIRT_CPU_ACCOUNTING_GEN dependency
depends on HAVE_VIRT_CPU_ACCOUNTING_GEN
select NO_HZ_COMMON
select RCU_NOCB_CPU
select VIRT_CPU_ACCOUNTING_GEN
select IRQ_WORK
select CPU_ISOLATION
help
Adaptively try to shutdown the tick whenever possible, even when
the CPU is running tasks. Typically this requires running a single
task on the CPU. Chances for running tickless are maximized when
the task mostly runs in userspace and has few kernel activity.
You need to fill up the nohz_full boot parameter with the
desired range of dynticks CPUs.
This is implemented at the expense of some overhead in user <-> kernel
transitions: syscalls, exceptions and interrupts. Even when it's
dynamically off.
Say N.
endchoice
config CONTEXT_TRACKING
bool
config CONTEXT_TRACKING_FORCE
bool "Force context tracking"
depends on CONTEXT_TRACKING
default y if !NO_HZ_FULL
help
The major pre-requirement for full dynticks to work is to
support the context tracking subsystem. But there are also
other dependencies to provide in order to make the full
dynticks working.
This option stands for testing when an arch implements the
context tracking backend but doesn't yet fullfill all the
requirements to make the full dynticks feature working.
Without the full dynticks, there is no way to test the support
for context tracking and the subsystems that rely on it: RCU
userspace extended quiescent state and tickless cputime
accounting. This option copes with the absence of the full
dynticks subsystem by forcing the context tracking on all
CPUs in the system.
Say Y only if you're working on the development of an
architecture backend for the context tracking.
Say N otherwise, this option brings an overhead that you
don't want in production.
config NO_HZ
bool "Old Idle dynticks config"
depends on !ARCH_USES_GETTIMEOFFSET && GENERIC_CLOCKEVENTS
help
This is the old config entry that enables dynticks idle.
We keep it around for a little while to enforce backward
compatibility with older config files.
config HIGH_RES_TIMERS
bool "High Resolution Timer Support"
depends on !ARCH_USES_GETTIMEOFFSET && GENERIC_CLOCKEVENTS
select TICK_ONESHOT
help
This option enables high resolution timer support. If your
hardware is not capable then this option only increases
the size of the kernel image.
endmenu
endif