kernel_optimize_test/mm/page_isolation.c
Joonsoo Kim 0f0848e511 mm/page_isolation.c: add new tracepoint, test_pages_isolated
cma allocation should be guranteeded to succeed.  But sometimes it can
fail in the current implementation.  To track down the problem, we need
to know which page is problematic and this new tracepoint will report
it.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00

302 lines
8.4 KiB
C

/*
* linux/mm/page_isolation.c
*/
#include <linux/mm.h>
#include <linux/page-isolation.h>
#include <linux/pageblock-flags.h>
#include <linux/memory.h>
#include <linux/hugetlb.h>
#include "internal.h"
#define CREATE_TRACE_POINTS
#include <trace/events/page_isolation.h>
static int set_migratetype_isolate(struct page *page,
bool skip_hwpoisoned_pages)
{
struct zone *zone;
unsigned long flags, pfn;
struct memory_isolate_notify arg;
int notifier_ret;
int ret = -EBUSY;
zone = page_zone(page);
spin_lock_irqsave(&zone->lock, flags);
pfn = page_to_pfn(page);
arg.start_pfn = pfn;
arg.nr_pages = pageblock_nr_pages;
arg.pages_found = 0;
/*
* It may be possible to isolate a pageblock even if the
* migratetype is not MIGRATE_MOVABLE. The memory isolation
* notifier chain is used by balloon drivers to return the
* number of pages in a range that are held by the balloon
* driver to shrink memory. If all the pages are accounted for
* by balloons, are free, or on the LRU, isolation can continue.
* Later, for example, when memory hotplug notifier runs, these
* pages reported as "can be isolated" should be isolated(freed)
* by the balloon driver through the memory notifier chain.
*/
notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
notifier_ret = notifier_to_errno(notifier_ret);
if (notifier_ret)
goto out;
/*
* FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
* We just check MOVABLE pages.
*/
if (!has_unmovable_pages(zone, page, arg.pages_found,
skip_hwpoisoned_pages))
ret = 0;
/*
* immobile means "not-on-lru" paes. If immobile is larger than
* removable-by-driver pages reported by notifier, we'll fail.
*/
out:
if (!ret) {
unsigned long nr_pages;
int migratetype = get_pageblock_migratetype(page);
set_pageblock_migratetype(page, MIGRATE_ISOLATE);
zone->nr_isolate_pageblock++;
nr_pages = move_freepages_block(zone, page, MIGRATE_ISOLATE);
__mod_zone_freepage_state(zone, -nr_pages, migratetype);
}
spin_unlock_irqrestore(&zone->lock, flags);
if (!ret)
drain_all_pages(zone);
return ret;
}
static void unset_migratetype_isolate(struct page *page, unsigned migratetype)
{
struct zone *zone;
unsigned long flags, nr_pages;
struct page *isolated_page = NULL;
unsigned int order;
unsigned long page_idx, buddy_idx;
struct page *buddy;
zone = page_zone(page);
spin_lock_irqsave(&zone->lock, flags);
if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
goto out;
/*
* Because freepage with more than pageblock_order on isolated
* pageblock is restricted to merge due to freepage counting problem,
* it is possible that there is free buddy page.
* move_freepages_block() doesn't care of merge so we need other
* approach in order to merge them. Isolation and free will make
* these pages to be merged.
*/
if (PageBuddy(page)) {
order = page_order(page);
if (order >= pageblock_order) {
page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
buddy_idx = __find_buddy_index(page_idx, order);
buddy = page + (buddy_idx - page_idx);
if (pfn_valid_within(page_to_pfn(buddy)) &&
!is_migrate_isolate_page(buddy)) {
__isolate_free_page(page, order);
kernel_map_pages(page, (1 << order), 1);
set_page_refcounted(page);
isolated_page = page;
}
}
}
/*
* If we isolate freepage with more than pageblock_order, there
* should be no freepage in the range, so we could avoid costly
* pageblock scanning for freepage moving.
*/
if (!isolated_page) {
nr_pages = move_freepages_block(zone, page, migratetype);
__mod_zone_freepage_state(zone, nr_pages, migratetype);
}
set_pageblock_migratetype(page, migratetype);
zone->nr_isolate_pageblock--;
out:
spin_unlock_irqrestore(&zone->lock, flags);
if (isolated_page)
__free_pages(isolated_page, order);
}
static inline struct page *
__first_valid_page(unsigned long pfn, unsigned long nr_pages)
{
int i;
for (i = 0; i < nr_pages; i++)
if (pfn_valid_within(pfn + i))
break;
if (unlikely(i == nr_pages))
return NULL;
return pfn_to_page(pfn + i);
}
/*
* start_isolate_page_range() -- make page-allocation-type of range of pages
* to be MIGRATE_ISOLATE.
* @start_pfn: The lower PFN of the range to be isolated.
* @end_pfn: The upper PFN of the range to be isolated.
* @migratetype: migrate type to set in error recovery.
*
* Making page-allocation-type to be MIGRATE_ISOLATE means free pages in
* the range will never be allocated. Any free pages and pages freed in the
* future will not be allocated again.
*
* start_pfn/end_pfn must be aligned to pageblock_order.
* Returns 0 on success and -EBUSY if any part of range cannot be isolated.
*/
int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
unsigned migratetype, bool skip_hwpoisoned_pages)
{
unsigned long pfn;
unsigned long undo_pfn;
struct page *page;
BUG_ON((start_pfn) & (pageblock_nr_pages - 1));
BUG_ON((end_pfn) & (pageblock_nr_pages - 1));
for (pfn = start_pfn;
pfn < end_pfn;
pfn += pageblock_nr_pages) {
page = __first_valid_page(pfn, pageblock_nr_pages);
if (page &&
set_migratetype_isolate(page, skip_hwpoisoned_pages)) {
undo_pfn = pfn;
goto undo;
}
}
return 0;
undo:
for (pfn = start_pfn;
pfn < undo_pfn;
pfn += pageblock_nr_pages)
unset_migratetype_isolate(pfn_to_page(pfn), migratetype);
return -EBUSY;
}
/*
* Make isolated pages available again.
*/
int undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
unsigned migratetype)
{
unsigned long pfn;
struct page *page;
BUG_ON((start_pfn) & (pageblock_nr_pages - 1));
BUG_ON((end_pfn) & (pageblock_nr_pages - 1));
for (pfn = start_pfn;
pfn < end_pfn;
pfn += pageblock_nr_pages) {
page = __first_valid_page(pfn, pageblock_nr_pages);
if (!page || get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
continue;
unset_migratetype_isolate(page, migratetype);
}
return 0;
}
/*
* Test all pages in the range is free(means isolated) or not.
* all pages in [start_pfn...end_pfn) must be in the same zone.
* zone->lock must be held before call this.
*
* Returns 1 if all pages in the range are isolated.
*/
static unsigned long
__test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn,
bool skip_hwpoisoned_pages)
{
struct page *page;
while (pfn < end_pfn) {
if (!pfn_valid_within(pfn)) {
pfn++;
continue;
}
page = pfn_to_page(pfn);
if (PageBuddy(page))
/*
* If the page is on a free list, it has to be on
* the correct MIGRATE_ISOLATE freelist. There is no
* simple way to verify that as VM_BUG_ON(), though.
*/
pfn += 1 << page_order(page);
else if (skip_hwpoisoned_pages && PageHWPoison(page))
/* A HWPoisoned page cannot be also PageBuddy */
pfn++;
else
break;
}
return pfn;
}
int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn,
bool skip_hwpoisoned_pages)
{
unsigned long pfn, flags;
struct page *page;
struct zone *zone;
/*
* Note: pageblock_nr_pages != MAX_ORDER. Then, chunks of free pages
* are not aligned to pageblock_nr_pages.
* Then we just check migratetype first.
*/
for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
page = __first_valid_page(pfn, pageblock_nr_pages);
if (page && get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
break;
}
page = __first_valid_page(start_pfn, end_pfn - start_pfn);
if ((pfn < end_pfn) || !page)
return -EBUSY;
/* Check all pages are free or marked as ISOLATED */
zone = page_zone(page);
spin_lock_irqsave(&zone->lock, flags);
pfn = __test_page_isolated_in_pageblock(start_pfn, end_pfn,
skip_hwpoisoned_pages);
spin_unlock_irqrestore(&zone->lock, flags);
trace_test_pages_isolated(start_pfn, end_pfn, pfn);
return pfn < end_pfn ? -EBUSY : 0;
}
struct page *alloc_migrate_target(struct page *page, unsigned long private,
int **resultp)
{
gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
/*
* TODO: allocate a destination hugepage from a nearest neighbor node,
* accordance with memory policy of the user process if possible. For
* now as a simple work-around, we use the next node for destination.
*/
if (PageHuge(page)) {
nodemask_t src = nodemask_of_node(page_to_nid(page));
nodemask_t dst;
nodes_complement(dst, src);
return alloc_huge_page_node(page_hstate(compound_head(page)),
next_node(page_to_nid(page), dst));
}
if (PageHighMem(page))
gfp_mask |= __GFP_HIGHMEM;
return alloc_page(gfp_mask);
}