forked from luck/tmp_suning_uos_patched
d773ed6b85
Introduces new zone flag interface for testing and setting flags: int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) Instead of setting and clearing ZONE_RECLAIM_LOCKED each time shrink_zone() is called, this flag is test and set before starting zone reclaim. Zone reclaim starts in __alloc_pages() when a zone's watermark fails and the system is in zone_reclaim_mode. If it's already in reclaim, there's no need to start again so it is simply considered full for that allocation attempt. There is a change of behavior with regard to concurrent zone shrinking. It is now possible for try_to_free_pages() or kswapd to already be shrinking a particular zone when __alloc_pages() starts zone reclaim. In this case, it is possible for two concurrent threads to invoke shrink_zone() for a single zone. This change forbids a zone to be in zone reclaim twice, which was always the behavior, but allows for concurrent try_to_free_pages() or kswapd shrinking when starting zone reclaim. Cc: Andrea Arcangeli <andrea@suse.de> Cc: Christoph Lameter <clameter@sgi.com> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
945 lines
28 KiB
C
945 lines
28 KiB
C
#ifndef _LINUX_MMZONE_H
|
|
#define _LINUX_MMZONE_H
|
|
|
|
#ifdef __KERNEL__
|
|
#ifndef __ASSEMBLY__
|
|
|
|
#include <linux/spinlock.h>
|
|
#include <linux/list.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/threads.h>
|
|
#include <linux/numa.h>
|
|
#include <linux/init.h>
|
|
#include <linux/seqlock.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/pageblock-flags.h>
|
|
#include <asm/atomic.h>
|
|
#include <asm/page.h>
|
|
|
|
/* Free memory management - zoned buddy allocator. */
|
|
#ifndef CONFIG_FORCE_MAX_ZONEORDER
|
|
#define MAX_ORDER 11
|
|
#else
|
|
#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
|
|
#endif
|
|
#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
|
|
|
|
/*
|
|
* PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
|
|
* costly to service. That is between allocation orders which should
|
|
* coelesce naturally under reasonable reclaim pressure and those which
|
|
* will not.
|
|
*/
|
|
#define PAGE_ALLOC_COSTLY_ORDER 3
|
|
|
|
#define MIGRATE_UNMOVABLE 0
|
|
#define MIGRATE_RECLAIMABLE 1
|
|
#define MIGRATE_MOVABLE 2
|
|
#define MIGRATE_RESERVE 3
|
|
#define MIGRATE_ISOLATE 4 /* can't allocate from here */
|
|
#define MIGRATE_TYPES 5
|
|
|
|
#define for_each_migratetype_order(order, type) \
|
|
for (order = 0; order < MAX_ORDER; order++) \
|
|
for (type = 0; type < MIGRATE_TYPES; type++)
|
|
|
|
extern int page_group_by_mobility_disabled;
|
|
|
|
static inline int get_pageblock_migratetype(struct page *page)
|
|
{
|
|
if (unlikely(page_group_by_mobility_disabled))
|
|
return MIGRATE_UNMOVABLE;
|
|
|
|
return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
|
|
}
|
|
|
|
struct free_area {
|
|
struct list_head free_list[MIGRATE_TYPES];
|
|
unsigned long nr_free;
|
|
};
|
|
|
|
struct pglist_data;
|
|
|
|
/*
|
|
* zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
|
|
* So add a wild amount of padding here to ensure that they fall into separate
|
|
* cachelines. There are very few zone structures in the machine, so space
|
|
* consumption is not a concern here.
|
|
*/
|
|
#if defined(CONFIG_SMP)
|
|
struct zone_padding {
|
|
char x[0];
|
|
} ____cacheline_internodealigned_in_smp;
|
|
#define ZONE_PADDING(name) struct zone_padding name;
|
|
#else
|
|
#define ZONE_PADDING(name)
|
|
#endif
|
|
|
|
enum zone_stat_item {
|
|
/* First 128 byte cacheline (assuming 64 bit words) */
|
|
NR_FREE_PAGES,
|
|
NR_INACTIVE,
|
|
NR_ACTIVE,
|
|
NR_ANON_PAGES, /* Mapped anonymous pages */
|
|
NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
|
|
only modified from process context */
|
|
NR_FILE_PAGES,
|
|
NR_FILE_DIRTY,
|
|
NR_WRITEBACK,
|
|
/* Second 128 byte cacheline */
|
|
NR_SLAB_RECLAIMABLE,
|
|
NR_SLAB_UNRECLAIMABLE,
|
|
NR_PAGETABLE, /* used for pagetables */
|
|
NR_UNSTABLE_NFS, /* NFS unstable pages */
|
|
NR_BOUNCE,
|
|
NR_VMSCAN_WRITE,
|
|
#ifdef CONFIG_NUMA
|
|
NUMA_HIT, /* allocated in intended node */
|
|
NUMA_MISS, /* allocated in non intended node */
|
|
NUMA_FOREIGN, /* was intended here, hit elsewhere */
|
|
NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
|
|
NUMA_LOCAL, /* allocation from local node */
|
|
NUMA_OTHER, /* allocation from other node */
|
|
#endif
|
|
NR_VM_ZONE_STAT_ITEMS };
|
|
|
|
struct per_cpu_pages {
|
|
int count; /* number of pages in the list */
|
|
int high; /* high watermark, emptying needed */
|
|
int batch; /* chunk size for buddy add/remove */
|
|
struct list_head list; /* the list of pages */
|
|
};
|
|
|
|
struct per_cpu_pageset {
|
|
struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
|
|
#ifdef CONFIG_NUMA
|
|
s8 expire;
|
|
#endif
|
|
#ifdef CONFIG_SMP
|
|
s8 stat_threshold;
|
|
s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
|
|
#endif
|
|
} ____cacheline_aligned_in_smp;
|
|
|
|
#ifdef CONFIG_NUMA
|
|
#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
|
|
#else
|
|
#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
|
|
#endif
|
|
|
|
enum zone_type {
|
|
#ifdef CONFIG_ZONE_DMA
|
|
/*
|
|
* ZONE_DMA is used when there are devices that are not able
|
|
* to do DMA to all of addressable memory (ZONE_NORMAL). Then we
|
|
* carve out the portion of memory that is needed for these devices.
|
|
* The range is arch specific.
|
|
*
|
|
* Some examples
|
|
*
|
|
* Architecture Limit
|
|
* ---------------------------
|
|
* parisc, ia64, sparc <4G
|
|
* s390 <2G
|
|
* arm Various
|
|
* alpha Unlimited or 0-16MB.
|
|
*
|
|
* i386, x86_64 and multiple other arches
|
|
* <16M.
|
|
*/
|
|
ZONE_DMA,
|
|
#endif
|
|
#ifdef CONFIG_ZONE_DMA32
|
|
/*
|
|
* x86_64 needs two ZONE_DMAs because it supports devices that are
|
|
* only able to do DMA to the lower 16M but also 32 bit devices that
|
|
* can only do DMA areas below 4G.
|
|
*/
|
|
ZONE_DMA32,
|
|
#endif
|
|
/*
|
|
* Normal addressable memory is in ZONE_NORMAL. DMA operations can be
|
|
* performed on pages in ZONE_NORMAL if the DMA devices support
|
|
* transfers to all addressable memory.
|
|
*/
|
|
ZONE_NORMAL,
|
|
#ifdef CONFIG_HIGHMEM
|
|
/*
|
|
* A memory area that is only addressable by the kernel through
|
|
* mapping portions into its own address space. This is for example
|
|
* used by i386 to allow the kernel to address the memory beyond
|
|
* 900MB. The kernel will set up special mappings (page
|
|
* table entries on i386) for each page that the kernel needs to
|
|
* access.
|
|
*/
|
|
ZONE_HIGHMEM,
|
|
#endif
|
|
ZONE_MOVABLE,
|
|
MAX_NR_ZONES
|
|
};
|
|
|
|
/*
|
|
* When a memory allocation must conform to specific limitations (such
|
|
* as being suitable for DMA) the caller will pass in hints to the
|
|
* allocator in the gfp_mask, in the zone modifier bits. These bits
|
|
* are used to select a priority ordered list of memory zones which
|
|
* match the requested limits. See gfp_zone() in include/linux/gfp.h
|
|
*/
|
|
|
|
/*
|
|
* Count the active zones. Note that the use of defined(X) outside
|
|
* #if and family is not necessarily defined so ensure we cannot use
|
|
* it later. Use __ZONE_COUNT to work out how many shift bits we need.
|
|
*/
|
|
#define __ZONE_COUNT ( \
|
|
defined(CONFIG_ZONE_DMA) \
|
|
+ defined(CONFIG_ZONE_DMA32) \
|
|
+ 1 \
|
|
+ defined(CONFIG_HIGHMEM) \
|
|
+ 1 \
|
|
)
|
|
#if __ZONE_COUNT < 2
|
|
#define ZONES_SHIFT 0
|
|
#elif __ZONE_COUNT <= 2
|
|
#define ZONES_SHIFT 1
|
|
#elif __ZONE_COUNT <= 4
|
|
#define ZONES_SHIFT 2
|
|
#else
|
|
#error ZONES_SHIFT -- too many zones configured adjust calculation
|
|
#endif
|
|
#undef __ZONE_COUNT
|
|
|
|
struct zone {
|
|
/* Fields commonly accessed by the page allocator */
|
|
unsigned long pages_min, pages_low, pages_high;
|
|
/*
|
|
* We don't know if the memory that we're going to allocate will be freeable
|
|
* or/and it will be released eventually, so to avoid totally wasting several
|
|
* GB of ram we must reserve some of the lower zone memory (otherwise we risk
|
|
* to run OOM on the lower zones despite there's tons of freeable ram
|
|
* on the higher zones). This array is recalculated at runtime if the
|
|
* sysctl_lowmem_reserve_ratio sysctl changes.
|
|
*/
|
|
unsigned long lowmem_reserve[MAX_NR_ZONES];
|
|
|
|
#ifdef CONFIG_NUMA
|
|
int node;
|
|
/*
|
|
* zone reclaim becomes active if more unmapped pages exist.
|
|
*/
|
|
unsigned long min_unmapped_pages;
|
|
unsigned long min_slab_pages;
|
|
struct per_cpu_pageset *pageset[NR_CPUS];
|
|
#else
|
|
struct per_cpu_pageset pageset[NR_CPUS];
|
|
#endif
|
|
/*
|
|
* free areas of different sizes
|
|
*/
|
|
spinlock_t lock;
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
/* see spanned/present_pages for more description */
|
|
seqlock_t span_seqlock;
|
|
#endif
|
|
struct free_area free_area[MAX_ORDER];
|
|
|
|
#ifndef CONFIG_SPARSEMEM
|
|
/*
|
|
* Flags for a pageblock_nr_pages block. See pageblock-flags.h.
|
|
* In SPARSEMEM, this map is stored in struct mem_section
|
|
*/
|
|
unsigned long *pageblock_flags;
|
|
#endif /* CONFIG_SPARSEMEM */
|
|
|
|
|
|
ZONE_PADDING(_pad1_)
|
|
|
|
/* Fields commonly accessed by the page reclaim scanner */
|
|
spinlock_t lru_lock;
|
|
struct list_head active_list;
|
|
struct list_head inactive_list;
|
|
unsigned long nr_scan_active;
|
|
unsigned long nr_scan_inactive;
|
|
unsigned long pages_scanned; /* since last reclaim */
|
|
unsigned long flags; /* zone flags, see below */
|
|
|
|
/* Zone statistics */
|
|
atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
|
|
|
|
/*
|
|
* prev_priority holds the scanning priority for this zone. It is
|
|
* defined as the scanning priority at which we achieved our reclaim
|
|
* target at the previous try_to_free_pages() or balance_pgdat()
|
|
* invokation.
|
|
*
|
|
* We use prev_priority as a measure of how much stress page reclaim is
|
|
* under - it drives the swappiness decision: whether to unmap mapped
|
|
* pages.
|
|
*
|
|
* Access to both this field is quite racy even on uniprocessor. But
|
|
* it is expected to average out OK.
|
|
*/
|
|
int prev_priority;
|
|
|
|
|
|
ZONE_PADDING(_pad2_)
|
|
/* Rarely used or read-mostly fields */
|
|
|
|
/*
|
|
* wait_table -- the array holding the hash table
|
|
* wait_table_hash_nr_entries -- the size of the hash table array
|
|
* wait_table_bits -- wait_table_size == (1 << wait_table_bits)
|
|
*
|
|
* The purpose of all these is to keep track of the people
|
|
* waiting for a page to become available and make them
|
|
* runnable again when possible. The trouble is that this
|
|
* consumes a lot of space, especially when so few things
|
|
* wait on pages at a given time. So instead of using
|
|
* per-page waitqueues, we use a waitqueue hash table.
|
|
*
|
|
* The bucket discipline is to sleep on the same queue when
|
|
* colliding and wake all in that wait queue when removing.
|
|
* When something wakes, it must check to be sure its page is
|
|
* truly available, a la thundering herd. The cost of a
|
|
* collision is great, but given the expected load of the
|
|
* table, they should be so rare as to be outweighed by the
|
|
* benefits from the saved space.
|
|
*
|
|
* __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
|
|
* primary users of these fields, and in mm/page_alloc.c
|
|
* free_area_init_core() performs the initialization of them.
|
|
*/
|
|
wait_queue_head_t * wait_table;
|
|
unsigned long wait_table_hash_nr_entries;
|
|
unsigned long wait_table_bits;
|
|
|
|
/*
|
|
* Discontig memory support fields.
|
|
*/
|
|
struct pglist_data *zone_pgdat;
|
|
/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
|
|
unsigned long zone_start_pfn;
|
|
|
|
/*
|
|
* zone_start_pfn, spanned_pages and present_pages are all
|
|
* protected by span_seqlock. It is a seqlock because it has
|
|
* to be read outside of zone->lock, and it is done in the main
|
|
* allocator path. But, it is written quite infrequently.
|
|
*
|
|
* The lock is declared along with zone->lock because it is
|
|
* frequently read in proximity to zone->lock. It's good to
|
|
* give them a chance of being in the same cacheline.
|
|
*/
|
|
unsigned long spanned_pages; /* total size, including holes */
|
|
unsigned long present_pages; /* amount of memory (excluding holes) */
|
|
|
|
/*
|
|
* rarely used fields:
|
|
*/
|
|
const char *name;
|
|
} ____cacheline_internodealigned_in_smp;
|
|
|
|
typedef enum {
|
|
ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
|
|
ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
|
|
ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
|
|
} zone_flags_t;
|
|
|
|
static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
|
|
{
|
|
set_bit(flag, &zone->flags);
|
|
}
|
|
|
|
static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
|
|
{
|
|
return test_and_set_bit(flag, &zone->flags);
|
|
}
|
|
|
|
static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
|
|
{
|
|
clear_bit(flag, &zone->flags);
|
|
}
|
|
|
|
static inline int zone_is_all_unreclaimable(const struct zone *zone)
|
|
{
|
|
return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
|
|
}
|
|
|
|
static inline int zone_is_reclaim_locked(const struct zone *zone)
|
|
{
|
|
return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
|
|
}
|
|
|
|
static inline int zone_is_oom_locked(const struct zone *zone)
|
|
{
|
|
return test_bit(ZONE_OOM_LOCKED, &zone->flags);
|
|
}
|
|
|
|
/*
|
|
* The "priority" of VM scanning is how much of the queues we will scan in one
|
|
* go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
|
|
* queues ("queue_length >> 12") during an aging round.
|
|
*/
|
|
#define DEF_PRIORITY 12
|
|
|
|
/* Maximum number of zones on a zonelist */
|
|
#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
|
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
/*
|
|
* The NUMA zonelists are doubled becausse we need zonelists that restrict the
|
|
* allocations to a single node for GFP_THISNODE.
|
|
*
|
|
* [0 .. MAX_NR_ZONES -1] : Zonelists with fallback
|
|
* [MAZ_NR_ZONES ... MAZ_ZONELISTS -1] : No fallback (GFP_THISNODE)
|
|
*/
|
|
#define MAX_ZONELISTS (2 * MAX_NR_ZONES)
|
|
|
|
|
|
/*
|
|
* We cache key information from each zonelist for smaller cache
|
|
* footprint when scanning for free pages in get_page_from_freelist().
|
|
*
|
|
* 1) The BITMAP fullzones tracks which zones in a zonelist have come
|
|
* up short of free memory since the last time (last_fullzone_zap)
|
|
* we zero'd fullzones.
|
|
* 2) The array z_to_n[] maps each zone in the zonelist to its node
|
|
* id, so that we can efficiently evaluate whether that node is
|
|
* set in the current tasks mems_allowed.
|
|
*
|
|
* Both fullzones and z_to_n[] are one-to-one with the zonelist,
|
|
* indexed by a zones offset in the zonelist zones[] array.
|
|
*
|
|
* The get_page_from_freelist() routine does two scans. During the
|
|
* first scan, we skip zones whose corresponding bit in 'fullzones'
|
|
* is set or whose corresponding node in current->mems_allowed (which
|
|
* comes from cpusets) is not set. During the second scan, we bypass
|
|
* this zonelist_cache, to ensure we look methodically at each zone.
|
|
*
|
|
* Once per second, we zero out (zap) fullzones, forcing us to
|
|
* reconsider nodes that might have regained more free memory.
|
|
* The field last_full_zap is the time we last zapped fullzones.
|
|
*
|
|
* This mechanism reduces the amount of time we waste repeatedly
|
|
* reexaming zones for free memory when they just came up low on
|
|
* memory momentarilly ago.
|
|
*
|
|
* The zonelist_cache struct members logically belong in struct
|
|
* zonelist. However, the mempolicy zonelists constructed for
|
|
* MPOL_BIND are intentionally variable length (and usually much
|
|
* shorter). A general purpose mechanism for handling structs with
|
|
* multiple variable length members is more mechanism than we want
|
|
* here. We resort to some special case hackery instead.
|
|
*
|
|
* The MPOL_BIND zonelists don't need this zonelist_cache (in good
|
|
* part because they are shorter), so we put the fixed length stuff
|
|
* at the front of the zonelist struct, ending in a variable length
|
|
* zones[], as is needed by MPOL_BIND.
|
|
*
|
|
* Then we put the optional zonelist cache on the end of the zonelist
|
|
* struct. This optional stuff is found by a 'zlcache_ptr' pointer in
|
|
* the fixed length portion at the front of the struct. This pointer
|
|
* both enables us to find the zonelist cache, and in the case of
|
|
* MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
|
|
* to know that the zonelist cache is not there.
|
|
*
|
|
* The end result is that struct zonelists come in two flavors:
|
|
* 1) The full, fixed length version, shown below, and
|
|
* 2) The custom zonelists for MPOL_BIND.
|
|
* The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
|
|
*
|
|
* Even though there may be multiple CPU cores on a node modifying
|
|
* fullzones or last_full_zap in the same zonelist_cache at the same
|
|
* time, we don't lock it. This is just hint data - if it is wrong now
|
|
* and then, the allocator will still function, perhaps a bit slower.
|
|
*/
|
|
|
|
|
|
struct zonelist_cache {
|
|
unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
|
|
DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
|
|
unsigned long last_full_zap; /* when last zap'd (jiffies) */
|
|
};
|
|
#else
|
|
#define MAX_ZONELISTS MAX_NR_ZONES
|
|
struct zonelist_cache;
|
|
#endif
|
|
|
|
/*
|
|
* One allocation request operates on a zonelist. A zonelist
|
|
* is a list of zones, the first one is the 'goal' of the
|
|
* allocation, the other zones are fallback zones, in decreasing
|
|
* priority.
|
|
*
|
|
* If zlcache_ptr is not NULL, then it is just the address of zlcache,
|
|
* as explained above. If zlcache_ptr is NULL, there is no zlcache.
|
|
*/
|
|
|
|
struct zonelist {
|
|
struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
|
|
struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
|
|
#ifdef CONFIG_NUMA
|
|
struct zonelist_cache zlcache; // optional ...
|
|
#endif
|
|
};
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/*
|
|
* Only custom zonelists like MPOL_BIND need to be filtered as part of
|
|
* policies. As described in the comment for struct zonelist_cache, these
|
|
* zonelists will not have a zlcache so zlcache_ptr will not be set. Use
|
|
* that to determine if the zonelists needs to be filtered or not.
|
|
*/
|
|
static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
|
|
{
|
|
return !zonelist->zlcache_ptr;
|
|
}
|
|
#else
|
|
static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_NUMA */
|
|
|
|
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
|
|
struct node_active_region {
|
|
unsigned long start_pfn;
|
|
unsigned long end_pfn;
|
|
int nid;
|
|
};
|
|
#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
|
|
|
|
#ifndef CONFIG_DISCONTIGMEM
|
|
/* The array of struct pages - for discontigmem use pgdat->lmem_map */
|
|
extern struct page *mem_map;
|
|
#endif
|
|
|
|
/*
|
|
* The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
|
|
* (mostly NUMA machines?) to denote a higher-level memory zone than the
|
|
* zone denotes.
|
|
*
|
|
* On NUMA machines, each NUMA node would have a pg_data_t to describe
|
|
* it's memory layout.
|
|
*
|
|
* Memory statistics and page replacement data structures are maintained on a
|
|
* per-zone basis.
|
|
*/
|
|
struct bootmem_data;
|
|
typedef struct pglist_data {
|
|
struct zone node_zones[MAX_NR_ZONES];
|
|
struct zonelist node_zonelists[MAX_ZONELISTS];
|
|
int nr_zones;
|
|
#ifdef CONFIG_FLAT_NODE_MEM_MAP
|
|
struct page *node_mem_map;
|
|
#endif
|
|
struct bootmem_data *bdata;
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
/*
|
|
* Must be held any time you expect node_start_pfn, node_present_pages
|
|
* or node_spanned_pages stay constant. Holding this will also
|
|
* guarantee that any pfn_valid() stays that way.
|
|
*
|
|
* Nests above zone->lock and zone->size_seqlock.
|
|
*/
|
|
spinlock_t node_size_lock;
|
|
#endif
|
|
unsigned long node_start_pfn;
|
|
unsigned long node_present_pages; /* total number of physical pages */
|
|
unsigned long node_spanned_pages; /* total size of physical page
|
|
range, including holes */
|
|
int node_id;
|
|
wait_queue_head_t kswapd_wait;
|
|
struct task_struct *kswapd;
|
|
int kswapd_max_order;
|
|
} pg_data_t;
|
|
|
|
#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
|
|
#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
|
|
#ifdef CONFIG_FLAT_NODE_MEM_MAP
|
|
#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
|
|
#else
|
|
#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
|
|
#endif
|
|
#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
|
|
|
|
#include <linux/memory_hotplug.h>
|
|
|
|
void get_zone_counts(unsigned long *active, unsigned long *inactive,
|
|
unsigned long *free);
|
|
void build_all_zonelists(void);
|
|
void wakeup_kswapd(struct zone *zone, int order);
|
|
int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
|
|
int classzone_idx, int alloc_flags);
|
|
enum memmap_context {
|
|
MEMMAP_EARLY,
|
|
MEMMAP_HOTPLUG,
|
|
};
|
|
extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
|
|
unsigned long size,
|
|
enum memmap_context context);
|
|
|
|
#ifdef CONFIG_HAVE_MEMORY_PRESENT
|
|
void memory_present(int nid, unsigned long start, unsigned long end);
|
|
#else
|
|
static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
|
|
#endif
|
|
|
|
#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
|
|
unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
|
|
#endif
|
|
|
|
/*
|
|
* zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
|
|
*/
|
|
#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
|
|
|
|
static inline int populated_zone(struct zone *zone)
|
|
{
|
|
return (!!zone->present_pages);
|
|
}
|
|
|
|
extern int movable_zone;
|
|
|
|
static inline int zone_movable_is_highmem(void)
|
|
{
|
|
#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
|
|
return movable_zone == ZONE_HIGHMEM;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static inline int is_highmem_idx(enum zone_type idx)
|
|
{
|
|
#ifdef CONFIG_HIGHMEM
|
|
return (idx == ZONE_HIGHMEM ||
|
|
(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static inline int is_normal_idx(enum zone_type idx)
|
|
{
|
|
return (idx == ZONE_NORMAL);
|
|
}
|
|
|
|
/**
|
|
* is_highmem - helper function to quickly check if a struct zone is a
|
|
* highmem zone or not. This is an attempt to keep references
|
|
* to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
|
|
* @zone - pointer to struct zone variable
|
|
*/
|
|
static inline int is_highmem(struct zone *zone)
|
|
{
|
|
#ifdef CONFIG_HIGHMEM
|
|
int zone_idx = zone - zone->zone_pgdat->node_zones;
|
|
return zone_idx == ZONE_HIGHMEM ||
|
|
(zone_idx == ZONE_MOVABLE && zone_movable_is_highmem());
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static inline int is_normal(struct zone *zone)
|
|
{
|
|
return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
|
|
}
|
|
|
|
static inline int is_dma32(struct zone *zone)
|
|
{
|
|
#ifdef CONFIG_ZONE_DMA32
|
|
return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static inline int is_dma(struct zone *zone)
|
|
{
|
|
#ifdef CONFIG_ZONE_DMA
|
|
return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/* These two functions are used to setup the per zone pages min values */
|
|
struct ctl_table;
|
|
struct file;
|
|
int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
|
|
void __user *, size_t *, loff_t *);
|
|
extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
|
|
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
|
|
void __user *, size_t *, loff_t *);
|
|
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
|
|
void __user *, size_t *, loff_t *);
|
|
int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
|
|
struct file *, void __user *, size_t *, loff_t *);
|
|
int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
|
|
struct file *, void __user *, size_t *, loff_t *);
|
|
|
|
extern int numa_zonelist_order_handler(struct ctl_table *, int,
|
|
struct file *, void __user *, size_t *, loff_t *);
|
|
extern char numa_zonelist_order[];
|
|
#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
|
|
|
|
#include <linux/topology.h>
|
|
/* Returns the number of the current Node. */
|
|
#ifndef numa_node_id
|
|
#define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
|
|
#endif
|
|
|
|
#ifndef CONFIG_NEED_MULTIPLE_NODES
|
|
|
|
extern struct pglist_data contig_page_data;
|
|
#define NODE_DATA(nid) (&contig_page_data)
|
|
#define NODE_MEM_MAP(nid) mem_map
|
|
#define MAX_NODES_SHIFT 1
|
|
|
|
#else /* CONFIG_NEED_MULTIPLE_NODES */
|
|
|
|
#include <asm/mmzone.h>
|
|
|
|
#endif /* !CONFIG_NEED_MULTIPLE_NODES */
|
|
|
|
extern struct pglist_data *first_online_pgdat(void);
|
|
extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
|
|
extern struct zone *next_zone(struct zone *zone);
|
|
|
|
/**
|
|
* for_each_pgdat - helper macro to iterate over all nodes
|
|
* @pgdat - pointer to a pg_data_t variable
|
|
*/
|
|
#define for_each_online_pgdat(pgdat) \
|
|
for (pgdat = first_online_pgdat(); \
|
|
pgdat; \
|
|
pgdat = next_online_pgdat(pgdat))
|
|
/**
|
|
* for_each_zone - helper macro to iterate over all memory zones
|
|
* @zone - pointer to struct zone variable
|
|
*
|
|
* The user only needs to declare the zone variable, for_each_zone
|
|
* fills it in.
|
|
*/
|
|
#define for_each_zone(zone) \
|
|
for (zone = (first_online_pgdat())->node_zones; \
|
|
zone; \
|
|
zone = next_zone(zone))
|
|
|
|
#ifdef CONFIG_SPARSEMEM
|
|
#include <asm/sparsemem.h>
|
|
#endif
|
|
|
|
#if BITS_PER_LONG == 32
|
|
/*
|
|
* with 32 bit page->flags field, we reserve 9 bits for node/zone info.
|
|
* there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
|
|
*/
|
|
#define FLAGS_RESERVED 9
|
|
|
|
#elif BITS_PER_LONG == 64
|
|
/*
|
|
* with 64 bit flags field, there's plenty of room.
|
|
*/
|
|
#define FLAGS_RESERVED 32
|
|
|
|
#else
|
|
|
|
#error BITS_PER_LONG not defined
|
|
|
|
#endif
|
|
|
|
#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
|
|
!defined(CONFIG_ARCH_POPULATES_NODE_MAP)
|
|
#define early_pfn_to_nid(nid) (0UL)
|
|
#endif
|
|
|
|
#ifdef CONFIG_FLATMEM
|
|
#define pfn_to_nid(pfn) (0)
|
|
#endif
|
|
|
|
#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
|
|
#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
|
|
|
|
#ifdef CONFIG_SPARSEMEM
|
|
|
|
/*
|
|
* SECTION_SHIFT #bits space required to store a section #
|
|
*
|
|
* PA_SECTION_SHIFT physical address to/from section number
|
|
* PFN_SECTION_SHIFT pfn to/from section number
|
|
*/
|
|
#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
|
|
|
|
#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
|
|
#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
|
|
|
|
#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
|
|
|
|
#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
|
|
#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
|
|
|
|
#define SECTION_BLOCKFLAGS_BITS \
|
|
((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
|
|
|
|
#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
|
|
#error Allocator MAX_ORDER exceeds SECTION_SIZE
|
|
#endif
|
|
|
|
struct page;
|
|
struct mem_section {
|
|
/*
|
|
* This is, logically, a pointer to an array of struct
|
|
* pages. However, it is stored with some other magic.
|
|
* (see sparse.c::sparse_init_one_section())
|
|
*
|
|
* Additionally during early boot we encode node id of
|
|
* the location of the section here to guide allocation.
|
|
* (see sparse.c::memory_present())
|
|
*
|
|
* Making it a UL at least makes someone do a cast
|
|
* before using it wrong.
|
|
*/
|
|
unsigned long section_mem_map;
|
|
|
|
/* See declaration of similar field in struct zone */
|
|
unsigned long *pageblock_flags;
|
|
};
|
|
|
|
#ifdef CONFIG_SPARSEMEM_EXTREME
|
|
#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
|
|
#else
|
|
#define SECTIONS_PER_ROOT 1
|
|
#endif
|
|
|
|
#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
|
|
#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
|
|
#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
|
|
|
|
#ifdef CONFIG_SPARSEMEM_EXTREME
|
|
extern struct mem_section *mem_section[NR_SECTION_ROOTS];
|
|
#else
|
|
extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
|
|
#endif
|
|
|
|
static inline struct mem_section *__nr_to_section(unsigned long nr)
|
|
{
|
|
if (!mem_section[SECTION_NR_TO_ROOT(nr)])
|
|
return NULL;
|
|
return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
|
|
}
|
|
extern int __section_nr(struct mem_section* ms);
|
|
|
|
/*
|
|
* We use the lower bits of the mem_map pointer to store
|
|
* a little bit of information. There should be at least
|
|
* 3 bits here due to 32-bit alignment.
|
|
*/
|
|
#define SECTION_MARKED_PRESENT (1UL<<0)
|
|
#define SECTION_HAS_MEM_MAP (1UL<<1)
|
|
#define SECTION_MAP_LAST_BIT (1UL<<2)
|
|
#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
|
|
#define SECTION_NID_SHIFT 2
|
|
|
|
static inline struct page *__section_mem_map_addr(struct mem_section *section)
|
|
{
|
|
unsigned long map = section->section_mem_map;
|
|
map &= SECTION_MAP_MASK;
|
|
return (struct page *)map;
|
|
}
|
|
|
|
static inline int present_section(struct mem_section *section)
|
|
{
|
|
return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
|
|
}
|
|
|
|
static inline int present_section_nr(unsigned long nr)
|
|
{
|
|
return present_section(__nr_to_section(nr));
|
|
}
|
|
|
|
static inline int valid_section(struct mem_section *section)
|
|
{
|
|
return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
|
|
}
|
|
|
|
static inline int valid_section_nr(unsigned long nr)
|
|
{
|
|
return valid_section(__nr_to_section(nr));
|
|
}
|
|
|
|
static inline struct mem_section *__pfn_to_section(unsigned long pfn)
|
|
{
|
|
return __nr_to_section(pfn_to_section_nr(pfn));
|
|
}
|
|
|
|
static inline int pfn_valid(unsigned long pfn)
|
|
{
|
|
if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
|
|
return 0;
|
|
return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
|
|
}
|
|
|
|
static inline int pfn_present(unsigned long pfn)
|
|
{
|
|
if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
|
|
return 0;
|
|
return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
|
|
}
|
|
|
|
/*
|
|
* These are _only_ used during initialisation, therefore they
|
|
* can use __initdata ... They could have names to indicate
|
|
* this restriction.
|
|
*/
|
|
#ifdef CONFIG_NUMA
|
|
#define pfn_to_nid(pfn) \
|
|
({ \
|
|
unsigned long __pfn_to_nid_pfn = (pfn); \
|
|
page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
|
|
})
|
|
#else
|
|
#define pfn_to_nid(pfn) (0)
|
|
#endif
|
|
|
|
#define early_pfn_valid(pfn) pfn_valid(pfn)
|
|
void sparse_init(void);
|
|
#else
|
|
#define sparse_init() do {} while (0)
|
|
#define sparse_index_init(_sec, _nid) do {} while (0)
|
|
#endif /* CONFIG_SPARSEMEM */
|
|
|
|
#ifdef CONFIG_NODES_SPAN_OTHER_NODES
|
|
#define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
|
|
#else
|
|
#define early_pfn_in_nid(pfn, nid) (1)
|
|
#endif
|
|
|
|
#ifndef early_pfn_valid
|
|
#define early_pfn_valid(pfn) (1)
|
|
#endif
|
|
|
|
void memory_present(int nid, unsigned long start, unsigned long end);
|
|
unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
|
|
|
|
/*
|
|
* If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
|
|
* need to check pfn validility within that MAX_ORDER_NR_PAGES block.
|
|
* pfn_valid_within() should be used in this case; we optimise this away
|
|
* when we have no holes within a MAX_ORDER_NR_PAGES block.
|
|
*/
|
|
#ifdef CONFIG_HOLES_IN_ZONE
|
|
#define pfn_valid_within(pfn) pfn_valid(pfn)
|
|
#else
|
|
#define pfn_valid_within(pfn) (1)
|
|
#endif
|
|
|
|
#endif /* !__ASSEMBLY__ */
|
|
#endif /* __KERNEL__ */
|
|
#endif /* _LINUX_MMZONE_H */
|