forked from luck/tmp_suning_uos_patched
a6371f8023
During resume, tick_resume_broadcast() programs the broadcast timer in oneshot mode unconditionally. On the platforms where broadcast timer is not really required, this will generate spurious broadcast timer ticks upon resume. For example, on the always running apic timer platforms with HPET, I see spurious hpet tick once every ~5minutes (which is the 32-bit hpet counter wraparound time). Similar to boot time, during resume make the oneshot mode setting of the broadcast clock event device conditional on the state of active broadcast users. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com> Tested-by: svenjoac@gmx.de Cc: torvalds@linux-foundation.org Cc: rjw@sisk.pl Link: http://lkml.kernel.org/r/1334802459.28674.209.camel@sbsiddha-desk.sc.intel.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
630 lines
16 KiB
C
630 lines
16 KiB
C
/*
|
|
* linux/kernel/time/tick-broadcast.c
|
|
*
|
|
* This file contains functions which emulate a local clock-event
|
|
* device via a broadcast event source.
|
|
*
|
|
* Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
|
|
* Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
|
|
* Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
|
|
*
|
|
* This code is licenced under the GPL version 2. For details see
|
|
* kernel-base/COPYING.
|
|
*/
|
|
#include <linux/cpu.h>
|
|
#include <linux/err.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/sched.h>
|
|
|
|
#include "tick-internal.h"
|
|
|
|
/*
|
|
* Broadcast support for broken x86 hardware, where the local apic
|
|
* timer stops in C3 state.
|
|
*/
|
|
|
|
static struct tick_device tick_broadcast_device;
|
|
/* FIXME: Use cpumask_var_t. */
|
|
static DECLARE_BITMAP(tick_broadcast_mask, NR_CPUS);
|
|
static DECLARE_BITMAP(tmpmask, NR_CPUS);
|
|
static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
|
|
static int tick_broadcast_force;
|
|
|
|
#ifdef CONFIG_TICK_ONESHOT
|
|
static void tick_broadcast_clear_oneshot(int cpu);
|
|
#else
|
|
static inline void tick_broadcast_clear_oneshot(int cpu) { }
|
|
#endif
|
|
|
|
/*
|
|
* Debugging: see timer_list.c
|
|
*/
|
|
struct tick_device *tick_get_broadcast_device(void)
|
|
{
|
|
return &tick_broadcast_device;
|
|
}
|
|
|
|
struct cpumask *tick_get_broadcast_mask(void)
|
|
{
|
|
return to_cpumask(tick_broadcast_mask);
|
|
}
|
|
|
|
/*
|
|
* Start the device in periodic mode
|
|
*/
|
|
static void tick_broadcast_start_periodic(struct clock_event_device *bc)
|
|
{
|
|
if (bc)
|
|
tick_setup_periodic(bc, 1);
|
|
}
|
|
|
|
/*
|
|
* Check, if the device can be utilized as broadcast device:
|
|
*/
|
|
int tick_check_broadcast_device(struct clock_event_device *dev)
|
|
{
|
|
if ((tick_broadcast_device.evtdev &&
|
|
tick_broadcast_device.evtdev->rating >= dev->rating) ||
|
|
(dev->features & CLOCK_EVT_FEAT_C3STOP))
|
|
return 0;
|
|
|
|
clockevents_exchange_device(tick_broadcast_device.evtdev, dev);
|
|
tick_broadcast_device.evtdev = dev;
|
|
if (!cpumask_empty(tick_get_broadcast_mask()))
|
|
tick_broadcast_start_periodic(dev);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Check, if the device is the broadcast device
|
|
*/
|
|
int tick_is_broadcast_device(struct clock_event_device *dev)
|
|
{
|
|
return (dev && tick_broadcast_device.evtdev == dev);
|
|
}
|
|
|
|
/*
|
|
* Check, if the device is disfunctional and a place holder, which
|
|
* needs to be handled by the broadcast device.
|
|
*/
|
|
int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
|
|
{
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
|
|
|
|
/*
|
|
* Devices might be registered with both periodic and oneshot
|
|
* mode disabled. This signals, that the device needs to be
|
|
* operated from the broadcast device and is a placeholder for
|
|
* the cpu local device.
|
|
*/
|
|
if (!tick_device_is_functional(dev)) {
|
|
dev->event_handler = tick_handle_periodic;
|
|
cpumask_set_cpu(cpu, tick_get_broadcast_mask());
|
|
tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
|
|
ret = 1;
|
|
} else {
|
|
/*
|
|
* When the new device is not affected by the stop
|
|
* feature and the cpu is marked in the broadcast mask
|
|
* then clear the broadcast bit.
|
|
*/
|
|
if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
|
|
int cpu = smp_processor_id();
|
|
|
|
cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
|
|
tick_broadcast_clear_oneshot(cpu);
|
|
}
|
|
}
|
|
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Broadcast the event to the cpus, which are set in the mask (mangled).
|
|
*/
|
|
static void tick_do_broadcast(struct cpumask *mask)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
struct tick_device *td;
|
|
|
|
/*
|
|
* Check, if the current cpu is in the mask
|
|
*/
|
|
if (cpumask_test_cpu(cpu, mask)) {
|
|
cpumask_clear_cpu(cpu, mask);
|
|
td = &per_cpu(tick_cpu_device, cpu);
|
|
td->evtdev->event_handler(td->evtdev);
|
|
}
|
|
|
|
if (!cpumask_empty(mask)) {
|
|
/*
|
|
* It might be necessary to actually check whether the devices
|
|
* have different broadcast functions. For now, just use the
|
|
* one of the first device. This works as long as we have this
|
|
* misfeature only on x86 (lapic)
|
|
*/
|
|
td = &per_cpu(tick_cpu_device, cpumask_first(mask));
|
|
td->evtdev->broadcast(mask);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Periodic broadcast:
|
|
* - invoke the broadcast handlers
|
|
*/
|
|
static void tick_do_periodic_broadcast(void)
|
|
{
|
|
raw_spin_lock(&tick_broadcast_lock);
|
|
|
|
cpumask_and(to_cpumask(tmpmask),
|
|
cpu_online_mask, tick_get_broadcast_mask());
|
|
tick_do_broadcast(to_cpumask(tmpmask));
|
|
|
|
raw_spin_unlock(&tick_broadcast_lock);
|
|
}
|
|
|
|
/*
|
|
* Event handler for periodic broadcast ticks
|
|
*/
|
|
static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
|
|
{
|
|
ktime_t next;
|
|
|
|
tick_do_periodic_broadcast();
|
|
|
|
/*
|
|
* The device is in periodic mode. No reprogramming necessary:
|
|
*/
|
|
if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
|
|
return;
|
|
|
|
/*
|
|
* Setup the next period for devices, which do not have
|
|
* periodic mode. We read dev->next_event first and add to it
|
|
* when the event already expired. clockevents_program_event()
|
|
* sets dev->next_event only when the event is really
|
|
* programmed to the device.
|
|
*/
|
|
for (next = dev->next_event; ;) {
|
|
next = ktime_add(next, tick_period);
|
|
|
|
if (!clockevents_program_event(dev, next, false))
|
|
return;
|
|
tick_do_periodic_broadcast();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Powerstate information: The system enters/leaves a state, where
|
|
* affected devices might stop
|
|
*/
|
|
static void tick_do_broadcast_on_off(unsigned long *reason)
|
|
{
|
|
struct clock_event_device *bc, *dev;
|
|
struct tick_device *td;
|
|
unsigned long flags;
|
|
int cpu, bc_stopped;
|
|
|
|
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
|
|
|
|
cpu = smp_processor_id();
|
|
td = &per_cpu(tick_cpu_device, cpu);
|
|
dev = td->evtdev;
|
|
bc = tick_broadcast_device.evtdev;
|
|
|
|
/*
|
|
* Is the device not affected by the powerstate ?
|
|
*/
|
|
if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
|
|
goto out;
|
|
|
|
if (!tick_device_is_functional(dev))
|
|
goto out;
|
|
|
|
bc_stopped = cpumask_empty(tick_get_broadcast_mask());
|
|
|
|
switch (*reason) {
|
|
case CLOCK_EVT_NOTIFY_BROADCAST_ON:
|
|
case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
|
|
if (!cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
|
|
cpumask_set_cpu(cpu, tick_get_broadcast_mask());
|
|
if (tick_broadcast_device.mode ==
|
|
TICKDEV_MODE_PERIODIC)
|
|
clockevents_shutdown(dev);
|
|
}
|
|
if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
|
|
tick_broadcast_force = 1;
|
|
break;
|
|
case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
|
|
if (!tick_broadcast_force &&
|
|
cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
|
|
cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
|
|
if (tick_broadcast_device.mode ==
|
|
TICKDEV_MODE_PERIODIC)
|
|
tick_setup_periodic(dev, 0);
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (cpumask_empty(tick_get_broadcast_mask())) {
|
|
if (!bc_stopped)
|
|
clockevents_shutdown(bc);
|
|
} else if (bc_stopped) {
|
|
if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
|
|
tick_broadcast_start_periodic(bc);
|
|
else
|
|
tick_broadcast_setup_oneshot(bc);
|
|
}
|
|
out:
|
|
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Powerstate information: The system enters/leaves a state, where
|
|
* affected devices might stop.
|
|
*/
|
|
void tick_broadcast_on_off(unsigned long reason, int *oncpu)
|
|
{
|
|
if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
|
|
printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
|
|
"offline CPU #%d\n", *oncpu);
|
|
else
|
|
tick_do_broadcast_on_off(&reason);
|
|
}
|
|
|
|
/*
|
|
* Set the periodic handler depending on broadcast on/off
|
|
*/
|
|
void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
|
|
{
|
|
if (!broadcast)
|
|
dev->event_handler = tick_handle_periodic;
|
|
else
|
|
dev->event_handler = tick_handle_periodic_broadcast;
|
|
}
|
|
|
|
/*
|
|
* Remove a CPU from broadcasting
|
|
*/
|
|
void tick_shutdown_broadcast(unsigned int *cpup)
|
|
{
|
|
struct clock_event_device *bc;
|
|
unsigned long flags;
|
|
unsigned int cpu = *cpup;
|
|
|
|
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
|
|
|
|
bc = tick_broadcast_device.evtdev;
|
|
cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
|
|
|
|
if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
|
|
if (bc && cpumask_empty(tick_get_broadcast_mask()))
|
|
clockevents_shutdown(bc);
|
|
}
|
|
|
|
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
|
|
}
|
|
|
|
void tick_suspend_broadcast(void)
|
|
{
|
|
struct clock_event_device *bc;
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
|
|
|
|
bc = tick_broadcast_device.evtdev;
|
|
if (bc)
|
|
clockevents_shutdown(bc);
|
|
|
|
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
|
|
}
|
|
|
|
int tick_resume_broadcast(void)
|
|
{
|
|
struct clock_event_device *bc;
|
|
unsigned long flags;
|
|
int broadcast = 0;
|
|
|
|
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
|
|
|
|
bc = tick_broadcast_device.evtdev;
|
|
|
|
if (bc) {
|
|
clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
|
|
|
|
switch (tick_broadcast_device.mode) {
|
|
case TICKDEV_MODE_PERIODIC:
|
|
if (!cpumask_empty(tick_get_broadcast_mask()))
|
|
tick_broadcast_start_periodic(bc);
|
|
broadcast = cpumask_test_cpu(smp_processor_id(),
|
|
tick_get_broadcast_mask());
|
|
break;
|
|
case TICKDEV_MODE_ONESHOT:
|
|
if (!cpumask_empty(tick_get_broadcast_mask()))
|
|
broadcast = tick_resume_broadcast_oneshot(bc);
|
|
break;
|
|
}
|
|
}
|
|
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
|
|
|
|
return broadcast;
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_TICK_ONESHOT
|
|
|
|
/* FIXME: use cpumask_var_t. */
|
|
static DECLARE_BITMAP(tick_broadcast_oneshot_mask, NR_CPUS);
|
|
|
|
/*
|
|
* Exposed for debugging: see timer_list.c
|
|
*/
|
|
struct cpumask *tick_get_broadcast_oneshot_mask(void)
|
|
{
|
|
return to_cpumask(tick_broadcast_oneshot_mask);
|
|
}
|
|
|
|
static int tick_broadcast_set_event(ktime_t expires, int force)
|
|
{
|
|
struct clock_event_device *bc = tick_broadcast_device.evtdev;
|
|
|
|
if (bc->mode != CLOCK_EVT_MODE_ONESHOT)
|
|
clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
|
|
|
|
return clockevents_program_event(bc, expires, force);
|
|
}
|
|
|
|
int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
|
|
{
|
|
clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Called from irq_enter() when idle was interrupted to reenable the
|
|
* per cpu device.
|
|
*/
|
|
void tick_check_oneshot_broadcast(int cpu)
|
|
{
|
|
if (cpumask_test_cpu(cpu, to_cpumask(tick_broadcast_oneshot_mask))) {
|
|
struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
|
|
|
|
clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle oneshot mode broadcasting
|
|
*/
|
|
static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
|
|
{
|
|
struct tick_device *td;
|
|
ktime_t now, next_event;
|
|
int cpu;
|
|
|
|
raw_spin_lock(&tick_broadcast_lock);
|
|
again:
|
|
dev->next_event.tv64 = KTIME_MAX;
|
|
next_event.tv64 = KTIME_MAX;
|
|
cpumask_clear(to_cpumask(tmpmask));
|
|
now = ktime_get();
|
|
/* Find all expired events */
|
|
for_each_cpu(cpu, tick_get_broadcast_oneshot_mask()) {
|
|
td = &per_cpu(tick_cpu_device, cpu);
|
|
if (td->evtdev->next_event.tv64 <= now.tv64)
|
|
cpumask_set_cpu(cpu, to_cpumask(tmpmask));
|
|
else if (td->evtdev->next_event.tv64 < next_event.tv64)
|
|
next_event.tv64 = td->evtdev->next_event.tv64;
|
|
}
|
|
|
|
/*
|
|
* Wakeup the cpus which have an expired event.
|
|
*/
|
|
tick_do_broadcast(to_cpumask(tmpmask));
|
|
|
|
/*
|
|
* Two reasons for reprogram:
|
|
*
|
|
* - The global event did not expire any CPU local
|
|
* events. This happens in dyntick mode, as the maximum PIT
|
|
* delta is quite small.
|
|
*
|
|
* - There are pending events on sleeping CPUs which were not
|
|
* in the event mask
|
|
*/
|
|
if (next_event.tv64 != KTIME_MAX) {
|
|
/*
|
|
* Rearm the broadcast device. If event expired,
|
|
* repeat the above
|
|
*/
|
|
if (tick_broadcast_set_event(next_event, 0))
|
|
goto again;
|
|
}
|
|
raw_spin_unlock(&tick_broadcast_lock);
|
|
}
|
|
|
|
/*
|
|
* Powerstate information: The system enters/leaves a state, where
|
|
* affected devices might stop
|
|
*/
|
|
void tick_broadcast_oneshot_control(unsigned long reason)
|
|
{
|
|
struct clock_event_device *bc, *dev;
|
|
struct tick_device *td;
|
|
unsigned long flags;
|
|
int cpu;
|
|
|
|
/*
|
|
* Periodic mode does not care about the enter/exit of power
|
|
* states
|
|
*/
|
|
if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
|
|
return;
|
|
|
|
/*
|
|
* We are called with preemtion disabled from the depth of the
|
|
* idle code, so we can't be moved away.
|
|
*/
|
|
cpu = smp_processor_id();
|
|
td = &per_cpu(tick_cpu_device, cpu);
|
|
dev = td->evtdev;
|
|
|
|
if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
|
|
return;
|
|
|
|
bc = tick_broadcast_device.evtdev;
|
|
|
|
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
|
|
if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
|
|
if (!cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
|
|
cpumask_set_cpu(cpu, tick_get_broadcast_oneshot_mask());
|
|
clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
|
|
if (dev->next_event.tv64 < bc->next_event.tv64)
|
|
tick_broadcast_set_event(dev->next_event, 1);
|
|
}
|
|
} else {
|
|
if (cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
|
|
cpumask_clear_cpu(cpu,
|
|
tick_get_broadcast_oneshot_mask());
|
|
clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
|
|
if (dev->next_event.tv64 != KTIME_MAX)
|
|
tick_program_event(dev->next_event, 1);
|
|
}
|
|
}
|
|
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Reset the one shot broadcast for a cpu
|
|
*
|
|
* Called with tick_broadcast_lock held
|
|
*/
|
|
static void tick_broadcast_clear_oneshot(int cpu)
|
|
{
|
|
cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
|
|
}
|
|
|
|
static void tick_broadcast_init_next_event(struct cpumask *mask,
|
|
ktime_t expires)
|
|
{
|
|
struct tick_device *td;
|
|
int cpu;
|
|
|
|
for_each_cpu(cpu, mask) {
|
|
td = &per_cpu(tick_cpu_device, cpu);
|
|
if (td->evtdev)
|
|
td->evtdev->next_event = expires;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* tick_broadcast_setup_oneshot - setup the broadcast device
|
|
*/
|
|
void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
|
|
/* Set it up only once ! */
|
|
if (bc->event_handler != tick_handle_oneshot_broadcast) {
|
|
int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
|
|
|
|
bc->event_handler = tick_handle_oneshot_broadcast;
|
|
|
|
/* Take the do_timer update */
|
|
tick_do_timer_cpu = cpu;
|
|
|
|
/*
|
|
* We must be careful here. There might be other CPUs
|
|
* waiting for periodic broadcast. We need to set the
|
|
* oneshot_mask bits for those and program the
|
|
* broadcast device to fire.
|
|
*/
|
|
cpumask_copy(to_cpumask(tmpmask), tick_get_broadcast_mask());
|
|
cpumask_clear_cpu(cpu, to_cpumask(tmpmask));
|
|
cpumask_or(tick_get_broadcast_oneshot_mask(),
|
|
tick_get_broadcast_oneshot_mask(),
|
|
to_cpumask(tmpmask));
|
|
|
|
if (was_periodic && !cpumask_empty(to_cpumask(tmpmask))) {
|
|
clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
|
|
tick_broadcast_init_next_event(to_cpumask(tmpmask),
|
|
tick_next_period);
|
|
tick_broadcast_set_event(tick_next_period, 1);
|
|
} else
|
|
bc->next_event.tv64 = KTIME_MAX;
|
|
} else {
|
|
/*
|
|
* The first cpu which switches to oneshot mode sets
|
|
* the bit for all other cpus which are in the general
|
|
* (periodic) broadcast mask. So the bit is set and
|
|
* would prevent the first broadcast enter after this
|
|
* to program the bc device.
|
|
*/
|
|
tick_broadcast_clear_oneshot(cpu);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Select oneshot operating mode for the broadcast device
|
|
*/
|
|
void tick_broadcast_switch_to_oneshot(void)
|
|
{
|
|
struct clock_event_device *bc;
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
|
|
|
|
tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
|
|
bc = tick_broadcast_device.evtdev;
|
|
if (bc)
|
|
tick_broadcast_setup_oneshot(bc);
|
|
|
|
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
|
|
}
|
|
|
|
|
|
/*
|
|
* Remove a dead CPU from broadcasting
|
|
*/
|
|
void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
|
|
{
|
|
unsigned long flags;
|
|
unsigned int cpu = *cpup;
|
|
|
|
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
|
|
|
|
/*
|
|
* Clear the broadcast mask flag for the dead cpu, but do not
|
|
* stop the broadcast device!
|
|
*/
|
|
cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
|
|
|
|
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Check, whether the broadcast device is in one shot mode
|
|
*/
|
|
int tick_broadcast_oneshot_active(void)
|
|
{
|
|
return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
|
|
}
|
|
|
|
/*
|
|
* Check whether the broadcast device supports oneshot.
|
|
*/
|
|
bool tick_broadcast_oneshot_available(void)
|
|
{
|
|
struct clock_event_device *bc = tick_broadcast_device.evtdev;
|
|
|
|
return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
|
|
}
|
|
|
|
#endif
|