kernel_optimize_test/kernel/time/time.c
Linus Torvalds 80f232121b Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
Pull networking updates from David Miller:
 "Highlights:

   1) Support AES128-CCM ciphers in kTLS, from Vakul Garg.

   2) Add fib_sync_mem to control the amount of dirty memory we allow to
      queue up between synchronize RCU calls, from David Ahern.

   3) Make flow classifier more lockless, from Vlad Buslov.

   4) Add PHY downshift support to aquantia driver, from Heiner
      Kallweit.

   5) Add SKB cache for TCP rx and tx, from Eric Dumazet. This reduces
      contention on SLAB spinlocks in heavy RPC workloads.

   6) Partial GSO offload support in XFRM, from Boris Pismenny.

   7) Add fast link down support to ethtool, from Heiner Kallweit.

   8) Use siphash for IP ID generator, from Eric Dumazet.

   9) Pull nexthops even further out from ipv4/ipv6 routes and FIB
      entries, from David Ahern.

  10) Move skb->xmit_more into a per-cpu variable, from Florian
      Westphal.

  11) Improve eBPF verifier speed and increase maximum program size,
      from Alexei Starovoitov.

  12) Eliminate per-bucket spinlocks in rhashtable, and instead use bit
      spinlocks. From Neil Brown.

  13) Allow tunneling with GUE encap in ipvs, from Jacky Hu.

  14) Improve link partner cap detection in generic PHY code, from
      Heiner Kallweit.

  15) Add layer 2 encap support to bpf_skb_adjust_room(), from Alan
      Maguire.

  16) Remove SKB list implementation assumptions in SCTP, your's truly.

  17) Various cleanups, optimizations, and simplifications in r8169
      driver. From Heiner Kallweit.

  18) Add memory accounting on TX and RX path of SCTP, from Xin Long.

  19) Switch PHY drivers over to use dynamic featue detection, from
      Heiner Kallweit.

  20) Support flow steering without masking in dpaa2-eth, from Ioana
      Ciocoi.

  21) Implement ndo_get_devlink_port in netdevsim driver, from Jiri
      Pirko.

  22) Increase the strict parsing of current and future netlink
      attributes, also export such policies to userspace. From Johannes
      Berg.

  23) Allow DSA tag drivers to be modular, from Andrew Lunn.

  24) Remove legacy DSA probing support, also from Andrew Lunn.

  25) Allow ll_temac driver to be used on non-x86 platforms, from Esben
      Haabendal.

  26) Add a generic tracepoint for TX queue timeouts to ease debugging,
      from Cong Wang.

  27) More indirect call optimizations, from Paolo Abeni"

* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1763 commits)
  cxgb4: Fix error path in cxgb4_init_module
  net: phy: improve pause mode reporting in phy_print_status
  dt-bindings: net: Fix a typo in the phy-mode list for ethernet bindings
  net: macb: Change interrupt and napi enable order in open
  net: ll_temac: Improve error message on error IRQ
  net/sched: remove block pointer from common offload structure
  net: ethernet: support of_get_mac_address new ERR_PTR error
  net: usb: smsc: fix warning reported by kbuild test robot
  staging: octeon-ethernet: Fix of_get_mac_address ERR_PTR check
  net: dsa: support of_get_mac_address new ERR_PTR error
  net: dsa: sja1105: Fix status initialization in sja1105_get_ethtool_stats
  vrf: sit mtu should not be updated when vrf netdev is the link
  net: dsa: Fix error cleanup path in dsa_init_module
  l2tp: Fix possible NULL pointer dereference
  taprio: add null check on sched_nest to avoid potential null pointer dereference
  net: mvpp2: cls: fix less than zero check on a u32 variable
  net_sched: sch_fq: handle non connected flows
  net_sched: sch_fq: do not assume EDT packets are ordered
  net: hns3: use devm_kcalloc when allocating desc_cb
  net: hns3: some cleanup for struct hns3_enet_ring
  ...
2019-05-07 22:03:58 -07:00

995 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* This file contains the interface functions for the various time related
* system calls: time, stime, gettimeofday, settimeofday, adjtime
*
* Modification history:
*
* 1993-09-02 Philip Gladstone
* Created file with time related functions from sched/core.c and adjtimex()
* 1993-10-08 Torsten Duwe
* adjtime interface update and CMOS clock write code
* 1995-08-13 Torsten Duwe
* kernel PLL updated to 1994-12-13 specs (rfc-1589)
* 1999-01-16 Ulrich Windl
* Introduced error checking for many cases in adjtimex().
* Updated NTP code according to technical memorandum Jan '96
* "A Kernel Model for Precision Timekeeping" by Dave Mills
* Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
* (Even though the technical memorandum forbids it)
* 2004-07-14 Christoph Lameter
* Added getnstimeofday to allow the posix timer functions to return
* with nanosecond accuracy
*/
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/timex.h>
#include <linux/capability.h>
#include <linux/timekeeper_internal.h>
#include <linux/errno.h>
#include <linux/syscalls.h>
#include <linux/security.h>
#include <linux/fs.h>
#include <linux/math64.h>
#include <linux/ptrace.h>
#include <linux/uaccess.h>
#include <linux/compat.h>
#include <asm/unistd.h>
#include <generated/timeconst.h>
#include "timekeeping.h"
/*
* The timezone where the local system is located. Used as a default by some
* programs who obtain this value by using gettimeofday.
*/
struct timezone sys_tz;
EXPORT_SYMBOL(sys_tz);
#ifdef __ARCH_WANT_SYS_TIME
/*
* sys_time() can be implemented in user-level using
* sys_gettimeofday(). Is this for backwards compatibility? If so,
* why not move it into the appropriate arch directory (for those
* architectures that need it).
*/
SYSCALL_DEFINE1(time, time_t __user *, tloc)
{
time_t i = (time_t)ktime_get_real_seconds();
if (tloc) {
if (put_user(i,tloc))
return -EFAULT;
}
force_successful_syscall_return();
return i;
}
/*
* sys_stime() can be implemented in user-level using
* sys_settimeofday(). Is this for backwards compatibility? If so,
* why not move it into the appropriate arch directory (for those
* architectures that need it).
*/
SYSCALL_DEFINE1(stime, time_t __user *, tptr)
{
struct timespec64 tv;
int err;
if (get_user(tv.tv_sec, tptr))
return -EFAULT;
tv.tv_nsec = 0;
err = security_settime64(&tv, NULL);
if (err)
return err;
do_settimeofday64(&tv);
return 0;
}
#endif /* __ARCH_WANT_SYS_TIME */
#ifdef CONFIG_COMPAT_32BIT_TIME
#ifdef __ARCH_WANT_SYS_TIME32
/* old_time32_t is a 32 bit "long" and needs to get converted. */
SYSCALL_DEFINE1(time32, old_time32_t __user *, tloc)
{
old_time32_t i;
i = (old_time32_t)ktime_get_real_seconds();
if (tloc) {
if (put_user(i,tloc))
return -EFAULT;
}
force_successful_syscall_return();
return i;
}
SYSCALL_DEFINE1(stime32, old_time32_t __user *, tptr)
{
struct timespec64 tv;
int err;
if (get_user(tv.tv_sec, tptr))
return -EFAULT;
tv.tv_nsec = 0;
err = security_settime64(&tv, NULL);
if (err)
return err;
do_settimeofday64(&tv);
return 0;
}
#endif /* __ARCH_WANT_SYS_TIME32 */
#endif
SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
struct timezone __user *, tz)
{
if (likely(tv != NULL)) {
struct timespec64 ts;
ktime_get_real_ts64(&ts);
if (put_user(ts.tv_sec, &tv->tv_sec) ||
put_user(ts.tv_nsec / 1000, &tv->tv_usec))
return -EFAULT;
}
if (unlikely(tz != NULL)) {
if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
return -EFAULT;
}
return 0;
}
/*
* In case for some reason the CMOS clock has not already been running
* in UTC, but in some local time: The first time we set the timezone,
* we will warp the clock so that it is ticking UTC time instead of
* local time. Presumably, if someone is setting the timezone then we
* are running in an environment where the programs understand about
* timezones. This should be done at boot time in the /etc/rc script,
* as soon as possible, so that the clock can be set right. Otherwise,
* various programs will get confused when the clock gets warped.
*/
int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
{
static int firsttime = 1;
int error = 0;
if (tv && !timespec64_valid_settod(tv))
return -EINVAL;
error = security_settime64(tv, tz);
if (error)
return error;
if (tz) {
/* Verify we're witin the +-15 hrs range */
if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
return -EINVAL;
sys_tz = *tz;
update_vsyscall_tz();
if (firsttime) {
firsttime = 0;
if (!tv)
timekeeping_warp_clock();
}
}
if (tv)
return do_settimeofday64(tv);
return 0;
}
SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
struct timezone __user *, tz)
{
struct timespec64 new_ts;
struct timeval user_tv;
struct timezone new_tz;
if (tv) {
if (copy_from_user(&user_tv, tv, sizeof(*tv)))
return -EFAULT;
if (!timeval_valid(&user_tv))
return -EINVAL;
new_ts.tv_sec = user_tv.tv_sec;
new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
}
if (tz) {
if (copy_from_user(&new_tz, tz, sizeof(*tz)))
return -EFAULT;
}
return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
}
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv,
struct timezone __user *, tz)
{
if (tv) {
struct timespec64 ts;
ktime_get_real_ts64(&ts);
if (put_user(ts.tv_sec, &tv->tv_sec) ||
put_user(ts.tv_nsec / 1000, &tv->tv_usec))
return -EFAULT;
}
if (tz) {
if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
return -EFAULT;
}
return 0;
}
COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv,
struct timezone __user *, tz)
{
struct timespec64 new_ts;
struct timeval user_tv;
struct timezone new_tz;
if (tv) {
if (compat_get_timeval(&user_tv, tv))
return -EFAULT;
new_ts.tv_sec = user_tv.tv_sec;
new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
}
if (tz) {
if (copy_from_user(&new_tz, tz, sizeof(*tz)))
return -EFAULT;
}
return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
}
#endif
#if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
SYSCALL_DEFINE1(adjtimex, struct __kernel_timex __user *, txc_p)
{
struct __kernel_timex txc; /* Local copy of parameter */
int ret;
/* Copy the user data space into the kernel copy
* structure. But bear in mind that the structures
* may change
*/
if (copy_from_user(&txc, txc_p, sizeof(struct __kernel_timex)))
return -EFAULT;
ret = do_adjtimex(&txc);
return copy_to_user(txc_p, &txc, sizeof(struct __kernel_timex)) ? -EFAULT : ret;
}
#endif
#ifdef CONFIG_COMPAT_32BIT_TIME
int get_old_timex32(struct __kernel_timex *txc, const struct old_timex32 __user *utp)
{
struct old_timex32 tx32;
memset(txc, 0, sizeof(struct __kernel_timex));
if (copy_from_user(&tx32, utp, sizeof(struct old_timex32)))
return -EFAULT;
txc->modes = tx32.modes;
txc->offset = tx32.offset;
txc->freq = tx32.freq;
txc->maxerror = tx32.maxerror;
txc->esterror = tx32.esterror;
txc->status = tx32.status;
txc->constant = tx32.constant;
txc->precision = tx32.precision;
txc->tolerance = tx32.tolerance;
txc->time.tv_sec = tx32.time.tv_sec;
txc->time.tv_usec = tx32.time.tv_usec;
txc->tick = tx32.tick;
txc->ppsfreq = tx32.ppsfreq;
txc->jitter = tx32.jitter;
txc->shift = tx32.shift;
txc->stabil = tx32.stabil;
txc->jitcnt = tx32.jitcnt;
txc->calcnt = tx32.calcnt;
txc->errcnt = tx32.errcnt;
txc->stbcnt = tx32.stbcnt;
return 0;
}
int put_old_timex32(struct old_timex32 __user *utp, const struct __kernel_timex *txc)
{
struct old_timex32 tx32;
memset(&tx32, 0, sizeof(struct old_timex32));
tx32.modes = txc->modes;
tx32.offset = txc->offset;
tx32.freq = txc->freq;
tx32.maxerror = txc->maxerror;
tx32.esterror = txc->esterror;
tx32.status = txc->status;
tx32.constant = txc->constant;
tx32.precision = txc->precision;
tx32.tolerance = txc->tolerance;
tx32.time.tv_sec = txc->time.tv_sec;
tx32.time.tv_usec = txc->time.tv_usec;
tx32.tick = txc->tick;
tx32.ppsfreq = txc->ppsfreq;
tx32.jitter = txc->jitter;
tx32.shift = txc->shift;
tx32.stabil = txc->stabil;
tx32.jitcnt = txc->jitcnt;
tx32.calcnt = txc->calcnt;
tx32.errcnt = txc->errcnt;
tx32.stbcnt = txc->stbcnt;
tx32.tai = txc->tai;
if (copy_to_user(utp, &tx32, sizeof(struct old_timex32)))
return -EFAULT;
return 0;
}
SYSCALL_DEFINE1(adjtimex_time32, struct old_timex32 __user *, utp)
{
struct __kernel_timex txc;
int err, ret;
err = get_old_timex32(&txc, utp);
if (err)
return err;
ret = do_adjtimex(&txc);
err = put_old_timex32(utp, &txc);
if (err)
return err;
return ret;
}
#endif
/*
* Convert jiffies to milliseconds and back.
*
* Avoid unnecessary multiplications/divisions in the
* two most common HZ cases:
*/
unsigned int jiffies_to_msecs(const unsigned long j)
{
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
return (MSEC_PER_SEC / HZ) * j;
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
#else
# if BITS_PER_LONG == 32
return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
HZ_TO_MSEC_SHR32;
# else
return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
# endif
#endif
}
EXPORT_SYMBOL(jiffies_to_msecs);
unsigned int jiffies_to_usecs(const unsigned long j)
{
/*
* Hz usually doesn't go much further MSEC_PER_SEC.
* jiffies_to_usecs() and usecs_to_jiffies() depend on that.
*/
BUILD_BUG_ON(HZ > USEC_PER_SEC);
#if !(USEC_PER_SEC % HZ)
return (USEC_PER_SEC / HZ) * j;
#else
# if BITS_PER_LONG == 32
return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
# else
return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
# endif
#endif
}
EXPORT_SYMBOL(jiffies_to_usecs);
/*
* mktime64 - Converts date to seconds.
* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
* Assumes input in normal date format, i.e. 1980-12-31 23:59:59
* => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
*
* [For the Julian calendar (which was used in Russia before 1917,
* Britain & colonies before 1752, anywhere else before 1582,
* and is still in use by some communities) leave out the
* -year/100+year/400 terms, and add 10.]
*
* This algorithm was first published by Gauss (I think).
*
* A leap second can be indicated by calling this function with sec as
* 60 (allowable under ISO 8601). The leap second is treated the same
* as the following second since they don't exist in UNIX time.
*
* An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
* tomorrow - (allowable under ISO 8601) is supported.
*/
time64_t mktime64(const unsigned int year0, const unsigned int mon0,
const unsigned int day, const unsigned int hour,
const unsigned int min, const unsigned int sec)
{
unsigned int mon = mon0, year = year0;
/* 1..12 -> 11,12,1..10 */
if (0 >= (int) (mon -= 2)) {
mon += 12; /* Puts Feb last since it has leap day */
year -= 1;
}
return ((((time64_t)
(year/4 - year/100 + year/400 + 367*mon/12 + day) +
year*365 - 719499
)*24 + hour /* now have hours - midnight tomorrow handled here */
)*60 + min /* now have minutes */
)*60 + sec; /* finally seconds */
}
EXPORT_SYMBOL(mktime64);
/**
* ns_to_timespec - Convert nanoseconds to timespec
* @nsec: the nanoseconds value to be converted
*
* Returns the timespec representation of the nsec parameter.
*/
struct timespec ns_to_timespec(const s64 nsec)
{
struct timespec ts;
s32 rem;
if (!nsec)
return (struct timespec) {0, 0};
ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
if (unlikely(rem < 0)) {
ts.tv_sec--;
rem += NSEC_PER_SEC;
}
ts.tv_nsec = rem;
return ts;
}
EXPORT_SYMBOL(ns_to_timespec);
/**
* ns_to_timeval - Convert nanoseconds to timeval
* @nsec: the nanoseconds value to be converted
*
* Returns the timeval representation of the nsec parameter.
*/
struct timeval ns_to_timeval(const s64 nsec)
{
struct timespec ts = ns_to_timespec(nsec);
struct timeval tv;
tv.tv_sec = ts.tv_sec;
tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
return tv;
}
EXPORT_SYMBOL(ns_to_timeval);
struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
{
struct timespec64 ts = ns_to_timespec64(nsec);
struct __kernel_old_timeval tv;
tv.tv_sec = ts.tv_sec;
tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
return tv;
}
EXPORT_SYMBOL(ns_to_kernel_old_timeval);
/**
* set_normalized_timespec - set timespec sec and nsec parts and normalize
*
* @ts: pointer to timespec variable to be set
* @sec: seconds to set
* @nsec: nanoseconds to set
*
* Set seconds and nanoseconds field of a timespec variable and
* normalize to the timespec storage format
*
* Note: The tv_nsec part is always in the range of
* 0 <= tv_nsec < NSEC_PER_SEC
* For negative values only the tv_sec field is negative !
*/
void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
{
while (nsec >= NSEC_PER_SEC) {
/*
* The following asm() prevents the compiler from
* optimising this loop into a modulo operation. See
* also __iter_div_u64_rem() in include/linux/time.h
*/
asm("" : "+rm"(nsec));
nsec -= NSEC_PER_SEC;
++sec;
}
while (nsec < 0) {
asm("" : "+rm"(nsec));
nsec += NSEC_PER_SEC;
--sec;
}
ts->tv_sec = sec;
ts->tv_nsec = nsec;
}
EXPORT_SYMBOL(set_normalized_timespec64);
/**
* ns_to_timespec64 - Convert nanoseconds to timespec64
* @nsec: the nanoseconds value to be converted
*
* Returns the timespec64 representation of the nsec parameter.
*/
struct timespec64 ns_to_timespec64(const s64 nsec)
{
struct timespec64 ts;
s32 rem;
if (!nsec)
return (struct timespec64) {0, 0};
ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
if (unlikely(rem < 0)) {
ts.tv_sec--;
rem += NSEC_PER_SEC;
}
ts.tv_nsec = rem;
return ts;
}
EXPORT_SYMBOL(ns_to_timespec64);
/**
* msecs_to_jiffies: - convert milliseconds to jiffies
* @m: time in milliseconds
*
* conversion is done as follows:
*
* - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
*
* - 'too large' values [that would result in larger than
* MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
*
* - all other values are converted to jiffies by either multiplying
* the input value by a factor or dividing it with a factor and
* handling any 32-bit overflows.
* for the details see __msecs_to_jiffies()
*
* msecs_to_jiffies() checks for the passed in value being a constant
* via __builtin_constant_p() allowing gcc to eliminate most of the
* code, __msecs_to_jiffies() is called if the value passed does not
* allow constant folding and the actual conversion must be done at
* runtime.
* the _msecs_to_jiffies helpers are the HZ dependent conversion
* routines found in include/linux/jiffies.h
*/
unsigned long __msecs_to_jiffies(const unsigned int m)
{
/*
* Negative value, means infinite timeout:
*/
if ((int)m < 0)
return MAX_JIFFY_OFFSET;
return _msecs_to_jiffies(m);
}
EXPORT_SYMBOL(__msecs_to_jiffies);
unsigned long __usecs_to_jiffies(const unsigned int u)
{
if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
return MAX_JIFFY_OFFSET;
return _usecs_to_jiffies(u);
}
EXPORT_SYMBOL(__usecs_to_jiffies);
/*
* The TICK_NSEC - 1 rounds up the value to the next resolution. Note
* that a remainder subtract here would not do the right thing as the
* resolution values don't fall on second boundries. I.e. the line:
* nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
* Note that due to the small error in the multiplier here, this
* rounding is incorrect for sufficiently large values of tv_nsec, but
* well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
* OK.
*
* Rather, we just shift the bits off the right.
*
* The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
* value to a scaled second value.
*/
static unsigned long
__timespec64_to_jiffies(u64 sec, long nsec)
{
nsec = nsec + TICK_NSEC - 1;
if (sec >= MAX_SEC_IN_JIFFIES){
sec = MAX_SEC_IN_JIFFIES;
nsec = 0;
}
return ((sec * SEC_CONVERSION) +
(((u64)nsec * NSEC_CONVERSION) >>
(NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
}
static unsigned long
__timespec_to_jiffies(unsigned long sec, long nsec)
{
return __timespec64_to_jiffies((u64)sec, nsec);
}
unsigned long
timespec64_to_jiffies(const struct timespec64 *value)
{
return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
}
EXPORT_SYMBOL(timespec64_to_jiffies);
void
jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
{
/*
* Convert jiffies to nanoseconds and separate with
* one divide.
*/
u32 rem;
value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
NSEC_PER_SEC, &rem);
value->tv_nsec = rem;
}
EXPORT_SYMBOL(jiffies_to_timespec64);
/*
* We could use a similar algorithm to timespec_to_jiffies (with a
* different multiplier for usec instead of nsec). But this has a
* problem with rounding: we can't exactly add TICK_NSEC - 1 to the
* usec value, since it's not necessarily integral.
*
* We could instead round in the intermediate scaled representation
* (i.e. in units of 1/2^(large scale) jiffies) but that's also
* perilous: the scaling introduces a small positive error, which
* combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
* units to the intermediate before shifting) leads to accidental
* overflow and overestimates.
*
* At the cost of one additional multiplication by a constant, just
* use the timespec implementation.
*/
unsigned long
timeval_to_jiffies(const struct timeval *value)
{
return __timespec_to_jiffies(value->tv_sec,
value->tv_usec * NSEC_PER_USEC);
}
EXPORT_SYMBOL(timeval_to_jiffies);
void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
{
/*
* Convert jiffies to nanoseconds and separate with
* one divide.
*/
u32 rem;
value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
NSEC_PER_SEC, &rem);
value->tv_usec = rem / NSEC_PER_USEC;
}
EXPORT_SYMBOL(jiffies_to_timeval);
/*
* Convert jiffies/jiffies_64 to clock_t and back.
*/
clock_t jiffies_to_clock_t(unsigned long x)
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
# if HZ < USER_HZ
return x * (USER_HZ / HZ);
# else
return x / (HZ / USER_HZ);
# endif
#else
return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
#endif
}
EXPORT_SYMBOL(jiffies_to_clock_t);
unsigned long clock_t_to_jiffies(unsigned long x)
{
#if (HZ % USER_HZ)==0
if (x >= ~0UL / (HZ / USER_HZ))
return ~0UL;
return x * (HZ / USER_HZ);
#else
/* Don't worry about loss of precision here .. */
if (x >= ~0UL / HZ * USER_HZ)
return ~0UL;
/* .. but do try to contain it here */
return div_u64((u64)x * HZ, USER_HZ);
#endif
}
EXPORT_SYMBOL(clock_t_to_jiffies);
u64 jiffies_64_to_clock_t(u64 x)
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
# if HZ < USER_HZ
x = div_u64(x * USER_HZ, HZ);
# elif HZ > USER_HZ
x = div_u64(x, HZ / USER_HZ);
# else
/* Nothing to do */
# endif
#else
/*
* There are better ways that don't overflow early,
* but even this doesn't overflow in hundreds of years
* in 64 bits, so..
*/
x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
#endif
return x;
}
EXPORT_SYMBOL(jiffies_64_to_clock_t);
u64 nsec_to_clock_t(u64 x)
{
#if (NSEC_PER_SEC % USER_HZ) == 0
return div_u64(x, NSEC_PER_SEC / USER_HZ);
#elif (USER_HZ % 512) == 0
return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
#else
/*
* max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
* overflow after 64.99 years.
* exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
*/
return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
#endif
}
u64 jiffies64_to_nsecs(u64 j)
{
#if !(NSEC_PER_SEC % HZ)
return (NSEC_PER_SEC / HZ) * j;
# else
return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
#endif
}
EXPORT_SYMBOL(jiffies64_to_nsecs);
u64 jiffies64_to_msecs(const u64 j)
{
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
return (MSEC_PER_SEC / HZ) * j;
#else
return div_u64(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
#endif
}
EXPORT_SYMBOL(jiffies64_to_msecs);
/**
* nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
*
* @n: nsecs in u64
*
* Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
* And this doesn't return MAX_JIFFY_OFFSET since this function is designed
* for scheduler, not for use in device drivers to calculate timeout value.
*
* note:
* NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
* ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
*/
u64 nsecs_to_jiffies64(u64 n)
{
#if (NSEC_PER_SEC % HZ) == 0
/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
return div_u64(n, NSEC_PER_SEC / HZ);
#elif (HZ % 512) == 0
/* overflow after 292 years if HZ = 1024 */
return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
#else
/*
* Generic case - optimized for cases where HZ is a multiple of 3.
* overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
*/
return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
#endif
}
EXPORT_SYMBOL(nsecs_to_jiffies64);
/**
* nsecs_to_jiffies - Convert nsecs in u64 to jiffies
*
* @n: nsecs in u64
*
* Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
* And this doesn't return MAX_JIFFY_OFFSET since this function is designed
* for scheduler, not for use in device drivers to calculate timeout value.
*
* note:
* NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
* ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
*/
unsigned long nsecs_to_jiffies(u64 n)
{
return (unsigned long)nsecs_to_jiffies64(n);
}
EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
/*
* Add two timespec64 values and do a safety check for overflow.
* It's assumed that both values are valid (>= 0).
* And, each timespec64 is in normalized form.
*/
struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
const struct timespec64 rhs)
{
struct timespec64 res;
set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
lhs.tv_nsec + rhs.tv_nsec);
if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
res.tv_sec = TIME64_MAX;
res.tv_nsec = 0;
}
return res;
}
int get_timespec64(struct timespec64 *ts,
const struct __kernel_timespec __user *uts)
{
struct __kernel_timespec kts;
int ret;
ret = copy_from_user(&kts, uts, sizeof(kts));
if (ret)
return -EFAULT;
ts->tv_sec = kts.tv_sec;
/* Zero out the padding for 32 bit systems or in compat mode */
if (IS_ENABLED(CONFIG_64BIT_TIME) && in_compat_syscall())
kts.tv_nsec &= 0xFFFFFFFFUL;
ts->tv_nsec = kts.tv_nsec;
return 0;
}
EXPORT_SYMBOL_GPL(get_timespec64);
int put_timespec64(const struct timespec64 *ts,
struct __kernel_timespec __user *uts)
{
struct __kernel_timespec kts = {
.tv_sec = ts->tv_sec,
.tv_nsec = ts->tv_nsec
};
return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
}
EXPORT_SYMBOL_GPL(put_timespec64);
static int __get_old_timespec32(struct timespec64 *ts64,
const struct old_timespec32 __user *cts)
{
struct old_timespec32 ts;
int ret;
ret = copy_from_user(&ts, cts, sizeof(ts));
if (ret)
return -EFAULT;
ts64->tv_sec = ts.tv_sec;
ts64->tv_nsec = ts.tv_nsec;
return 0;
}
static int __put_old_timespec32(const struct timespec64 *ts64,
struct old_timespec32 __user *cts)
{
struct old_timespec32 ts = {
.tv_sec = ts64->tv_sec,
.tv_nsec = ts64->tv_nsec
};
return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
}
int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
{
if (COMPAT_USE_64BIT_TIME)
return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
else
return __get_old_timespec32(ts, uts);
}
EXPORT_SYMBOL_GPL(get_old_timespec32);
int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
{
if (COMPAT_USE_64BIT_TIME)
return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
else
return __put_old_timespec32(ts, uts);
}
EXPORT_SYMBOL_GPL(put_old_timespec32);
int get_itimerspec64(struct itimerspec64 *it,
const struct __kernel_itimerspec __user *uit)
{
int ret;
ret = get_timespec64(&it->it_interval, &uit->it_interval);
if (ret)
return ret;
ret = get_timespec64(&it->it_value, &uit->it_value);
return ret;
}
EXPORT_SYMBOL_GPL(get_itimerspec64);
int put_itimerspec64(const struct itimerspec64 *it,
struct __kernel_itimerspec __user *uit)
{
int ret;
ret = put_timespec64(&it->it_interval, &uit->it_interval);
if (ret)
return ret;
ret = put_timespec64(&it->it_value, &uit->it_value);
return ret;
}
EXPORT_SYMBOL_GPL(put_itimerspec64);
int get_old_itimerspec32(struct itimerspec64 *its,
const struct old_itimerspec32 __user *uits)
{
if (__get_old_timespec32(&its->it_interval, &uits->it_interval) ||
__get_old_timespec32(&its->it_value, &uits->it_value))
return -EFAULT;
return 0;
}
EXPORT_SYMBOL_GPL(get_old_itimerspec32);
int put_old_itimerspec32(const struct itimerspec64 *its,
struct old_itimerspec32 __user *uits)
{
if (__put_old_timespec32(&its->it_interval, &uits->it_interval) ||
__put_old_timespec32(&its->it_value, &uits->it_value))
return -EFAULT;
return 0;
}
EXPORT_SYMBOL_GPL(put_old_itimerspec32);