forked from luck/tmp_suning_uos_patched
4753eb2ac7
The TSB_LOCK_BIT define is actually a special value shifted down by 32-bits for the assembler code macros. In C code, this isn't what we want. Signed-off-by: David S. Miller <davem@davemloft.net>
333 lines
8.0 KiB
C
333 lines
8.0 KiB
C
/* arch/sparc64/mm/tsb.c
|
|
*
|
|
* Copyright (C) 2006 David S. Miller <davem@davemloft.net>
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <asm/system.h>
|
|
#include <asm/page.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/tsb.h>
|
|
|
|
/* We use an 8K TSB for the whole kernel, this allows to
|
|
* handle about 4MB of modules and vmalloc mappings without
|
|
* incurring many hash conflicts.
|
|
*/
|
|
#define KERNEL_TSB_SIZE_BYTES 8192
|
|
#define KERNEL_TSB_NENTRIES \
|
|
(KERNEL_TSB_SIZE_BYTES / sizeof(struct tsb))
|
|
|
|
extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
|
|
|
|
static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long nentries)
|
|
{
|
|
vaddr >>= PAGE_SHIFT;
|
|
return vaddr & (nentries - 1);
|
|
}
|
|
|
|
static inline int tag_compare(struct tsb *entry, unsigned long vaddr, unsigned long context)
|
|
{
|
|
if (context == ~0UL)
|
|
return 1;
|
|
|
|
return (entry->tag == ((vaddr >> 22) | (context << 48)));
|
|
}
|
|
|
|
/* TSB flushes need only occur on the processor initiating the address
|
|
* space modification, not on each cpu the address space has run on.
|
|
* Only the TLB flush needs that treatment.
|
|
*/
|
|
|
|
void flush_tsb_kernel_range(unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long v;
|
|
|
|
for (v = start; v < end; v += PAGE_SIZE) {
|
|
unsigned long hash = tsb_hash(v, KERNEL_TSB_NENTRIES);
|
|
struct tsb *ent = &swapper_tsb[hash];
|
|
|
|
if (tag_compare(ent, v, 0)) {
|
|
ent->tag = 0UL;
|
|
membar_storeload_storestore();
|
|
}
|
|
}
|
|
}
|
|
|
|
void flush_tsb_user(struct mmu_gather *mp)
|
|
{
|
|
struct mm_struct *mm = mp->mm;
|
|
struct tsb *tsb = mm->context.tsb;
|
|
unsigned long ctx = ~0UL;
|
|
unsigned long nentries = mm->context.tsb_nentries;
|
|
int i;
|
|
|
|
if (CTX_VALID(mm->context))
|
|
ctx = CTX_HWBITS(mm->context);
|
|
|
|
for (i = 0; i < mp->tlb_nr; i++) {
|
|
unsigned long v = mp->vaddrs[i];
|
|
struct tsb *ent;
|
|
|
|
v &= ~0x1UL;
|
|
|
|
ent = &tsb[tsb_hash(v, nentries)];
|
|
if (tag_compare(ent, v, ctx)) {
|
|
ent->tag = 0UL;
|
|
membar_storeload_storestore();
|
|
}
|
|
}
|
|
}
|
|
|
|
static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_bytes)
|
|
{
|
|
unsigned long tsb_reg, base, tsb_paddr;
|
|
unsigned long page_sz, tte;
|
|
|
|
mm->context.tsb_nentries = tsb_bytes / sizeof(struct tsb);
|
|
|
|
base = TSBMAP_BASE;
|
|
tte = (_PAGE_VALID | _PAGE_L | _PAGE_CP |
|
|
_PAGE_CV | _PAGE_P | _PAGE_W);
|
|
tsb_paddr = __pa(mm->context.tsb);
|
|
|
|
/* Use the smallest page size that can map the whole TSB
|
|
* in one TLB entry.
|
|
*/
|
|
switch (tsb_bytes) {
|
|
case 8192 << 0:
|
|
tsb_reg = 0x0UL;
|
|
#ifdef DCACHE_ALIASING_POSSIBLE
|
|
base += (tsb_paddr & 8192);
|
|
#endif
|
|
tte |= _PAGE_SZ8K;
|
|
page_sz = 8192;
|
|
break;
|
|
|
|
case 8192 << 1:
|
|
tsb_reg = 0x1UL;
|
|
tte |= _PAGE_SZ64K;
|
|
page_sz = 64 * 1024;
|
|
break;
|
|
|
|
case 8192 << 2:
|
|
tsb_reg = 0x2UL;
|
|
tte |= _PAGE_SZ64K;
|
|
page_sz = 64 * 1024;
|
|
break;
|
|
|
|
case 8192 << 3:
|
|
tsb_reg = 0x3UL;
|
|
tte |= _PAGE_SZ64K;
|
|
page_sz = 64 * 1024;
|
|
break;
|
|
|
|
case 8192 << 4:
|
|
tsb_reg = 0x4UL;
|
|
tte |= _PAGE_SZ512K;
|
|
page_sz = 512 * 1024;
|
|
break;
|
|
|
|
case 8192 << 5:
|
|
tsb_reg = 0x5UL;
|
|
tte |= _PAGE_SZ512K;
|
|
page_sz = 512 * 1024;
|
|
break;
|
|
|
|
case 8192 << 6:
|
|
tsb_reg = 0x6UL;
|
|
tte |= _PAGE_SZ512K;
|
|
page_sz = 512 * 1024;
|
|
break;
|
|
|
|
case 8192 << 7:
|
|
tsb_reg = 0x7UL;
|
|
tte |= _PAGE_SZ4MB;
|
|
page_sz = 4 * 1024 * 1024;
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
};
|
|
|
|
tsb_reg |= base;
|
|
tsb_reg |= (tsb_paddr & (page_sz - 1UL));
|
|
tte |= (tsb_paddr & ~(page_sz - 1UL));
|
|
|
|
mm->context.tsb_reg_val = tsb_reg;
|
|
mm->context.tsb_map_vaddr = base;
|
|
mm->context.tsb_map_pte = tte;
|
|
}
|
|
|
|
/* The page tables are locked against modifications while this
|
|
* runs.
|
|
*
|
|
* XXX do some prefetching...
|
|
*/
|
|
static void copy_tsb(struct tsb *old_tsb, unsigned long old_size,
|
|
struct tsb *new_tsb, unsigned long new_size)
|
|
{
|
|
unsigned long old_nentries = old_size / sizeof(struct tsb);
|
|
unsigned long new_nentries = new_size / sizeof(struct tsb);
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < old_nentries; i++) {
|
|
register unsigned long tag asm("o4");
|
|
register unsigned long pte asm("o5");
|
|
unsigned long v;
|
|
unsigned int hash;
|
|
|
|
__asm__ __volatile__(
|
|
"ldda [%2] %3, %0"
|
|
: "=r" (tag), "=r" (pte)
|
|
: "r" (&old_tsb[i]), "i" (ASI_NUCLEUS_QUAD_LDD));
|
|
|
|
if (!tag || (tag & (1UL << TSB_TAG_LOCK_BIT)))
|
|
continue;
|
|
|
|
/* We only put base page size PTEs into the TSB,
|
|
* but that might change in the future. This code
|
|
* would need to be changed if we start putting larger
|
|
* page size PTEs into there.
|
|
*/
|
|
WARN_ON((pte & _PAGE_ALL_SZ_BITS) != _PAGE_SZBITS);
|
|
|
|
/* The tag holds bits 22 to 63 of the virtual address
|
|
* and the context. Clear out the context, and shift
|
|
* up to make a virtual address.
|
|
*/
|
|
v = (tag & ((1UL << 42UL) - 1UL)) << 22UL;
|
|
|
|
/* The implied bits of the tag (bits 13 to 21) are
|
|
* determined by the TSB entry index, so fill that in.
|
|
*/
|
|
v |= (i & (512UL - 1UL)) << 13UL;
|
|
|
|
hash = tsb_hash(v, new_nentries);
|
|
new_tsb[hash].tag = tag;
|
|
new_tsb[hash].pte = pte;
|
|
}
|
|
}
|
|
|
|
/* When the RSS of an address space exceeds mm->context.tsb_rss_limit,
|
|
* update_mmu_cache() invokes this routine to try and grow the TSB.
|
|
* When we reach the maximum TSB size supported, we stick ~0UL into
|
|
* mm->context.tsb_rss_limit so the grow checks in update_mmu_cache()
|
|
* will not trigger any longer.
|
|
*
|
|
* The TSB can be anywhere from 8K to 1MB in size, in increasing powers
|
|
* of two. The TSB must be aligned to it's size, so f.e. a 512K TSB
|
|
* must be 512K aligned.
|
|
*
|
|
* The idea here is to grow the TSB when the RSS of the process approaches
|
|
* the number of entries that the current TSB can hold at once. Currently,
|
|
* we trigger when the RSS hits 3/4 of the TSB capacity.
|
|
*/
|
|
void tsb_grow(struct mm_struct *mm, unsigned long rss, gfp_t gfp_flags)
|
|
{
|
|
unsigned long max_tsb_size = 1 * 1024 * 1024;
|
|
unsigned long size, old_size;
|
|
struct page *page;
|
|
struct tsb *old_tsb;
|
|
|
|
if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
|
|
max_tsb_size = (PAGE_SIZE << MAX_ORDER);
|
|
|
|
for (size = PAGE_SIZE; size < max_tsb_size; size <<= 1UL) {
|
|
unsigned long n_entries = size / sizeof(struct tsb);
|
|
|
|
n_entries = (n_entries * 3) / 4;
|
|
if (n_entries > rss)
|
|
break;
|
|
}
|
|
|
|
page = alloc_pages(gfp_flags | __GFP_ZERO, get_order(size));
|
|
if (unlikely(!page))
|
|
return;
|
|
|
|
if (size == max_tsb_size)
|
|
mm->context.tsb_rss_limit = ~0UL;
|
|
else
|
|
mm->context.tsb_rss_limit =
|
|
((size / sizeof(struct tsb)) * 3) / 4;
|
|
|
|
old_tsb = mm->context.tsb;
|
|
old_size = mm->context.tsb_nentries * sizeof(struct tsb);
|
|
|
|
if (old_tsb)
|
|
copy_tsb(old_tsb, old_size, page_address(page), size);
|
|
|
|
mm->context.tsb = page_address(page);
|
|
setup_tsb_params(mm, size);
|
|
|
|
/* If old_tsb is NULL, we're being invoked for the first time
|
|
* from init_new_context().
|
|
*/
|
|
if (old_tsb) {
|
|
/* Now force all other processors to reload the new
|
|
* TSB state.
|
|
*/
|
|
smp_tsb_sync(mm);
|
|
|
|
/* Finally reload it on the local cpu. No further
|
|
* references will remain to the old TSB and we can
|
|
* thus free it up.
|
|
*/
|
|
tsb_context_switch(mm);
|
|
|
|
free_pages((unsigned long) old_tsb, get_order(old_size));
|
|
}
|
|
}
|
|
|
|
int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
|
|
{
|
|
unsigned long initial_rss;
|
|
|
|
mm->context.sparc64_ctx_val = 0UL;
|
|
|
|
/* copy_mm() copies over the parent's mm_struct before calling
|
|
* us, so we need to zero out the TSB pointer or else tsb_grow()
|
|
* will be confused and think there is an older TSB to free up.
|
|
*/
|
|
mm->context.tsb = NULL;
|
|
|
|
/* If this is fork, inherit the parent's TSB size. We would
|
|
* grow it to that size on the first page fault anyways.
|
|
*/
|
|
initial_rss = mm->context.tsb_nentries;
|
|
if (initial_rss)
|
|
initial_rss -= 1;
|
|
|
|
tsb_grow(mm, initial_rss, GFP_KERNEL);
|
|
|
|
if (unlikely(!mm->context.tsb))
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void destroy_context(struct mm_struct *mm)
|
|
{
|
|
unsigned long size = mm->context.tsb_nentries * sizeof(struct tsb);
|
|
|
|
free_pages((unsigned long) mm->context.tsb, get_order(size));
|
|
|
|
/* We can remove these later, but for now it's useful
|
|
* to catch any bogus post-destroy_context() references
|
|
* to the TSB.
|
|
*/
|
|
mm->context.tsb = NULL;
|
|
mm->context.tsb_reg_val = 0UL;
|
|
|
|
spin_lock(&ctx_alloc_lock);
|
|
|
|
if (CTX_VALID(mm->context)) {
|
|
unsigned long nr = CTX_NRBITS(mm->context);
|
|
mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
|
|
}
|
|
|
|
spin_unlock(&ctx_alloc_lock);
|
|
}
|