kernel_optimize_test/arch/mips/kernel/smp-bmips.c
Florian Fainelli 4df715aaf5 MIPS: BMIPS: support booting from physical CPU other than 0
BMIPS43xx CPUs have two hardware threads, and on some SoCs such as 3368,
the bootloader has configured the system to boot from TP1 instead of the
more usual TP0. Create the physical to logical CPU mapping to cope with
that, do not remap the software interrupts to be cross CPUs such that we
do not have to do use the logical CPU mapping further down the code, and
finally, reset the slave TP1 only if booted from TP0.

Signed-off-by: Jonas Gorski <jogo@openwrt.org>
Signed-off-by: Florian Fainelli <florian@openwrt.org>
Cc: linux-mips@linux-mips.org
Cc: blogic@openwrt.org
Cc: cernekee@gmail.com
Patchwork: https://patchwork.linux-mips.org/patch/5553/
Patchwork: https://patchwork.linux-mips.org/patch/5556/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2013-07-01 15:10:57 +02:00

473 lines
12 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
*
* SMP support for BMIPS
*/
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/reboot.h>
#include <linux/io.h>
#include <linux/compiler.h>
#include <linux/linkage.h>
#include <linux/bug.h>
#include <linux/kernel.h>
#include <asm/time.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/bootinfo.h>
#include <asm/pmon.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/mipsregs.h>
#include <asm/bmips.h>
#include <asm/traps.h>
#include <asm/barrier.h>
static int __maybe_unused max_cpus = 1;
/* these may be configured by the platform code */
int bmips_smp_enabled = 1;
int bmips_cpu_offset;
cpumask_t bmips_booted_mask;
#ifdef CONFIG_SMP
/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
unsigned long bmips_smp_boot_sp;
unsigned long bmips_smp_boot_gp;
static void bmips_send_ipi_single(int cpu, unsigned int action);
static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id);
/* SW interrupts 0,1 are used for interprocessor signaling */
#define IPI0_IRQ (MIPS_CPU_IRQ_BASE + 0)
#define IPI1_IRQ (MIPS_CPU_IRQ_BASE + 1)
#define CPUNUM(cpu, shift) (((cpu) + bmips_cpu_offset) << (shift))
#define ACTION_CLR_IPI(cpu, ipi) (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
#define ACTION_SET_IPI(cpu, ipi) (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
#define ACTION_BOOT_THREAD(cpu) (0x08 | CPUNUM(cpu, 0))
static void __init bmips_smp_setup(void)
{
int i, cpu = 1, boot_cpu = 0;
#if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
/* arbitration priority */
clear_c0_brcm_cmt_ctrl(0x30);
/* NBK and weak order flags */
set_c0_brcm_config_0(0x30000);
/* Find out if we are running on TP0 or TP1 */
boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
/*
* MIPS interrupts 0,1 (SW INT 0,1) cross over to the other thread
* MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
* MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
*
* If booting from TP1, leave the existing CMT interrupt routing
* such that TP0 responds to SW1 and TP1 responds to SW0.
*/
if (boot_cpu == 0)
change_c0_brcm_cmt_intr(0xf8018000,
(0x02 << 27) | (0x03 << 15));
else
change_c0_brcm_cmt_intr(0xf8018000, (0x1d << 27));
/* single core, 2 threads (2 pipelines) */
max_cpus = 2;
#elif defined(CONFIG_CPU_BMIPS5000)
/* enable raceless SW interrupts */
set_c0_brcm_config(0x03 << 22);
/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
/* N cores, 2 threads per core */
max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
/* clear any pending SW interrupts */
for (i = 0; i < max_cpus; i++) {
write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
}
#endif
if (!bmips_smp_enabled)
max_cpus = 1;
/* this can be overridden by the BSP */
if (!board_ebase_setup)
board_ebase_setup = &bmips_ebase_setup;
__cpu_number_map[boot_cpu] = 0;
__cpu_logical_map[0] = boot_cpu;
for (i = 0; i < max_cpus; i++) {
if (i != boot_cpu) {
__cpu_number_map[i] = cpu;
__cpu_logical_map[cpu] = i;
cpu++;
}
set_cpu_possible(i, 1);
set_cpu_present(i, 1);
}
}
/*
* IPI IRQ setup - runs on CPU0
*/
static void bmips_prepare_cpus(unsigned int max_cpus)
{
if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
"smp_ipi0", NULL))
panic("Can't request IPI0 interrupt\n");
if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
"smp_ipi1", NULL))
panic("Can't request IPI1 interrupt\n");
}
/*
* Tell the hardware to boot CPUx - runs on CPU0
*/
static void bmips_boot_secondary(int cpu, struct task_struct *idle)
{
bmips_smp_boot_sp = __KSTK_TOS(idle);
bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
mb();
/*
* Initial boot sequence for secondary CPU:
* bmips_reset_nmi_vec @ a000_0000 ->
* bmips_smp_entry ->
* plat_wired_tlb_setup (cached function call; optional) ->
* start_secondary (cached jump)
*
* Warm restart sequence:
* play_dead WAIT loop ->
* bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
* eret to play_dead ->
* bmips_secondary_reentry ->
* start_secondary
*/
pr_info("SMP: Booting CPU%d...\n", cpu);
if (cpumask_test_cpu(cpu, &bmips_booted_mask))
bmips_send_ipi_single(cpu, 0);
else {
#if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
/* Reset slave TP1 if booting from TP0 */
if (cpu_logical_map(cpu) == 0)
set_c0_brcm_cmt_ctrl(0x01);
#elif defined(CONFIG_CPU_BMIPS5000)
if (cpu & 0x01)
write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
else {
/*
* core N thread 0 was already booted; just
* pulse the NMI line
*/
bmips_write_zscm_reg(0x210, 0xc0000000);
udelay(10);
bmips_write_zscm_reg(0x210, 0x00);
}
#endif
cpumask_set_cpu(cpu, &bmips_booted_mask);
}
}
/*
* Early setup - runs on secondary CPU after cache probe
*/
static void bmips_init_secondary(void)
{
/* move NMI vector to kseg0, in case XKS01 is enabled */
#if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
void __iomem *cbr = BMIPS_GET_CBR();
unsigned long old_vec;
old_vec = __raw_readl(cbr + BMIPS_RELO_VECTOR_CONTROL_1);
__raw_writel(old_vec & ~0x20000000, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
#elif defined(CONFIG_CPU_BMIPS5000)
write_c0_brcm_bootvec(read_c0_brcm_bootvec() &
(smp_processor_id() & 0x01 ? ~0x20000000 : ~0x2000));
write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
#endif
}
/*
* Late setup - runs on secondary CPU before entering the idle loop
*/
static void bmips_smp_finish(void)
{
pr_info("SMP: CPU%d is running\n", smp_processor_id());
/* make sure there won't be a timer interrupt for a little while */
write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
irq_enable_hazard();
set_c0_status(IE_SW0 | IE_SW1 | IE_IRQ1 | IE_IRQ5 | ST0_IE);
irq_enable_hazard();
}
/*
* Runs on CPU0 after all CPUs have been booted
*/
static void bmips_cpus_done(void)
{
}
#if defined(CONFIG_CPU_BMIPS5000)
/*
* BMIPS5000 raceless IPIs
*
* Each CPU has two inbound SW IRQs which are independent of all other CPUs.
* IPI0 is used for SMP_RESCHEDULE_YOURSELF
* IPI1 is used for SMP_CALL_FUNCTION
*/
static void bmips_send_ipi_single(int cpu, unsigned int action)
{
write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
}
static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id)
{
int action = irq - IPI0_IRQ;
write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
if (action == 0)
scheduler_ipi();
else
smp_call_function_interrupt();
return IRQ_HANDLED;
}
#else
/*
* BMIPS43xx racey IPIs
*
* We use one inbound SW IRQ for each CPU.
*
* A spinlock must be held in order to keep CPUx from accidentally clearing
* an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy. The
* same spinlock is used to protect the action masks.
*/
static DEFINE_SPINLOCK(ipi_lock);
static DEFINE_PER_CPU(int, ipi_action_mask);
static void bmips_send_ipi_single(int cpu, unsigned int action)
{
unsigned long flags;
spin_lock_irqsave(&ipi_lock, flags);
set_c0_cause(cpu ? C_SW1 : C_SW0);
per_cpu(ipi_action_mask, cpu) |= action;
irq_enable_hazard();
spin_unlock_irqrestore(&ipi_lock, flags);
}
static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id)
{
unsigned long flags;
int action, cpu = irq - IPI0_IRQ;
spin_lock_irqsave(&ipi_lock, flags);
action = __get_cpu_var(ipi_action_mask);
per_cpu(ipi_action_mask, cpu) = 0;
clear_c0_cause(cpu ? C_SW1 : C_SW0);
spin_unlock_irqrestore(&ipi_lock, flags);
if (action & SMP_RESCHEDULE_YOURSELF)
scheduler_ipi();
if (action & SMP_CALL_FUNCTION)
smp_call_function_interrupt();
return IRQ_HANDLED;
}
#endif /* BMIPS type */
static void bmips_send_ipi_mask(const struct cpumask *mask,
unsigned int action)
{
unsigned int i;
for_each_cpu(i, mask)
bmips_send_ipi_single(i, action);
}
#ifdef CONFIG_HOTPLUG_CPU
static int bmips_cpu_disable(void)
{
unsigned int cpu = smp_processor_id();
if (cpu == 0)
return -EBUSY;
pr_info("SMP: CPU%d is offline\n", cpu);
set_cpu_online(cpu, false);
cpu_clear(cpu, cpu_callin_map);
local_flush_tlb_all();
local_flush_icache_range(0, ~0);
return 0;
}
static void bmips_cpu_die(unsigned int cpu)
{
}
void __ref play_dead(void)
{
idle_task_exit();
/* flush data cache */
_dma_cache_wback_inv(0, ~0);
/*
* Wakeup is on SW0 or SW1; disable everything else
* Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
* IRQ handlers; this clears ST0_IE and returns immediately.
*/
clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
change_c0_status(IE_IRQ5 | IE_IRQ1 | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
irq_disable_hazard();
/*
* wait for SW interrupt from bmips_boot_secondary(), then jump
* back to start_secondary()
*/
__asm__ __volatile__(
" wait\n"
" j bmips_secondary_reentry\n"
: : : "memory");
}
#endif /* CONFIG_HOTPLUG_CPU */
struct plat_smp_ops bmips_smp_ops = {
.smp_setup = bmips_smp_setup,
.prepare_cpus = bmips_prepare_cpus,
.boot_secondary = bmips_boot_secondary,
.smp_finish = bmips_smp_finish,
.init_secondary = bmips_init_secondary,
.cpus_done = bmips_cpus_done,
.send_ipi_single = bmips_send_ipi_single,
.send_ipi_mask = bmips_send_ipi_mask,
#ifdef CONFIG_HOTPLUG_CPU
.cpu_disable = bmips_cpu_disable,
.cpu_die = bmips_cpu_die,
#endif
};
#endif /* CONFIG_SMP */
/***********************************************************************
* BMIPS vector relocation
* This is primarily used for SMP boot, but it is applicable to some
* UP BMIPS systems as well.
***********************************************************************/
static void __cpuinit bmips_wr_vec(unsigned long dst, char *start, char *end)
{
memcpy((void *)dst, start, end - start);
dma_cache_wback((unsigned long)start, end - start);
local_flush_icache_range(dst, dst + (end - start));
instruction_hazard();
}
static inline void __cpuinit bmips_nmi_handler_setup(void)
{
bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
&bmips_reset_nmi_vec_end);
bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
&bmips_smp_int_vec_end);
}
void __cpuinit bmips_ebase_setup(void)
{
unsigned long new_ebase = ebase;
void __iomem __maybe_unused *cbr;
BUG_ON(ebase != CKSEG0);
#if defined(CONFIG_CPU_BMIPS4350)
/*
* BMIPS4350 cannot relocate the normal vectors, but it
* can relocate the BEV=1 vectors. So CPU1 starts up at
* the relocated BEV=1, IV=0 general exception vector @
* 0xa000_0380.
*
* set_uncached_handler() is used here because:
* - CPU1 will run this from uncached space
* - None of the cacheflush functions are set up yet
*/
set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
&bmips_smp_int_vec, 0x80);
__sync();
return;
#elif defined(CONFIG_CPU_BMIPS4380)
/*
* 0x8000_0000: reset/NMI (initially in kseg1)
* 0x8000_0400: normal vectors
*/
new_ebase = 0x80000400;
cbr = BMIPS_GET_CBR();
__raw_writel(0x80080800, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
__raw_writel(0xa0080800, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
#elif defined(CONFIG_CPU_BMIPS5000)
/*
* 0x8000_0000: reset/NMI (initially in kseg1)
* 0x8000_1000: normal vectors
*/
new_ebase = 0x80001000;
write_c0_brcm_bootvec(0xa0088008);
write_c0_ebase(new_ebase);
if (max_cpus > 2)
bmips_write_zscm_reg(0xa0, 0xa008a008);
#else
return;
#endif
board_nmi_handler_setup = &bmips_nmi_handler_setup;
ebase = new_ebase;
}
asmlinkage void __weak plat_wired_tlb_setup(void)
{
/*
* Called when starting/restarting a secondary CPU.
* Kernel stacks and other important data might only be accessible
* once the wired entries are present.
*/
}