kernel_optimize_test/crypto/morus1280.c
Eric Biggers c4741b2305 crypto: run initcalls for generic implementations earlier
Use subsys_initcall for registration of all templates and generic
algorithm implementations, rather than module_init.  Then change
cryptomgr to use arch_initcall, to place it before the subsys_initcalls.

This is needed so that when both a generic and optimized implementation
of an algorithm are built into the kernel (not loadable modules), the
generic implementation is registered before the optimized one.
Otherwise, the self-tests for the optimized implementation are unable to
allocate the generic implementation for the new comparison fuzz tests.

Note that on arm, a side effect of this change is that self-tests for
generic implementations may run before the unaligned access handler has
been installed.  So, unaligned accesses will crash the kernel.  This is
arguably a good thing as it makes it easier to detect that type of bug.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-04-18 22:15:03 +08:00

543 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* The MORUS-1280 Authenticated-Encryption Algorithm
*
* Copyright (c) 2016-2018 Ondrej Mosnacek <omosnacek@gmail.com>
* Copyright (C) 2017-2018 Red Hat, Inc. All rights reserved.
*/
#include <asm/unaligned.h>
#include <crypto/algapi.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/skcipher.h>
#include <crypto/morus_common.h>
#include <crypto/scatterwalk.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#define MORUS1280_WORD_SIZE 8
#define MORUS1280_BLOCK_SIZE (MORUS_BLOCK_WORDS * MORUS1280_WORD_SIZE)
#define MORUS1280_BLOCK_ALIGN (__alignof__(__le64))
#define MORUS1280_ALIGNED(p) IS_ALIGNED((uintptr_t)p, MORUS1280_BLOCK_ALIGN)
struct morus1280_block {
u64 words[MORUS_BLOCK_WORDS];
};
union morus1280_block_in {
__le64 words[MORUS_BLOCK_WORDS];
u8 bytes[MORUS1280_BLOCK_SIZE];
};
struct morus1280_state {
struct morus1280_block s[MORUS_STATE_BLOCKS];
};
struct morus1280_ctx {
struct morus1280_block key;
};
struct morus1280_ops {
int (*skcipher_walk_init)(struct skcipher_walk *walk,
struct aead_request *req, bool atomic);
void (*crypt_chunk)(struct morus1280_state *state,
u8 *dst, const u8 *src, unsigned int size);
};
static const struct morus1280_block crypto_morus1280_const[1] = {
{ .words = {
U64_C(0x0d08050302010100),
U64_C(0x6279e99059372215),
U64_C(0xf12fc26d55183ddb),
U64_C(0xdd28b57342311120),
} },
};
static void crypto_morus1280_round(struct morus1280_block *b0,
struct morus1280_block *b1,
struct morus1280_block *b2,
struct morus1280_block *b3,
struct morus1280_block *b4,
const struct morus1280_block *m,
unsigned int b, unsigned int w)
{
unsigned int i;
struct morus1280_block tmp;
for (i = 0; i < MORUS_BLOCK_WORDS; i++) {
b0->words[i] ^= b1->words[i] & b2->words[i];
b0->words[i] ^= b3->words[i];
b0->words[i] ^= m->words[i];
b0->words[i] = rol64(b0->words[i], b);
}
tmp = *b3;
for (i = 0; i < MORUS_BLOCK_WORDS; i++)
b3->words[(i + w) % MORUS_BLOCK_WORDS] = tmp.words[i];
}
static void crypto_morus1280_update(struct morus1280_state *state,
const struct morus1280_block *m)
{
static const struct morus1280_block z = {};
struct morus1280_block *s = state->s;
crypto_morus1280_round(&s[0], &s[1], &s[2], &s[3], &s[4], &z, 13, 1);
crypto_morus1280_round(&s[1], &s[2], &s[3], &s[4], &s[0], m, 46, 2);
crypto_morus1280_round(&s[2], &s[3], &s[4], &s[0], &s[1], m, 38, 3);
crypto_morus1280_round(&s[3], &s[4], &s[0], &s[1], &s[2], m, 7, 2);
crypto_morus1280_round(&s[4], &s[0], &s[1], &s[2], &s[3], m, 4, 1);
}
static void crypto_morus1280_load_a(struct morus1280_block *dst, const u8 *src)
{
unsigned int i;
for (i = 0; i < MORUS_BLOCK_WORDS; i++) {
dst->words[i] = le64_to_cpu(*(const __le64 *)src);
src += MORUS1280_WORD_SIZE;
}
}
static void crypto_morus1280_load_u(struct morus1280_block *dst, const u8 *src)
{
unsigned int i;
for (i = 0; i < MORUS_BLOCK_WORDS; i++) {
dst->words[i] = get_unaligned_le64(src);
src += MORUS1280_WORD_SIZE;
}
}
static void crypto_morus1280_load(struct morus1280_block *dst, const u8 *src)
{
if (MORUS1280_ALIGNED(src))
crypto_morus1280_load_a(dst, src);
else
crypto_morus1280_load_u(dst, src);
}
static void crypto_morus1280_store_a(u8 *dst, const struct morus1280_block *src)
{
unsigned int i;
for (i = 0; i < MORUS_BLOCK_WORDS; i++) {
*(__le64 *)dst = cpu_to_le64(src->words[i]);
dst += MORUS1280_WORD_SIZE;
}
}
static void crypto_morus1280_store_u(u8 *dst, const struct morus1280_block *src)
{
unsigned int i;
for (i = 0; i < MORUS_BLOCK_WORDS; i++) {
put_unaligned_le64(src->words[i], dst);
dst += MORUS1280_WORD_SIZE;
}
}
static void crypto_morus1280_store(u8 *dst, const struct morus1280_block *src)
{
if (MORUS1280_ALIGNED(dst))
crypto_morus1280_store_a(dst, src);
else
crypto_morus1280_store_u(dst, src);
}
static void crypto_morus1280_ad(struct morus1280_state *state, const u8 *src,
unsigned int size)
{
struct morus1280_block m;
if (MORUS1280_ALIGNED(src)) {
while (size >= MORUS1280_BLOCK_SIZE) {
crypto_morus1280_load_a(&m, src);
crypto_morus1280_update(state, &m);
size -= MORUS1280_BLOCK_SIZE;
src += MORUS1280_BLOCK_SIZE;
}
} else {
while (size >= MORUS1280_BLOCK_SIZE) {
crypto_morus1280_load_u(&m, src);
crypto_morus1280_update(state, &m);
size -= MORUS1280_BLOCK_SIZE;
src += MORUS1280_BLOCK_SIZE;
}
}
}
static void crypto_morus1280_core(const struct morus1280_state *state,
struct morus1280_block *blk)
{
unsigned int i;
for (i = 0; i < MORUS_BLOCK_WORDS; i++)
blk->words[(i + 3) % MORUS_BLOCK_WORDS] ^= state->s[1].words[i];
for (i = 0; i < MORUS_BLOCK_WORDS; i++) {
blk->words[i] ^= state->s[0].words[i];
blk->words[i] ^= state->s[2].words[i] & state->s[3].words[i];
}
}
static void crypto_morus1280_encrypt_chunk(struct morus1280_state *state,
u8 *dst, const u8 *src,
unsigned int size)
{
struct morus1280_block c, m;
if (MORUS1280_ALIGNED(src) && MORUS1280_ALIGNED(dst)) {
while (size >= MORUS1280_BLOCK_SIZE) {
crypto_morus1280_load_a(&m, src);
c = m;
crypto_morus1280_core(state, &c);
crypto_morus1280_store_a(dst, &c);
crypto_morus1280_update(state, &m);
src += MORUS1280_BLOCK_SIZE;
dst += MORUS1280_BLOCK_SIZE;
size -= MORUS1280_BLOCK_SIZE;
}
} else {
while (size >= MORUS1280_BLOCK_SIZE) {
crypto_morus1280_load_u(&m, src);
c = m;
crypto_morus1280_core(state, &c);
crypto_morus1280_store_u(dst, &c);
crypto_morus1280_update(state, &m);
src += MORUS1280_BLOCK_SIZE;
dst += MORUS1280_BLOCK_SIZE;
size -= MORUS1280_BLOCK_SIZE;
}
}
if (size > 0) {
union morus1280_block_in tail;
memcpy(tail.bytes, src, size);
memset(tail.bytes + size, 0, MORUS1280_BLOCK_SIZE - size);
crypto_morus1280_load_a(&m, tail.bytes);
c = m;
crypto_morus1280_core(state, &c);
crypto_morus1280_store_a(tail.bytes, &c);
crypto_morus1280_update(state, &m);
memcpy(dst, tail.bytes, size);
}
}
static void crypto_morus1280_decrypt_chunk(struct morus1280_state *state,
u8 *dst, const u8 *src,
unsigned int size)
{
struct morus1280_block m;
if (MORUS1280_ALIGNED(src) && MORUS1280_ALIGNED(dst)) {
while (size >= MORUS1280_BLOCK_SIZE) {
crypto_morus1280_load_a(&m, src);
crypto_morus1280_core(state, &m);
crypto_morus1280_store_a(dst, &m);
crypto_morus1280_update(state, &m);
src += MORUS1280_BLOCK_SIZE;
dst += MORUS1280_BLOCK_SIZE;
size -= MORUS1280_BLOCK_SIZE;
}
} else {
while (size >= MORUS1280_BLOCK_SIZE) {
crypto_morus1280_load_u(&m, src);
crypto_morus1280_core(state, &m);
crypto_morus1280_store_u(dst, &m);
crypto_morus1280_update(state, &m);
src += MORUS1280_BLOCK_SIZE;
dst += MORUS1280_BLOCK_SIZE;
size -= MORUS1280_BLOCK_SIZE;
}
}
if (size > 0) {
union morus1280_block_in tail;
memcpy(tail.bytes, src, size);
memset(tail.bytes + size, 0, MORUS1280_BLOCK_SIZE - size);
crypto_morus1280_load_a(&m, tail.bytes);
crypto_morus1280_core(state, &m);
crypto_morus1280_store_a(tail.bytes, &m);
memset(tail.bytes + size, 0, MORUS1280_BLOCK_SIZE - size);
crypto_morus1280_load_a(&m, tail.bytes);
crypto_morus1280_update(state, &m);
memcpy(dst, tail.bytes, size);
}
}
static void crypto_morus1280_init(struct morus1280_state *state,
const struct morus1280_block *key,
const u8 *iv)
{
static const struct morus1280_block z = {};
union morus1280_block_in tmp;
unsigned int i;
memcpy(tmp.bytes, iv, MORUS_NONCE_SIZE);
memset(tmp.bytes + MORUS_NONCE_SIZE, 0,
MORUS1280_BLOCK_SIZE - MORUS_NONCE_SIZE);
crypto_morus1280_load(&state->s[0], tmp.bytes);
state->s[1] = *key;
for (i = 0; i < MORUS_BLOCK_WORDS; i++)
state->s[2].words[i] = U64_C(0xFFFFFFFFFFFFFFFF);
state->s[3] = z;
state->s[4] = crypto_morus1280_const[0];
for (i = 0; i < 16; i++)
crypto_morus1280_update(state, &z);
for (i = 0; i < MORUS_BLOCK_WORDS; i++)
state->s[1].words[i] ^= key->words[i];
}
static void crypto_morus1280_process_ad(struct morus1280_state *state,
struct scatterlist *sg_src,
unsigned int assoclen)
{
struct scatter_walk walk;
struct morus1280_block m;
union morus1280_block_in buf;
unsigned int pos = 0;
scatterwalk_start(&walk, sg_src);
while (assoclen != 0) {
unsigned int size = scatterwalk_clamp(&walk, assoclen);
unsigned int left = size;
void *mapped = scatterwalk_map(&walk);
const u8 *src = (const u8 *)mapped;
if (pos + size >= MORUS1280_BLOCK_SIZE) {
if (pos > 0) {
unsigned int fill = MORUS1280_BLOCK_SIZE - pos;
memcpy(buf.bytes + pos, src, fill);
crypto_morus1280_load_a(&m, buf.bytes);
crypto_morus1280_update(state, &m);
pos = 0;
left -= fill;
src += fill;
}
crypto_morus1280_ad(state, src, left);
src += left & ~(MORUS1280_BLOCK_SIZE - 1);
left &= MORUS1280_BLOCK_SIZE - 1;
}
memcpy(buf.bytes + pos, src, left);
pos += left;
assoclen -= size;
scatterwalk_unmap(mapped);
scatterwalk_advance(&walk, size);
scatterwalk_done(&walk, 0, assoclen);
}
if (pos > 0) {
memset(buf.bytes + pos, 0, MORUS1280_BLOCK_SIZE - pos);
crypto_morus1280_load_a(&m, buf.bytes);
crypto_morus1280_update(state, &m);
}
}
static void crypto_morus1280_process_crypt(struct morus1280_state *state,
struct aead_request *req,
const struct morus1280_ops *ops)
{
struct skcipher_walk walk;
ops->skcipher_walk_init(&walk, req, false);
while (walk.nbytes) {
unsigned int nbytes = walk.nbytes;
if (nbytes < walk.total)
nbytes = round_down(nbytes, walk.stride);
ops->crypt_chunk(state, walk.dst.virt.addr, walk.src.virt.addr,
nbytes);
skcipher_walk_done(&walk, walk.nbytes - nbytes);
}
}
static void crypto_morus1280_final(struct morus1280_state *state,
struct morus1280_block *tag_xor,
u64 assoclen, u64 cryptlen)
{
struct morus1280_block tmp;
unsigned int i;
tmp.words[0] = assoclen * 8;
tmp.words[1] = cryptlen * 8;
tmp.words[2] = 0;
tmp.words[3] = 0;
for (i = 0; i < MORUS_BLOCK_WORDS; i++)
state->s[4].words[i] ^= state->s[0].words[i];
for (i = 0; i < 10; i++)
crypto_morus1280_update(state, &tmp);
crypto_morus1280_core(state, tag_xor);
}
static int crypto_morus1280_setkey(struct crypto_aead *aead, const u8 *key,
unsigned int keylen)
{
struct morus1280_ctx *ctx = crypto_aead_ctx(aead);
union morus1280_block_in tmp;
if (keylen == MORUS1280_BLOCK_SIZE)
crypto_morus1280_load(&ctx->key, key);
else if (keylen == MORUS1280_BLOCK_SIZE / 2) {
memcpy(tmp.bytes, key, keylen);
memcpy(tmp.bytes + keylen, key, keylen);
crypto_morus1280_load(&ctx->key, tmp.bytes);
} else {
crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
return 0;
}
static int crypto_morus1280_setauthsize(struct crypto_aead *tfm,
unsigned int authsize)
{
return (authsize <= MORUS_MAX_AUTH_SIZE) ? 0 : -EINVAL;
}
static void crypto_morus1280_crypt(struct aead_request *req,
struct morus1280_block *tag_xor,
unsigned int cryptlen,
const struct morus1280_ops *ops)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct morus1280_ctx *ctx = crypto_aead_ctx(tfm);
struct morus1280_state state;
crypto_morus1280_init(&state, &ctx->key, req->iv);
crypto_morus1280_process_ad(&state, req->src, req->assoclen);
crypto_morus1280_process_crypt(&state, req, ops);
crypto_morus1280_final(&state, tag_xor, req->assoclen, cryptlen);
}
static int crypto_morus1280_encrypt(struct aead_request *req)
{
static const struct morus1280_ops ops = {
.skcipher_walk_init = skcipher_walk_aead_encrypt,
.crypt_chunk = crypto_morus1280_encrypt_chunk,
};
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct morus1280_block tag = {};
union morus1280_block_in tag_out;
unsigned int authsize = crypto_aead_authsize(tfm);
unsigned int cryptlen = req->cryptlen;
crypto_morus1280_crypt(req, &tag, cryptlen, &ops);
crypto_morus1280_store(tag_out.bytes, &tag);
scatterwalk_map_and_copy(tag_out.bytes, req->dst,
req->assoclen + cryptlen, authsize, 1);
return 0;
}
static int crypto_morus1280_decrypt(struct aead_request *req)
{
static const struct morus1280_ops ops = {
.skcipher_walk_init = skcipher_walk_aead_decrypt,
.crypt_chunk = crypto_morus1280_decrypt_chunk,
};
static const u8 zeros[MORUS1280_BLOCK_SIZE] = {};
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
union morus1280_block_in tag_in;
struct morus1280_block tag;
unsigned int authsize = crypto_aead_authsize(tfm);
unsigned int cryptlen = req->cryptlen - authsize;
scatterwalk_map_and_copy(tag_in.bytes, req->src,
req->assoclen + cryptlen, authsize, 0);
crypto_morus1280_load(&tag, tag_in.bytes);
crypto_morus1280_crypt(req, &tag, cryptlen, &ops);
crypto_morus1280_store(tag_in.bytes, &tag);
return crypto_memneq(tag_in.bytes, zeros, authsize) ? -EBADMSG : 0;
}
static int crypto_morus1280_init_tfm(struct crypto_aead *tfm)
{
return 0;
}
static void crypto_morus1280_exit_tfm(struct crypto_aead *tfm)
{
}
static struct aead_alg crypto_morus1280_alg = {
.setkey = crypto_morus1280_setkey,
.setauthsize = crypto_morus1280_setauthsize,
.encrypt = crypto_morus1280_encrypt,
.decrypt = crypto_morus1280_decrypt,
.init = crypto_morus1280_init_tfm,
.exit = crypto_morus1280_exit_tfm,
.ivsize = MORUS_NONCE_SIZE,
.maxauthsize = MORUS_MAX_AUTH_SIZE,
.chunksize = MORUS1280_BLOCK_SIZE,
.base = {
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct morus1280_ctx),
.cra_alignmask = 0,
.cra_priority = 100,
.cra_name = "morus1280",
.cra_driver_name = "morus1280-generic",
.cra_module = THIS_MODULE,
}
};
static int __init crypto_morus1280_module_init(void)
{
return crypto_register_aead(&crypto_morus1280_alg);
}
static void __exit crypto_morus1280_module_exit(void)
{
crypto_unregister_aead(&crypto_morus1280_alg);
}
subsys_initcall(crypto_morus1280_module_init);
module_exit(crypto_morus1280_module_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Ondrej Mosnacek <omosnacek@gmail.com>");
MODULE_DESCRIPTION("MORUS-1280 AEAD algorithm");
MODULE_ALIAS_CRYPTO("morus1280");
MODULE_ALIAS_CRYPTO("morus1280-generic");