kernel_optimize_test/crypto/poly1305_generic.c
Eric Biggers c4741b2305 crypto: run initcalls for generic implementations earlier
Use subsys_initcall for registration of all templates and generic
algorithm implementations, rather than module_init.  Then change
cryptomgr to use arch_initcall, to place it before the subsys_initcalls.

This is needed so that when both a generic and optimized implementation
of an algorithm are built into the kernel (not loadable modules), the
generic implementation is registered before the optimized one.
Otherwise, the self-tests for the optimized implementation are unable to
allocate the generic implementation for the new comparison fuzz tests.

Note that on arm, a side effect of this change is that self-tests for
generic implementations may run before the unaligned access handler has
been installed.  So, unaligned accesses will crash the kernel.  This is
arguably a good thing as it makes it easier to detect that type of bug.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-04-18 22:15:03 +08:00

329 lines
8.5 KiB
C

/*
* Poly1305 authenticator algorithm, RFC7539
*
* Copyright (C) 2015 Martin Willi
*
* Based on public domain code by Andrew Moon and Daniel J. Bernstein.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <crypto/algapi.h>
#include <crypto/internal/hash.h>
#include <crypto/poly1305.h>
#include <linux/crypto.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <asm/unaligned.h>
static inline u64 mlt(u64 a, u64 b)
{
return a * b;
}
static inline u32 sr(u64 v, u_char n)
{
return v >> n;
}
static inline u32 and(u32 v, u32 mask)
{
return v & mask;
}
int crypto_poly1305_init(struct shash_desc *desc)
{
struct poly1305_desc_ctx *dctx = shash_desc_ctx(desc);
poly1305_core_init(&dctx->h);
dctx->buflen = 0;
dctx->rset = false;
dctx->sset = false;
return 0;
}
EXPORT_SYMBOL_GPL(crypto_poly1305_init);
void poly1305_core_setkey(struct poly1305_key *key, const u8 *raw_key)
{
/* r &= 0xffffffc0ffffffc0ffffffc0fffffff */
key->r[0] = (get_unaligned_le32(raw_key + 0) >> 0) & 0x3ffffff;
key->r[1] = (get_unaligned_le32(raw_key + 3) >> 2) & 0x3ffff03;
key->r[2] = (get_unaligned_le32(raw_key + 6) >> 4) & 0x3ffc0ff;
key->r[3] = (get_unaligned_le32(raw_key + 9) >> 6) & 0x3f03fff;
key->r[4] = (get_unaligned_le32(raw_key + 12) >> 8) & 0x00fffff;
}
EXPORT_SYMBOL_GPL(poly1305_core_setkey);
/*
* Poly1305 requires a unique key for each tag, which implies that we can't set
* it on the tfm that gets accessed by multiple users simultaneously. Instead we
* expect the key as the first 32 bytes in the update() call.
*/
unsigned int crypto_poly1305_setdesckey(struct poly1305_desc_ctx *dctx,
const u8 *src, unsigned int srclen)
{
if (!dctx->sset) {
if (!dctx->rset && srclen >= POLY1305_BLOCK_SIZE) {
poly1305_core_setkey(&dctx->r, src);
src += POLY1305_BLOCK_SIZE;
srclen -= POLY1305_BLOCK_SIZE;
dctx->rset = true;
}
if (srclen >= POLY1305_BLOCK_SIZE) {
dctx->s[0] = get_unaligned_le32(src + 0);
dctx->s[1] = get_unaligned_le32(src + 4);
dctx->s[2] = get_unaligned_le32(src + 8);
dctx->s[3] = get_unaligned_le32(src + 12);
src += POLY1305_BLOCK_SIZE;
srclen -= POLY1305_BLOCK_SIZE;
dctx->sset = true;
}
}
return srclen;
}
EXPORT_SYMBOL_GPL(crypto_poly1305_setdesckey);
static void poly1305_blocks_internal(struct poly1305_state *state,
const struct poly1305_key *key,
const void *src, unsigned int nblocks,
u32 hibit)
{
u32 r0, r1, r2, r3, r4;
u32 s1, s2, s3, s4;
u32 h0, h1, h2, h3, h4;
u64 d0, d1, d2, d3, d4;
if (!nblocks)
return;
r0 = key->r[0];
r1 = key->r[1];
r2 = key->r[2];
r3 = key->r[3];
r4 = key->r[4];
s1 = r1 * 5;
s2 = r2 * 5;
s3 = r3 * 5;
s4 = r4 * 5;
h0 = state->h[0];
h1 = state->h[1];
h2 = state->h[2];
h3 = state->h[3];
h4 = state->h[4];
do {
/* h += m[i] */
h0 += (get_unaligned_le32(src + 0) >> 0) & 0x3ffffff;
h1 += (get_unaligned_le32(src + 3) >> 2) & 0x3ffffff;
h2 += (get_unaligned_le32(src + 6) >> 4) & 0x3ffffff;
h3 += (get_unaligned_le32(src + 9) >> 6) & 0x3ffffff;
h4 += (get_unaligned_le32(src + 12) >> 8) | hibit;
/* h *= r */
d0 = mlt(h0, r0) + mlt(h1, s4) + mlt(h2, s3) +
mlt(h3, s2) + mlt(h4, s1);
d1 = mlt(h0, r1) + mlt(h1, r0) + mlt(h2, s4) +
mlt(h3, s3) + mlt(h4, s2);
d2 = mlt(h0, r2) + mlt(h1, r1) + mlt(h2, r0) +
mlt(h3, s4) + mlt(h4, s3);
d3 = mlt(h0, r3) + mlt(h1, r2) + mlt(h2, r1) +
mlt(h3, r0) + mlt(h4, s4);
d4 = mlt(h0, r4) + mlt(h1, r3) + mlt(h2, r2) +
mlt(h3, r1) + mlt(h4, r0);
/* (partial) h %= p */
d1 += sr(d0, 26); h0 = and(d0, 0x3ffffff);
d2 += sr(d1, 26); h1 = and(d1, 0x3ffffff);
d3 += sr(d2, 26); h2 = and(d2, 0x3ffffff);
d4 += sr(d3, 26); h3 = and(d3, 0x3ffffff);
h0 += sr(d4, 26) * 5; h4 = and(d4, 0x3ffffff);
h1 += h0 >> 26; h0 = h0 & 0x3ffffff;
src += POLY1305_BLOCK_SIZE;
} while (--nblocks);
state->h[0] = h0;
state->h[1] = h1;
state->h[2] = h2;
state->h[3] = h3;
state->h[4] = h4;
}
void poly1305_core_blocks(struct poly1305_state *state,
const struct poly1305_key *key,
const void *src, unsigned int nblocks)
{
poly1305_blocks_internal(state, key, src, nblocks, 1 << 24);
}
EXPORT_SYMBOL_GPL(poly1305_core_blocks);
static void poly1305_blocks(struct poly1305_desc_ctx *dctx,
const u8 *src, unsigned int srclen, u32 hibit)
{
unsigned int datalen;
if (unlikely(!dctx->sset)) {
datalen = crypto_poly1305_setdesckey(dctx, src, srclen);
src += srclen - datalen;
srclen = datalen;
}
poly1305_blocks_internal(&dctx->h, &dctx->r,
src, srclen / POLY1305_BLOCK_SIZE, hibit);
}
int crypto_poly1305_update(struct shash_desc *desc,
const u8 *src, unsigned int srclen)
{
struct poly1305_desc_ctx *dctx = shash_desc_ctx(desc);
unsigned int bytes;
if (unlikely(dctx->buflen)) {
bytes = min(srclen, POLY1305_BLOCK_SIZE - dctx->buflen);
memcpy(dctx->buf + dctx->buflen, src, bytes);
src += bytes;
srclen -= bytes;
dctx->buflen += bytes;
if (dctx->buflen == POLY1305_BLOCK_SIZE) {
poly1305_blocks(dctx, dctx->buf,
POLY1305_BLOCK_SIZE, 1 << 24);
dctx->buflen = 0;
}
}
if (likely(srclen >= POLY1305_BLOCK_SIZE)) {
poly1305_blocks(dctx, src, srclen, 1 << 24);
src += srclen - (srclen % POLY1305_BLOCK_SIZE);
srclen %= POLY1305_BLOCK_SIZE;
}
if (unlikely(srclen)) {
dctx->buflen = srclen;
memcpy(dctx->buf, src, srclen);
}
return 0;
}
EXPORT_SYMBOL_GPL(crypto_poly1305_update);
void poly1305_core_emit(const struct poly1305_state *state, void *dst)
{
u32 h0, h1, h2, h3, h4;
u32 g0, g1, g2, g3, g4;
u32 mask;
/* fully carry h */
h0 = state->h[0];
h1 = state->h[1];
h2 = state->h[2];
h3 = state->h[3];
h4 = state->h[4];
h2 += (h1 >> 26); h1 = h1 & 0x3ffffff;
h3 += (h2 >> 26); h2 = h2 & 0x3ffffff;
h4 += (h3 >> 26); h3 = h3 & 0x3ffffff;
h0 += (h4 >> 26) * 5; h4 = h4 & 0x3ffffff;
h1 += (h0 >> 26); h0 = h0 & 0x3ffffff;
/* compute h + -p */
g0 = h0 + 5;
g1 = h1 + (g0 >> 26); g0 &= 0x3ffffff;
g2 = h2 + (g1 >> 26); g1 &= 0x3ffffff;
g3 = h3 + (g2 >> 26); g2 &= 0x3ffffff;
g4 = h4 + (g3 >> 26) - (1 << 26); g3 &= 0x3ffffff;
/* select h if h < p, or h + -p if h >= p */
mask = (g4 >> ((sizeof(u32) * 8) - 1)) - 1;
g0 &= mask;
g1 &= mask;
g2 &= mask;
g3 &= mask;
g4 &= mask;
mask = ~mask;
h0 = (h0 & mask) | g0;
h1 = (h1 & mask) | g1;
h2 = (h2 & mask) | g2;
h3 = (h3 & mask) | g3;
h4 = (h4 & mask) | g4;
/* h = h % (2^128) */
put_unaligned_le32((h0 >> 0) | (h1 << 26), dst + 0);
put_unaligned_le32((h1 >> 6) | (h2 << 20), dst + 4);
put_unaligned_le32((h2 >> 12) | (h3 << 14), dst + 8);
put_unaligned_le32((h3 >> 18) | (h4 << 8), dst + 12);
}
EXPORT_SYMBOL_GPL(poly1305_core_emit);
int crypto_poly1305_final(struct shash_desc *desc, u8 *dst)
{
struct poly1305_desc_ctx *dctx = shash_desc_ctx(desc);
__le32 digest[4];
u64 f = 0;
if (unlikely(!dctx->sset))
return -ENOKEY;
if (unlikely(dctx->buflen)) {
dctx->buf[dctx->buflen++] = 1;
memset(dctx->buf + dctx->buflen, 0,
POLY1305_BLOCK_SIZE - dctx->buflen);
poly1305_blocks(dctx, dctx->buf, POLY1305_BLOCK_SIZE, 0);
}
poly1305_core_emit(&dctx->h, digest);
/* mac = (h + s) % (2^128) */
f = (f >> 32) + le32_to_cpu(digest[0]) + dctx->s[0];
put_unaligned_le32(f, dst + 0);
f = (f >> 32) + le32_to_cpu(digest[1]) + dctx->s[1];
put_unaligned_le32(f, dst + 4);
f = (f >> 32) + le32_to_cpu(digest[2]) + dctx->s[2];
put_unaligned_le32(f, dst + 8);
f = (f >> 32) + le32_to_cpu(digest[3]) + dctx->s[3];
put_unaligned_le32(f, dst + 12);
return 0;
}
EXPORT_SYMBOL_GPL(crypto_poly1305_final);
static struct shash_alg poly1305_alg = {
.digestsize = POLY1305_DIGEST_SIZE,
.init = crypto_poly1305_init,
.update = crypto_poly1305_update,
.final = crypto_poly1305_final,
.descsize = sizeof(struct poly1305_desc_ctx),
.base = {
.cra_name = "poly1305",
.cra_driver_name = "poly1305-generic",
.cra_priority = 100,
.cra_blocksize = POLY1305_BLOCK_SIZE,
.cra_module = THIS_MODULE,
},
};
static int __init poly1305_mod_init(void)
{
return crypto_register_shash(&poly1305_alg);
}
static void __exit poly1305_mod_exit(void)
{
crypto_unregister_shash(&poly1305_alg);
}
subsys_initcall(poly1305_mod_init);
module_exit(poly1305_mod_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Martin Willi <martin@strongswan.org>");
MODULE_DESCRIPTION("Poly1305 authenticator");
MODULE_ALIAS_CRYPTO("poly1305");
MODULE_ALIAS_CRYPTO("poly1305-generic");