kernel_optimize_test/kernel/time/vsyscall.c
Thomas Gleixner 19d0070a27 timekeeping/vsyscall: Provide vdso_update_begin/end()
Architectures can have the requirement to add additional architecture
specific data to the VDSO data page which needs to be updated independent
of the timekeeper updates.

To protect these updates vs. concurrent readers and a conflicting update
through timekeeping, provide helper functions to make such updates safe.

vdso_update_begin() takes the timekeeper_lock to protect against a
potential update from timekeeper code and increments the VDSO sequence
count to signal data inconsistency to concurrent readers. vdso_update_end()
makes the sequence count even again to signal data consistency and drops
the timekeeper lock.

[ Sven: Add interrupt disable handling to the functions ]

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200804150124.41692-3-svens@linux.ibm.com
2020-08-06 10:57:30 +02:00

171 lines
4.9 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2019 ARM Ltd.
*
* Generic implementation of update_vsyscall and update_vsyscall_tz.
*
* Based on the x86 specific implementation.
*/
#include <linux/hrtimer.h>
#include <linux/timekeeper_internal.h>
#include <vdso/datapage.h>
#include <vdso/helpers.h>
#include <vdso/vsyscall.h>
#include "timekeeping_internal.h"
static inline void update_vdso_data(struct vdso_data *vdata,
struct timekeeper *tk)
{
struct vdso_timestamp *vdso_ts;
u64 nsec, sec;
vdata[CS_HRES_COARSE].cycle_last = tk->tkr_mono.cycle_last;
vdata[CS_HRES_COARSE].mask = tk->tkr_mono.mask;
vdata[CS_HRES_COARSE].mult = tk->tkr_mono.mult;
vdata[CS_HRES_COARSE].shift = tk->tkr_mono.shift;
vdata[CS_RAW].cycle_last = tk->tkr_raw.cycle_last;
vdata[CS_RAW].mask = tk->tkr_raw.mask;
vdata[CS_RAW].mult = tk->tkr_raw.mult;
vdata[CS_RAW].shift = tk->tkr_raw.shift;
/* CLOCK_MONOTONIC */
vdso_ts = &vdata[CS_HRES_COARSE].basetime[CLOCK_MONOTONIC];
vdso_ts->sec = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
nsec = tk->tkr_mono.xtime_nsec;
nsec += ((u64)tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
while (nsec >= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
nsec -= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift);
vdso_ts->sec++;
}
vdso_ts->nsec = nsec;
/* Copy MONOTONIC time for BOOTTIME */
sec = vdso_ts->sec;
/* Add the boot offset */
sec += tk->monotonic_to_boot.tv_sec;
nsec += (u64)tk->monotonic_to_boot.tv_nsec << tk->tkr_mono.shift;
/* CLOCK_BOOTTIME */
vdso_ts = &vdata[CS_HRES_COARSE].basetime[CLOCK_BOOTTIME];
vdso_ts->sec = sec;
while (nsec >= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
nsec -= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift);
vdso_ts->sec++;
}
vdso_ts->nsec = nsec;
/* CLOCK_MONOTONIC_RAW */
vdso_ts = &vdata[CS_RAW].basetime[CLOCK_MONOTONIC_RAW];
vdso_ts->sec = tk->raw_sec;
vdso_ts->nsec = tk->tkr_raw.xtime_nsec;
/* CLOCK_TAI */
vdso_ts = &vdata[CS_HRES_COARSE].basetime[CLOCK_TAI];
vdso_ts->sec = tk->xtime_sec + (s64)tk->tai_offset;
vdso_ts->nsec = tk->tkr_mono.xtime_nsec;
}
void update_vsyscall(struct timekeeper *tk)
{
struct vdso_data *vdata = __arch_get_k_vdso_data();
struct vdso_timestamp *vdso_ts;
s32 clock_mode;
u64 nsec;
/* copy vsyscall data */
vdso_write_begin(vdata);
clock_mode = tk->tkr_mono.clock->vdso_clock_mode;
vdata[CS_HRES_COARSE].clock_mode = clock_mode;
vdata[CS_RAW].clock_mode = clock_mode;
/* CLOCK_REALTIME also required for time() */
vdso_ts = &vdata[CS_HRES_COARSE].basetime[CLOCK_REALTIME];
vdso_ts->sec = tk->xtime_sec;
vdso_ts->nsec = tk->tkr_mono.xtime_nsec;
/* CLOCK_REALTIME_COARSE */
vdso_ts = &vdata[CS_HRES_COARSE].basetime[CLOCK_REALTIME_COARSE];
vdso_ts->sec = tk->xtime_sec;
vdso_ts->nsec = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
/* CLOCK_MONOTONIC_COARSE */
vdso_ts = &vdata[CS_HRES_COARSE].basetime[CLOCK_MONOTONIC_COARSE];
vdso_ts->sec = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
nsec = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
nsec = nsec + tk->wall_to_monotonic.tv_nsec;
vdso_ts->sec += __iter_div_u64_rem(nsec, NSEC_PER_SEC, &vdso_ts->nsec);
/*
* Read without the seqlock held by clock_getres().
* Note: No need to have a second copy.
*/
WRITE_ONCE(vdata[CS_HRES_COARSE].hrtimer_res, hrtimer_resolution);
/*
* If the current clocksource is not VDSO capable, then spare the
* update of the high reolution parts.
*/
if (clock_mode != VDSO_CLOCKMODE_NONE)
update_vdso_data(vdata, tk);
__arch_update_vsyscall(vdata, tk);
vdso_write_end(vdata);
__arch_sync_vdso_data(vdata);
}
void update_vsyscall_tz(void)
{
struct vdso_data *vdata = __arch_get_k_vdso_data();
vdata[CS_HRES_COARSE].tz_minuteswest = sys_tz.tz_minuteswest;
vdata[CS_HRES_COARSE].tz_dsttime = sys_tz.tz_dsttime;
__arch_sync_vdso_data(vdata);
}
/**
* vdso_update_begin - Start of a VDSO update section
*
* Allows architecture code to safely update the architecture specific VDSO
* data. Disables interrupts, acquires timekeeper lock to serialize against
* concurrent updates from timekeeping and invalidates the VDSO data
* sequence counter to prevent concurrent readers from accessing
* inconsistent data.
*
* Returns: Saved interrupt flags which need to be handed in to
* vdso_update_end().
*/
unsigned long vdso_update_begin(void)
{
struct vdso_data *vdata = __arch_get_k_vdso_data();
unsigned long flags;
raw_spin_lock_irqsave(&timekeeper_lock, flags);
vdso_write_begin(vdata);
return flags;
}
/**
* vdso_update_end - End of a VDSO update section
* @flags: Interrupt flags as returned from vdso_update_begin()
*
* Pairs with vdso_update_begin(). Marks vdso data consistent, invokes data
* synchronization if the architecture requires it, drops timekeeper lock
* and restores interrupt flags.
*/
void vdso_update_end(unsigned long flags)
{
struct vdso_data *vdata = __arch_get_k_vdso_data();
vdso_write_end(vdata);
__arch_sync_vdso_data(vdata);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
}